Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (617)

Search Parameters:
Keywords = wind resource assessment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5581 KB  
Article
Seasonal and Multi-Year Wind Speed Forecasting Using BP-PSO Neural Networks Across Coastal Regions in China
by Shujie Jiang, Jiayi Jin and Shu Dai
Sustainability 2025, 17(22), 10127; https://doi.org/10.3390/su172210127 (registering DOI) - 12 Nov 2025
Abstract
Accurate short-term wind speed forecasting is essential for the sustainable operation and planning of coastal wind farms. This study develops an improved BP-PSO hybrid model that integrates particle-swarm optimization, time-ordered walk-forward validation, and uncertainty quantification through block-bootstrap confidence intervals and Monte-Carlo dropout prediction [...] Read more.
Accurate short-term wind speed forecasting is essential for the sustainable operation and planning of coastal wind farms. This study develops an improved BP-PSO hybrid model that integrates particle-swarm optimization, time-ordered walk-forward validation, and uncertainty quantification through block-bootstrap confidence intervals and Monte-Carlo dropout prediction intervals. Using multi-year and seasonal datasets from four coastal stations in China—from Bohai Bay (LHT, XCS, ZFD) to Zhejiang Province (SSN)—the proposed model achieves high predictive accuracy, with RMSE values between 1.09 and 1.54 m/s, MAE between 0.79 and 1.10 m/s, and R2 exceeding 0.70 at most sites. The multi-year configuration provides the most stable and robust results, while autumn at ZFD yields the highest errors due to intensified turbulence. XCS and SSN exhibit the most consistent performance, confirming the model’s spatial adaptability across distinct climatic regions. Compared with the ARIMA and persistence baselines, BP-PSO reduces RMSE by over 50%, demonstrating improved efficiency and generalization. These results highlight the potential of intelligent data-driven forecasting frameworks to enhance renewable energy reliability and sustainability by enabling more accurate wind-power scheduling, grid stability, and coastal energy system resilience. Full article
(This article belongs to the Section Sustainable Engineering and Science)
Show Figures

Figure 1

17 pages, 3076 KB  
Article
Operational Flexibility Assessment of a Power System Considering Uncertainty of Flexible Resources Supported by Wind Turbines Under Load Shedding Operation
by Guifen Jiang, Jiayin Xu, Yuming Shen, Peiru Feng, Hao Yang, Xu Gui, Yipeng Cao, Mingcheng Chen, Ming Wei and Yinghao Ma
Processes 2025, 13(11), 3635; https://doi.org/10.3390/pr13113635 - 10 Nov 2025
Viewed by 144
Abstract
The high proportion of renewable energy introduces significant operation risks to the system’s flexibility balance due to its volatility and randomness. Traditional regulation methods struggle to meet the urgent demand for flexible resources. Utilizing wind turbines (WTs) under load shedding operation can provide [...] Read more.
The high proportion of renewable energy introduces significant operation risks to the system’s flexibility balance due to its volatility and randomness. Traditional regulation methods struggle to meet the urgent demand for flexible resources. Utilizing wind turbines (WTs) under load shedding operation can provide additional reserve capacity, thereby reducing the risk of insufficient system flexibility. However, since wind speed and turbine output exhibit a cubic relationship, minor fluctuations in wind speed can lead to significant variations in output and reserve capacity. This increases the uncertainty in the supply of flexible resources from WTs, posing challenges to power system flexibility assessment. This paper investigates a method for assessing power system flexibility considering the uncertainty of flexible resources supported by WT under load shedding operation. Firstly, according to the flexibility supply control model of WT under shedding operation, the analytical relationship between output, flexible resources, and wind speed under a specific wind energy conversion coefficient is constructed; secondly, combined with the probabilistic model of wind speed based on the nonparametric kernel density estimation, the wind turbine flexible resource uncertainty model is constructed; thirdly, the Monte Carlo simulation is used to obtain the sampled wind speed data, and the operational flexibility assessment method of the power system considering the flexibility uncertainty of WT under load shedding operation is proposed. Finally, through case studies, the validity of the proposed model and method were verified. The analysis concludes that load shedding operation of WTs can enhance the system’s flexible resources to a certain extent but cannot provide stable bi-directional regulation capabilities. Full article
Show Figures

