Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = widely tunable laser sources

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 977 KiB  
Communication
Tailorable Brillouin Light Scattering in Air-Slit Suspended Waveguide
by Yanzhao Wang, Hongrun Ren and Yunjie Teng
Photonics 2025, 12(6), 586; https://doi.org/10.3390/photonics12060586 - 9 Jun 2025
Viewed by 329
Abstract
Silicon-based optical waveguides exhibit high Brillouin gain, enabling the realization of Brillouin lasers directly on silicon substrates. These lasers hold significant promise for applications such as tunable-frequency laser emission, ultrafast pulse generation via mode-locking techniques, and other advanced photonic functionalities. However, a key [...] Read more.
Silicon-based optical waveguides exhibit high Brillouin gain, enabling the realization of Brillouin lasers directly on silicon substrates. These lasers hold significant promise for applications such as tunable-frequency laser emission, ultrafast pulse generation via mode-locking techniques, and other advanced photonic functionalities. However, a key challenge in silicon-based Brillouin lasers is the requirement for long waveguide lengths to achieve sufficient optical feedback and reach the lasing threshold. This study proposes a novel floating waveguide architecture designed to significantly enhance the Brillouin gain in silicon-based systems. Furthermore, we introduce a breakthrough method for achieving wide-range phonon frequency tunability, enabling precise control over stimulated Brillouin scattering (SBS) dynamics. By strategically engineering the waveguide geometry (shape and dimensions), we demonstrate a tunable SBS phonon laser, offering a versatile platform for on-chip applications. Additionally, the proposed waveguide system features adjustable operating frequencies, unlocking new opportunities for compact Brillouin devices and integrated microwave photonic signal sources. Full article
Show Figures

Figure 1

18 pages, 5582 KiB  
Article
Extending Sensing Range by Physics Constraints in Multiband-Multiline Absorption Spectroscopy for Flame Measurement
by Tengfei Jiao, Sheng Kou, Liuhao Ma, Kin-Pang Cheong and Wei Ren
Sensors 2025, 25(7), 2317; https://doi.org/10.3390/s25072317 - 5 Apr 2025
Cited by 1 | Viewed by 468
Abstract
The present numerical study proposes a technique to extend the sensing range of tunable diode laser absorption spectroscopy (TDLAS) for flame measurement by involving physics constraints on both gas condition and spectroscopic parameters in the interpretation of spectra from multiple bands. A total [...] Read more.
The present numerical study proposes a technique to extend the sensing range of tunable diode laser absorption spectroscopy (TDLAS) for flame measurement by involving physics constraints on both gas condition and spectroscopic parameters in the interpretation of spectra from multiple bands. A total of 24 major spectral lines for 2 spectral segments 4029–4031 cm−1 and 7185–7186 cm−1 are determined by specially designed detection function and contribution filtering. Numerical tests on uniform and complicated combustion fields prove the high accuracy, strong robustness to noise, wide sensing range, and good compatibility with tomography. The present study provides a strong technique for future complex combustion detection with advanced laser sources of broad spectrum. Full article
(This article belongs to the Special Issue Advances in Optical Sensing, Instrumentation and Systems: 2nd Edition)
Show Figures