Figure 1

30 pages, 9730 KB  
Review
Urban Wind as a Pathway to Positive Energy Districts
by Krzysztof Sornek, Anna Herzyk, Maksymilian Homa, Flaviu Mihai Frigura-Iliasa and Mihaela Frigura-Iliasa
Energies 2025, 18(22), 5897; https://doi.org/10.3390/en18225897 - 9 Nov 2025
Viewed by 173
Abstract
The increasing demand for decarbonized urban environments has intensified interest in integrating renewable energy systems within cities. This review investigates the potential of urban wind energy as a promising technology in the development of Positive Energy Districts, supporting the transition toward climate-neutral urban [...] Read more.
The increasing demand for decarbonized urban environments has intensified interest in integrating renewable energy systems within cities. This review investigates the potential of urban wind energy as a promising technology in the development of Positive Energy Districts, supporting the transition toward climate-neutral urban areas. A systematic analysis of recent literature is presented, covering methodologies for urban wind resource assessment, including Geographic Information Systems (GIS)-based mapping, wind tunnel experiments, and Computational Fluid Dynamics simulations. The study also reviews available small-scale wind technologies, with emphasis on building-integrated wind turbines, and evaluates their contribution to local energy self-sufficiency. The integration of urban wind systems with energy storage, Power-to-Heat solutions, and smart district networks is discussed within the PED framework. Despite technical, economic, and social challenges, such as low wind speeds, turbulence, and public acceptance, urban wind energy offers temporal complementarity to solar power and can enhance district-level energy resilience. The review identifies key technological and methodological gaps and proposes strategic directions for optimizing urban wind deployment in future sustainable city planning. Full article
(This article belongs to the Special Issue Advances in Power System and Green Energy)
Show Figures

Figure 1

31 pages, 6989 KB  
Article
Feasibility and Sensitivity Analysis of an Off-Grid PV/Wind Hybrid Energy System Integrated with Green Hydrogen Production: A Case Study of Algeria
by Ayoub Boutaghane, Mounir Aksas, Djafar Chabane and Nadhir Lebaal
Hydrogen 2025, 6(4), 103; https://doi.org/10.3390/hydrogen6040103 - 6 Nov 2025
Viewed by 329
Abstract
Algeria’s transition toward sustainable energy requires the exploitation of its abundant solar and wind resources for green hydrogen production. This study assesses the techno-economic feasibility of an off-grid PV/wind hybrid system integrated with a hydrogen subsystem (electrolyzer, fuel cell, and hydrogen storage) to [...] Read more.
Algeria’s transition toward sustainable energy requires the exploitation of its abundant solar and wind resources for green hydrogen production. This study assesses the techno-economic feasibility of an off-grid PV/wind hybrid system integrated with a hydrogen subsystem (electrolyzer, fuel cell, and hydrogen storage) to supply both electricity and hydrogen to decentralized sites in Algeria. Using HOMER Pro, five representative Algerian regions were analyzed, accounting for variations in solar irradiation, wind speed, and groundwater availability. A deferrable water-extraction and treatment load was incorporated to model the water requirements of the electrolyzer. In addition, a comprehensive sensitivity analysis was conducted on solar irradiation, wind speed, and the capital costs of PV panels and wind turbines to capture the effects of renewable resource and investment cost fluctuations. The results indicate significant regional variation, with the levelized cost of energy (LCOE) ranging from 0.514 to 0.868 $/kWh, the levelized cost of hydrogen (LCOH) between 8.31 and 12.4 $/kg, and the net present cost (NPC) between 10.28 M$ and 17.7 M$, demonstrating that all cost metrics are highly sensitive to these variations. Full article
Show Figures

Graphical abstract

23 pages, 1167 KB  
Article
Optimization Planning of a New-Type Power System Considering Supply–Demand Probability Balance
by Liang Feng, Ying Mu, Dongliang Zhang, Dashun Guan and Dunxin Bian
Processes 2025, 13(11), 3564; https://doi.org/10.3390/pr13113564 - 5 Nov 2025
Viewed by 214
Abstract
Traditional power system planning methods are often based on deterministic assumptions, which cannot effectively address the uncertainties brought by high proportions of renewable energy sources. This may result in insufficient power supply or wasted resources. This paper proposes a novel optimization planning method [...] Read more.
Traditional power system planning methods are often based on deterministic assumptions, which cannot effectively address the uncertainties brought by high proportions of renewable energy sources. This may result in insufficient power supply or wasted resources. This paper proposes a novel optimization planning method for power systems, combining a hierarchical Copula model with a comprehensive risk assessment approach. The aim is to optimize the balance between investment costs and operational risks in large-scale power systems. The hierarchical Copula model is employed to handle the spatial correlation and temporal dependence between wind power, photovoltaic power, and load. Multiple joint scenarios are generated using the Monte Carlo method to reflect the complex interactions between different geographic locations, providing more comprehensive data support for risk assessment. Additionally, a CVaR-based comprehensive risk assessment method is used to quantify the risks of power loss and resource wastage, which are then integrated into a comprehensive risk indicator through weighted aggregation. An optimization framework considering supply–demand probability balance constraints is proposed, allowing for supply–demand balance at a certain probability level. Benders decomposition is used to improve computational efficiency. Simulation results show that, compared to traditional methods, the proposed model significantly reduces the curtailment rate and supply–demand imbalance frequency, improving the system’s adaptability to uncertainties and extreme scenarios. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

19 pages, 2960 KB  
Article
An Optimal Capacity Configuration Method for a Renewable Energy Integration-Transmission System Considering Economics and Reliability
by Zhicheng Sha, Canyu Cui, Zhuodi Wang, Fei Yu, Shujian Yin, Zhishuo Yang, Chuanyu Cao, Xiaohan Huang and Zhijie Liu
Symmetry 2025, 17(11), 1880; https://doi.org/10.3390/sym17111880 - 5 Nov 2025
Viewed by 289
Abstract
Integrated Energy Transmission Systems (IETSs) are essential to bridge the geographical gap between where energy is produced and where it is needed, transporting power from resource-rich regions to distant load centers. The fundamental challenge is to resolve the inherent asymmetry between an intermittent [...] Read more.
Integrated Energy Transmission Systems (IETSs) are essential to bridge the geographical gap between where energy is produced and where it is needed, transporting power from resource-rich regions to distant load centers. The fundamental challenge is to resolve the inherent asymmetry between an intermittent power supply and distant load demand. Conventional approaches, focusing only on capacity, fail to address this issue while achieving an effective economic and reliable balance. To address the concerns above, a bilevel optimization framework is proposed to optimize the capacity configuration of IETSs, including wind power, photovoltaic (PV), thermal power, and pumped storage. The optimal capacity of wind and PV is determined by the upper-level model to minimize electricity price, whereas the lower-level model optimizes the system’s operational dispatch for given configuration to minimize operational expenses. A detailed IETS model is also developed to accurately capture the operational characteristics of diverse power sources. Furthermore, the proposed model integrates carbon emission costs and High-Voltage Direct Current (HVDC) utilization constraints, thereby allowing for a comprehensive assessment of their economic efficiency and reliability for capacity configuration. Case studies are conducted to verify the proposed method. The results show that the capacities of wind and PV are optimized, and the electricity costs of IETSs are minimized while satisfying reliability constraints. Full article
Show Figures