Figure 1

12 pages, 1371 KiB  
Article
Multi-Beam-Energy Control Unit Based on Triple-Bend Achromats
by Liuyang Wu, Zihan Zhu, Bingyang Yan, Jiawei Yan and Haixiao Deng
Photonics 2025, 12(3), 275; https://doi.org/10.3390/photonics12030275 - 17 Mar 2025
Viewed by 471
Abstract
X-ray free electron lasers (XFELs) are the new generation of particle accelerator-based light sources, capable of producing tunable, high-power X-ray pulses that are increasingly vital across various scientific disciplines. Recently, continuous-wave (CW) XFELs driven by superconducting linear accelerators have garnered significant attention due [...] Read more.
X-ray free electron lasers (XFELs) are the new generation of particle accelerator-based light sources, capable of producing tunable, high-power X-ray pulses that are increasingly vital across various scientific disciplines. Recently, continuous-wave (CW) XFELs driven by superconducting linear accelerators have garnered significant attention due to their ability to enhance availability by supporting multiple undulator lines simultaneously. In this paper, we introduce a novel delay system comprising four triple-bend achromats (TBAs). This delay system was combined with fast kickers and can be employed to generate electron beams on a bunch-to-bunch basis in a CW-XFEL facility. Based on the parameters of the Shanghai High-Repetition-Rate XFEL and Extreme Light Facility, start-to-end simulations demonstrate that the TBA-based delay system achieves excellent electron beam qualities while providing a wide beam-energy-tuning range from 1.39 to 8 GeV. Full article
Show Figures

Figure 1

17 pages, 1729 KiB  
Review
Recent Advances in Tunable External Cavity Diode Lasers
by Yan Wang and Yue Song
Appl. Sci. 2025, 15(1), 206; https://doi.org/10.3390/app15010206 - 29 Dec 2024
Cited by 2 | Viewed by 2587
Abstract
A narrow linewidth tunable laser source is a critical component in various fields, including laser radar, quantum information, coherent communication, and precise measurement. Tunable external cavity diode lasers (ECDLs) demonstrate excellent performance, such as narrow linewidth, wide tunable range, and low threshold current, [...] Read more.
A narrow linewidth tunable laser source is a critical component in various fields, including laser radar, quantum information, coherent communication, and precise measurement. Tunable external cavity diode lasers (ECDLs) demonstrate excellent performance, such as narrow linewidth, wide tunable range, and low threshold current, making them increasingly versatile and widely applicable. This article provides an overview of the fundamental structures and recent advancements in external cavity semiconductor lasers. In particular, we discuss external cavity semiconductor lasers based on quantum well and quantum dot gain chips. The structure of the gain chip significantly influences laser’s performance. External cavity quantum well laser has a narrower linewidth, higher power, and better mode stability. Conversely, external cavity quantum dot laser provides a wider tunable range and a remarkably lower threshold current. Furthermore, dual-wavelength external cavity tunable diode lasers are gaining importance in applications such as optical switching and terahertz radiation generation. With the continuous optimization of chips and external cavity structures, external cavity diode lasers are increasingly recognized as promising light sources with narrow linewidth and wide tunability, opening up broader application prospects. Full article
(This article belongs to the Special Issue Optical Sensors: Applications, Performance and Challenges)
Show Figures

Figure 1

13 pages, 3101 KiB  
Article
Er3+/Yb3+ Co-Doped Fluorotellurite Glass Fiber with Broadband Luminescence
by Hepan Zhu, Weisheng Xu, Zhichao Fan, Shengchuang Bai, Peiqing Zhang, Shixun Dai, Qiuhua Nie, Xiang Shen, Rongping Wang and Xunsi Wang
Sensors 2024, 24(16), 5259; https://doi.org/10.3390/s24165259 - 14 Aug 2024
Cited by 2 | Viewed by 1454
Abstract
In order to address the ‘capacity crisis’ caused by the narrow bandwidth of the current C band and the demand for wide-spectrum sensing sources and tunable fiber lasers, a broadband luminescence covering the C + L bands using Er3+/Yb3+ co-doped [...] Read more.
In order to address the ‘capacity crisis’ caused by the narrow bandwidth of the current C band and the demand for wide-spectrum sensing sources and tunable fiber lasers, a broadband luminescence covering the C + L bands using Er3+/Yb3+ co-doped fluorotellurite glass fiber is investigated in this paper. The optimal doping concentrations in the glass host were determined based on the intensity, lifetime, and full width at half maximum (FWHM) of the fluorescence centered at 1.5 µm, which were found to be 1.5 mol% Er2O3 and 3 mol% Yb2O3. We also systematically investigated this in terms of optical absorption spectra, absorption and emission cross-sections, gain coefficients, Judd–Ofelt parameters, and up-conversion fluorescence. The energy transfer (ET) mechanism between the high concentrations of Er3+ and Yb3+ was summarized. In addition, a step-indexed fiber was prepared based on these fluorotellurite glasses, and a wide bandwidth of ~112.5 nm (covering the C + L bands from 1505.1 to 1617.6 nm) at 3 dB for the amplified spontaneous emission (ASE) spectra has been observed at a fiber length of 0.57 m, which is the widest bandwidth among all the reports based on tellurite glass. Therefore, this kind of Er3+/Yb3+ co-doped fluorotellurite glass fiber has great potential for developing broadband C + L band amplifiers, ultra-wide fiber sources for sensing, and tunable fiber lasers. Full article
(This article belongs to the Special Issue Specialty Optical Fiber-Based Sensors)
Show Figures