Figure 1

30 pages, 7290 KB  
Article
Modeling and Optimization of a Hybrid Solar–Wind Energy System Using HOMER: A Case Study of L’Anse Au Loup
by Sujith Eswaran and Ashraf Ali Khan
Energies 2025, 18(21), 5794; https://doi.org/10.3390/en18215794 - 3 Nov 2025
Viewed by 509
Abstract
The rural community of L’Anse au Loup in southern Labrador depends on a long-distance transmission link to Hydro-Québec for its electricity supply, with diesel generation as backup during outages. This dependence raises electricity costs, exposes the community to supply disruptions, and limits control [...] Read more.
The rural community of L’Anse au Loup in southern Labrador depends on a long-distance transmission link to Hydro-Québec for its electricity supply, with diesel generation as backup during outages. This dependence raises electricity costs, exposes the community to supply disruptions, and limits control over local energy security. This study evaluates the feasibility of a solar–wind hybrid energy system to reduce imported electricity and improve supply reliability. A detailed site assessment identified a 50-hectare area north of the community as suitable for system installation, offering adequate space and minimal land-use conflict. Using Hybrid Optimization of Multiple Energy Resources (HOMER Pro 3.18.3) software, the analysis modeled local load data, renewable resource profiles, and financial parameters to determine the optimal grid-connected configuration. The optimized design installs 19.25 MW of photovoltaic (PV) and 4.62 MW of wind capacity, supported by inverters and maximum power point tracking (MPPT) to ensure stable operation. Simulations show that the hybrid system supplies about 70% of annual demand, cuts greenhouse gas emissions by more than 95% compared with conventional generation, and lowers long-term energy costs. The results confirm that the proposed configuration can strengthen local energy security and provide a replicable framework for other remote and coastal communities in Newfoundland and Labrador pursuing decarbonization. Full article
Show Figures

Figure 1

22 pages, 2027 KB  
Article
Energy, Economic and Environmental (3E) Assessment of Wind Powered Electricity Generation with Hydrogen Storage in Vesleskarvet, Antarctica
by Temitope R. Ayodele, Thapelo C. Mosetlhe, Adedayo A. Yusuff and Ayodeji S. O. Ogunjuyigbe
Energies 2025, 18(21), 5748; https://doi.org/10.3390/en18215748 - 31 Oct 2025
Viewed by 166
Abstract
Clean and sustainable electricity could be generated from hydrogen produced from renewable energy resources. This paper performs an assessment of Energy, Economic and Environmental (3E) potentials of hydrogen fuel cells for electricity generation in Vesleskarvet. This site is a remote area located in [...] Read more.
Clean and sustainable electricity could be generated from hydrogen produced from renewable energy resources. This paper performs an assessment of Energy, Economic and Environmental (3E) potentials of hydrogen fuel cells for electricity generation in Vesleskarvet. This site is a remote area located in Antarctica and is being used as the base for South African National Antarctic Programme (SANAE IV). The hydrogen used as feedstock to the fuel cell was generated from the wind energy resource of Vesleskarvet using water electrolysis technique. Four large wind turbines—DE Wind D7, ServionSE MM100, Alstom E110 and Gamesa G128 designated as WT1, WT2, WT3 and WT4, respectively—were selected to determine which of them best matches the wind characteristics of the site for hydrogen production. Key results reveal that the capacity factor of the wind turbines is 62.78%, 58.37%, 63.80% and 57.94%, respectively. WT4 has the best annual hydrogen productions potential of about 307 tons per annum with the cost of electricity of 2.47 USD/kWh and payback period of 5.4 years. The wind turbine will prevent the use of 1.76 × 106 litters of diesel fuel resulting in a reduction of CO2 and CO emission of 4.83 × 106 and 1.37 × 104, respectively. Full article
(This article belongs to the Special Issue Applications of Fuel Cell Systems)
Show Figures

Figure 1

19 pages, 834 KB  
Article
Hybrid Fixed and Floating Wind Turbine Siting in the Mediterranean Region: An Energy and Economic Analysis
by Pandora Gkeka-Serpetsidaki, Dimitris Fotiou and Theocharis Tsoutsos
Energies 2025, 18(21), 5739; https://doi.org/10.3390/en18215739 - 31 Oct 2025
Viewed by 283
Abstract
This study introduces a hybrid siting approach for Offshore Wind Farms by combining bottom-fixed and floating wind turbines to address seabed variability in the Mediterranean region. Using Heraklion Bay, Crete, as a case study, a multi-step methodology was adopted, integrating GIS tools, micro-siting [...] Read more.
This study introduces a hybrid siting approach for Offshore Wind Farms by combining bottom-fixed and floating wind turbines to address seabed variability in the Mediterranean region. Using Heraklion Bay, Crete, as a case study, a multi-step methodology was adopted, integrating GIS tools, micro-siting analysis, and WAsP simulations to estimate the energy output of three layout scenarios. A comprehensive energy and economic assessment was performed, including key metrics such as Net Present Value, Internal Rate of Return, Payback Period and Levelised Cost of Energy. Scenario 2, which featured a mixed deployment of Vestas and Siemens Gamesa turbines, proved to be the most financially attractive option, yielding the highest Net Present Value (€167 million) and shortest Payback Period. Sensitivity analysis under a 20% reduction in wind resources confirmed the robustness of this scenario. Results demonstrate that hybrid configurations offer a flexible and scalable solution, particularly in island regions with varied bathymetry and seasonal energy demands. The findings highlight the potential of hybrid offshore systems to accelerate energy transitions, optimise spatial utilisation, and improve cost-effectiveness in medium-depth seas. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