Figure 1

8 pages, 12033 KiB  
Communication
Output Characteristics of External-Cavity Mode-Hop-Free Tunable Laser Source in C+L Band
by Jisheng Sun, Liqiang Qiu, Lei Liu, Liwen Sheng, Yudong Cui, Lin Huang, Mengchun Pan, Fushun Nian and Jiafei Hu
Photonics 2024, 11(7), 677; https://doi.org/10.3390/photonics11070677 - 21 Jul 2024
Cited by 4 | Viewed by 1801
Abstract
Tunable laser sources with a wide wavelength tuning range, mode-hop-free (MHF) operation, and high spectral purity are essential for applications such as high-resolution spectroscopy, coherent detection, and intelligent fiber sensing. In this paper, we present a wide-range tunable laser source that operates without [...] Read more.
Tunable laser sources with a wide wavelength tuning range, mode-hop-free (MHF) operation, and high spectral purity are essential for applications such as high-resolution spectroscopy, coherent detection, and intelligent fiber sensing. In this paper, we present a wide-range tunable laser source that operates without mode hopping, based on external cavity feedback using a semiconductor gain chip as the laser gain medium. The wavelength, power, and spectral characteristics of the laser are experimentally measured. A wide MHF continuous wavelength tuning range from 1480 nm to 1620 nm with a side-mode suppression ratio of more than 61.65 dB is achieved. An output optical power of more than 11.14 dBm with good power stability can also be realized in the full C+L band. This proposed external-cavity tunable laser source features a narrow intrinsic linewidth and MHF tunable radiation with a maximum sweep speed of 200 nm/s, enabling practical applications such as high-resolution vector spectrum analysis. Full article
(This article belongs to the Special Issue Emerging Topics in High-Power Laser and Light–Matter Interactions)
Show Figures

Figure 1

17 pages, 8273 KiB  
Article
High-Repetition-Rate 2.3–2.7 µm Acousto-Optically Tuned Narrow-Line Laser System Comprising Two Master Oscillators and Power Amplifiers Based on Polycrystalline Cr2+:ZnSe with the 2.1 µm Ho3+:YAG Pulsed Pumping
by Oleg Antipov, Ilya Eranov, Stanislav Balabanov, Anton Dobryinin, Yuri Getmanovskiy, Valeriy Sharkov and Nikolay Yudin
Photonics 2024, 11(6), 555; https://doi.org/10.3390/photonics11060555 - 12 Jun 2024
Viewed by 1362
Abstract
High-average-power narrow-linewidth tunable solid-state lasers in the wavelength region between 2 and 3 μm are attractive light sources for many applications. This paper reports a narrow-linewidth widely tunable laser system based on the polycrystalline Cr2+:ZnSe elements pumped by repetitively pulsed 2.1 [...] Read more.
High-average-power narrow-linewidth tunable solid-state lasers in the wavelength region between 2 and 3 μm are attractive light sources for many applications. This paper reports a narrow-linewidth widely tunable laser system based on the polycrystalline Cr2+:ZnSe elements pumped by repetitively pulsed 2.1 µm Ho3+:YAG laser operating at a pulse rate of tens of kilohertz. An advanced procedure of ZnSe element doping and surface improvement was applied to increase the laser-induced damage threshold, which resulted in an increase in the output power of the Cr2+:ZnSe laser system. The high-average-power laser system comprised double master oscillators and power amplifiers: Ho3+:YAG and Cr2+:ZnSe laser oscillators, and Ho3+:YAG and Cr2+:ZnSe power amplifiers. The output wavelength was widely tuned within 2.3–2.7 µm by means of an acousto-optical tunable filter inside a Cr2+:ZnSe master oscillator cavity. The narrow-linewidth operation at the pulse repetition rate of 20–40 kHz in a high-quality beam with an average output power of up to 9.7 W was demonstrated. Full article
Show Figures