27 pages, 7542 KB  
Article
Clean Energy Transition in Insular Communities: Wind Resource Evaluation and VAWT Design Using CFD and Statistics
by Jonathan Fábregas-Villegas, Luis Manuel Palacios-Pineda, Alfredo Miguel Abuchar-Curi and Argemiro Palencia-Díaz
Sustainability 2025, 17(21), 9663; https://doi.org/10.3390/su17219663 - 30 Oct 2025
Viewed by 348
Abstract
Vertical-Axis Wind Turbines (VAWTs) are efficient solutions for renewable energy generation, especially in regions with variable wind conditions. This study presents an optimized design of a small-scale H-type VAWT through the integration of Design of Experiments (DOE) and Computational Fluid Dynamics (CFD), using [...] Read more.
Vertical-Axis Wind Turbines (VAWTs) are efficient solutions for renewable energy generation, especially in regions with variable wind conditions. This study presents an optimized design of a small-scale H-type VAWT through the integration of Design of Experiments (DOE) and Computational Fluid Dynamics (CFD), using a fractional factorial 2k−p approach to evaluate the influence of geometric and operational parameters on power output and power coefficient (Cp), which ranged from 0.15 to 0.35. The research began with a comprehensive assessment of renewable resources in Isla Fuerte, Colombia. Solar analysis revealed an average of 5.13 Peak Sun Hours (PSHs), supporting the existing 175 kWp photovoltaic system. Wind modeling, based on meteorological data and Weibull distribution, showed speeds between 2.79 m/s and 5.36 m/s, predominantly from northeast to northwest. Under these conditions, the NACA S1046 airfoil was selected for its aerodynamic suitability. The turbine achieved power outputs from 0.46 W to 37.59 W, with stabilization times analyzed to assess dynamic performance. This initiative promotes environmental sustainability by reducing reliance on Diesel Generators (DGs) and empowering local communities through participatory design and technical training. The DOE-CFD methodology offers a replicable model for energy transition in insular regions of developing countries, linking technical innovation with social development and education. Full article
Show Figures

Graphical abstract

24 pages, 940 KB  
Article
Evaluating the Role of Hybrid Renewable Energy Systems in Supporting South Africa’s Energy Transition
by Mxolisi Miller, Xolani Yokwana and Mbuyu Sumbwanyambe
Processes 2025, 13(11), 3455; https://doi.org/10.3390/pr13113455 - 27 Oct 2025
Viewed by 616
Abstract
This report evaluates the role of Hybrid Renewable Energy Systems (HRESs) in supporting South Africa’s energy transition amidst persistent power shortages, coal dependency, and growing decarbonisation imperatives. Drawing on national policy frameworks including the Integrated Resource Plan (IRP 2019), the Just Energy Transition [...] Read more.
This report evaluates the role of Hybrid Renewable Energy Systems (HRESs) in supporting South Africa’s energy transition amidst persistent power shortages, coal dependency, and growing decarbonisation imperatives. Drawing on national policy frameworks including the Integrated Resource Plan (IRP 2019), the Just Energy Transition (JET) strategy, and Net Zero 2050 targets, this study analyses five major HRES configurations: PV–Battery, PV–Diesel–Battery, PV–Wind–Battery, PV–Hydrogen, and Multi-Source EMS. Through technical modelling, lifecycle cost estimation, and trade-off analysis, the report demonstrates how hybrid systems can decentralise energy supply, improve grid resilience, and align with socio-economic development goals. Geographic application, cost-performance metrics, and policy alignment are assessed to inform region-specific deployment strategies. Despite enabling technologies and proven field performance, the scale-up of HRESs is constrained by financial, regulatory, and institutional barriers. The report concludes with targeted policy recommendations to support inclusive and regionally adaptive HRES investment in South Africa. Full article
(This article belongs to the Special Issue Advanced Technologies of Renewable Energy Sources (RESs))
Show Figures

Figure 1

30 pages, 7154 KB  
Article
Enhancing Rural Electrification in Tigray: A Geospatial Approach to Hybrid Wind-Solar Site Selection
by Tsige Gebregergs Tesfay and Mulu Bayray Kahsay
Energies 2025, 18(21), 5580; https://doi.org/10.3390/en18215580 - 23 Oct 2025
Viewed by 372
Abstract
Renewable energy sources offer a promising future, backed by mature technologies and a viable pathway toward sustainable energy systems. However, careful planning is necessary to efficiently utilize these resources, especially during site selection. Many rural areas lack access to grid electricity, making off-grid [...] Read more.
Renewable energy sources offer a promising future, backed by mature technologies and a viable pathway toward sustainable energy systems. However, careful planning is necessary to efficiently utilize these resources, especially during site selection. Many rural areas lack access to grid electricity, making off-grid hybrid wind-solar power an attractive solution. In the Tigray region of Ethiopia, no such research has been conducted before. This study aims to identify suitable sites for hybrid wind-solar power for rural electrification using Geographic Information System (GIS), Analytic Hierarchy Process, and Monte Carlo simulation. The criteria fall into three categories: Climate, Topography, and Infrastructure, prioritized through pairwise comparisons by thirteen experts from five organizations engaged in renewable energy research, planning, and operations. Monte Carlo simulation was used for sensitivity analysis to address uncertainties in expert judgments and validate the rankings. The spatial analysis reveals 6470 km2 as highly suitable for off-grid solar, 76 km2 for off-grid wind with predominant easterly winds, and 177 km2 as most favorable for hybrid generation. Areas of good suitability measure 447 km2 for wind, 44,128 km2 for solar, and 16,695 km2 for hybrid systems. Based on this assessment, techno-economic analysis quantified the Levelized Cost of Energy (LCOE) under varying solar–wind shares and battery autonomy days. The analysis shows a minimum LCOE of $0.23/kWh with one-day storage and $0.58/kWh with three-day storage, indicating shorter autonomy is more cost-effective while longer autonomy enhances reliability. Sensitivity analysis shows financial parameters, particularly discount rate and battery capital cost, dominate system economics. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

26 pages, 6714 KB  
Article
Techno-Economic Analysis of Marine Hybrid Clusters for Use in Chile and Mexico
by Emiliano Gorr-Pozzi, Jorge Olmedo-González, Diego Selman-Caro, Manuel Corrales-González, Héctor García-Nava, Fabiola García-Vega, Itxaso Odériz, Giuseppe Giorgi, Rosa de G. González-Huerta, José A. Zertuche-González and Rodolfo Silva
Energies 2025, 18(20), 5543; https://doi.org/10.3390/en18205543 - 21 Oct 2025
Viewed by 464
Abstract
This study assesses the feasibility and profitability of marine hybrid clusters, combining wave energy converters (WECs) and offshore wind turbines (OWTs) to power households and marine aquaculture. Researchers analyzed two coastal sites: La Serena, Chile, with high and consistent wave energy resources, and [...] Read more.
This study assesses the feasibility and profitability of marine hybrid clusters, combining wave energy converters (WECs) and offshore wind turbines (OWTs) to power households and marine aquaculture. Researchers analyzed two coastal sites: La Serena, Chile, with high and consistent wave energy resources, and Ensenada, Mexico, with moderate and more variable wave power. Two WEC technologies, Wave Dragon (WD) and Pelamis (PEL), were evaluated alongside lithium-ion battery storage and green hydrogen production for surplus energy storage. Results show that La Serena’s high wave power (26.05 kW/m) requires less hybridization than Ensenada’s (13.88 kW/m). The WD device in La Serena achieved the highest energy production, while PEL arrays in Ensenada were more effective. The PEL-OWT cluster proved the most cost-effective in Ensenada, whereas the WD-OWT performed better in La Serena. Supplying electricity for seaweed aquaculture, particularly in La Serena, proves more profitable than for households. Ensenada’s clusters generate more surplus electricity, suitable for the electricity market or hydrogen conversion. This study emphasizes the importance of tailoring emerging WEC systems to local conditions, optimizing hybridization strategies, and integrating consolidated industries, such as aquaculture, to enhance both economic and environmental benefits. Full article
(This article belongs to the Special Issue Advanced Technologies for the Integration of Marine Energies)
Show Figures