Figure 1

12 pages, 3237 KiB  
Article
Mid-Infrared Photothermal Spectroscopy for the Detection of Caffeine in Beverages
by Giovanna Ricchiuti, Lisa Riedlsperger, Alicja Dabrowska, Erwin Rosenberg, Liam O’Faolain and Bernhard Lendl
Sensors 2024, 24(6), 1974; https://doi.org/10.3390/s24061974 - 20 Mar 2024
Cited by 3 | Viewed by 2888
Abstract
Caffeine is the most widely consumed stimulant and is the subject of significant ongoing research and discussions due to its impact on human health. The industry’s need to comply with country-specific food and beverage regulations underscores the importance of monitoring caffeine levels in [...] Read more.
Caffeine is the most widely consumed stimulant and is the subject of significant ongoing research and discussions due to its impact on human health. The industry’s need to comply with country-specific food and beverage regulations underscores the importance of monitoring caffeine levels in commercial products. In this study, we propose an alternative technique for caffeine analysis that relies on mid-infrared laser-based photothermal spectroscopy (PTS). PTS exploits the high-power output of the quantum cascade laser (QCL) sources to enhance the sensitivity of the mid-IR measurement. The laser-induced thermal gradient in the sample scales with the analytes’ absorption coefficient and concentration, thus allowing for both qualitative and quantitative assessment. We evaluated the performance of our experimental PTS spectrometer, incorporating a tunable QCL and a Mach–Zehnder interferometer, for detecting caffeine in coffee, black tea, and an energy drink. We calibrated the setup with caffeine standards (0.1–2.5 mg mL−1) and we benchmarked the setup’s capabilities against gas chromatography (GC) and Fourier-transform infrared (FTIR) spectroscopy. Quantitative results aligned with GC analysis, and limits of detection matched the research-grade FTIR spectrometer, indicating an excellent performance of our custom-made instrument. This method offers an alternative to established techniques, providing a platform for fast, sensitive, and non-destructive analysis without consumables as well as with high potential for miniaturization. Full article
(This article belongs to the Special Issue Photonics for Advanced Spectroscopy and Sensing)
Show Figures

Figure 1

8 pages, 1417 KiB  
Communication
Widely Tunable Pulse Duration 100 mJ Single-Mode MOPA System Based on Yb-Doped Tapered Double-Clad Fiber and Nd:YAG Solid-State Amplifiers
by Mikhail Kozlyakov, Andrey Petrov and Grigoriy Mikhailovskiy
Photonics 2024, 11(1), 84; https://doi.org/10.3390/photonics11010084 - 17 Jan 2024
Cited by 2 | Viewed by 1894
Abstract
We report on a 1064 nm master oscillator power amplifier (MOPA) system based on pulse-modulated laser diode seed sources combined with fiber preamplifiers and a Yb-doped tapered double-clad fiber (T-DCF) amplifier used as an all-fiber master oscillator and a two-stage side-pumped solid-state power [...] Read more.
We report on a 1064 nm master oscillator power amplifier (MOPA) system based on pulse-modulated laser diode seed sources combined with fiber preamplifiers and a Yb-doped tapered double-clad fiber (T-DCF) amplifier used as an all-fiber master oscillator and a two-stage side-pumped solid-state power amplifier. The combination of two master oscillators and a single power amplifier allowed us to obtain pulses with a duration ranging from 10 ns to 10 μs with energy up to 137 mJ at 100 Hz. For the first time, we demonstrate a widely tunable pulse duration and a solid-state MOPA system with over 100 mJ energy based on a T-DCF fiber seed laser. Full article
(This article belongs to the Special Issue Optical Fiber Lasers)
Show Figures