Figure 1

17 pages, 3276 KB  
Article
Impact of Short Circuit Ratio on Harmonic Distortion in Offshore Wind Farm Integration
by Kiryeon Lee, Myungseok Yoon, Jonghyun Lee, Seungjun Gham and Sungyun Choi
Energies 2025, 18(20), 5480; https://doi.org/10.3390/en18205480 - 17 Oct 2025
Viewed by 335
Abstract
Offshore wind energy is rapidly expanding as a critical resource for global carbon neutrality, with 10.8 GW of new capacity added in 2023, raising the worldwide total to 75.2 GW. However, large-scale integration of offshore wind farms introduces power quality challenges due to [...] Read more.
Offshore wind energy is rapidly expanding as a critical resource for global carbon neutrality, with 10.8 GW of new capacity added in 2023, raising the worldwide total to 75.2 GW. However, large-scale integration of offshore wind farms introduces power quality challenges due to the characteristics of inverter-based resources, particularly harmonic distortion, which can threaten system stability. This study quantitatively investigates the influence of short circuit ratio (SCR) on voltage and current harmonic distortion during offshore wind farm integration. A 500 MW offshore wind farm was modeled, and MATLAB/Simulink simulations were performed for 345 kV and 154 kV systems to evaluate the impact of varying SCR on total harmonic distortion (THD) and individual harmonic orders. Furthermore, the harmonic assessment based on the IEC 61400-21-2 summation method was compared with the simulation results, demonstrating the limitations of the simple summation approach and underscoring the importance of simulation-based evaluation. The results reveal that, under certain SCR conditions, parallel resonance caused by system impedance and line parameters produces unexpectedly high distortion in the 345 kV system, contrary to expectations based solely on voltage level. This resonance phenomenon and SCR dependency were also validated using short circuit capacity data from actual offshore wind farm candidate sites. Overall, the study emphasizes the necessity of comprehensive power quality assessments that account for SCR conditions, voltage levels, and harmonic emission characteristics, providing practical guidance for site selection, substation design, and harmonic mitigation in offshore wind integration. Full article
Show Figures

Figure 1

31 pages, 6524 KB  
Article
Comprehensive Assessment of Wind Energy Potential with a Hybrid GRU–Weibull Prediction Model
by Asiye Aslan, Mustafa Tasci and Selahattin Kosunalp
Electronics 2025, 14(20), 4000; https://doi.org/10.3390/electronics14204000 - 12 Oct 2025
Viewed by 473
Abstract
Wind energy is a critical renewable resource in the global effort toward sustainable development and climate change mitigation. This paper introduces a hybrid forecasting framework that integrates multistep gated recurrent unit (GRU) modeling with Weibull distribution analysis to assess wind energy potential and [...] Read more.
Wind energy is a critical renewable resource in the global effort toward sustainable development and climate change mitigation. This paper introduces a hybrid forecasting framework that integrates multistep gated recurrent unit (GRU) modeling with Weibull distribution analysis to assess wind energy potential and predict long-term wind speed dynamics. The approach combines deterministic and probabilistic components, improving robustness against seasonal variability and uncertainties. To demonstrate its effectiveness, the framework was applied to hourly wind data collected from multiple stations across diverse geographical regions in Turkey. Weibull parameters, wind power density, capacity factor, and annual energy production were estimated, while five machine learning models were compared for forecasting accuracy. The GRU model outperformed alternative methods, and the hybrid GRU–Weibull approach produced highly consistent forecasts aligned with historical patterns. Results highlight that the proposed framework offers a reliable and transferable methodology for evaluating wind energy resources, with applicability beyond the case study region. Full article
(This article belongs to the Special Issue Wind and Renewable Energy Generation and Integration)
Show Figures

Figure 1

Back to TopTop