Figure 1

19 pages, 3433 KiB  
Review
Quartz-Enhanced Photoacoustic Spectroscopy in the Terahertz Spectral Range
by Alexey P. Votintsev, Alexey V. Borisov, Didar R. Makashev, Mariya Y. Stoyanova and Yury V. Kistenev
Photonics 2023, 10(7), 835; https://doi.org/10.3390/photonics10070835 - 19 Jul 2023
Cited by 6 | Viewed by 3236
Abstract
Infrared laser photo-acoustic spectroscopy provides very high sensitivity of a gas sample analysis when high-power tunable laser radiation sources and resonant photo-acoustic detectors (PADs) are used. In the resonant PAD, the acoustic signal generated by absorbed laser radiation in a measurement chamber is [...] Read more.
Infrared laser photo-acoustic spectroscopy provides very high sensitivity of a gas sample analysis when high-power tunable laser radiation sources and resonant photo-acoustic detectors (PADs) are used. In the resonant PAD, the acoustic signal generated by absorbed laser radiation in a measurement chamber is amplified proportionally to a Q-factor of the acoustic resonator. But, compact tunable high-power lasers (with power above 100 mW) still are not widely spread in the terahertz spectral range. One of the ways to achieve an acceptable sensitivity of terahertz photo-acoustic spectroscopy is using PADs with a very high Q-factor. The latter can be achieved using PAD with a quartz tuning fork. The current state in this field is presented in the review. Full article
(This article belongs to the Special Issue Biomedical Spectroscopy: Techniques and Applications)
Show Figures

Figure 1

8 pages, 3084 KiB  
Communication
High–Efficiency, Widely Tunable MgO: PPLN Optical Parametric Oscillator
by Yueyue Lian, Wenlong Tian, Hao Sun, Yang Yu, Yulong Su, Hui Tong, Jiangfeng Zhu and Zhiyi Wei
Photonics 2023, 10(5), 505; https://doi.org/10.3390/photonics10050505 - 27 Apr 2023
Cited by 4 | Viewed by 2842
Abstract
We report on the investigation of a high–efficiency, widely tunable femtosecond optical parametric oscillator (OPO) based on a multi–period MgO–doped periodically poled lithium niobite (MgO: PPLN) crystal, pumped by an all–solid–state femtosecond mode–locked Yb: KGW laser at 1030 nm providing 100 fs pulses. [...] Read more.
We report on the investigation of a high–efficiency, widely tunable femtosecond optical parametric oscillator (OPO) based on a multi–period MgO–doped periodically poled lithium niobite (MgO: PPLN) crystal, pumped by an all–solid–state femtosecond mode–locked Yb: KGW laser at 1030 nm providing 100 fs pulses. With 6 W pump power, the OPO generates 2.68 W of signal power at 1540 nm and 1.2 W of idler power at 3110 nm, which corresponds to the total conversion efficiency adding up to 67.4%. To the best of our knowledge, this is the highest conversion efficiency of a femtosecond OPO. Meanwhile, in order to obtain a broad optical spectrum range, both the grating period and working temperature are tuned, resulting in tunable signals of 1.43–1.78 µm and idlers of 2.44–3.68 µm. This source will be used to generate a femtosecond mid–infrared laser of wavelength range 3.7–6.5 µm and tens milliwatts average power through difference frequency generation (DFG). Full article
(This article belongs to the Special Issue Ultrafast Laser Systems)
Show Figures

Figure 1

11 pages, 2048 KiB  
Review
Recent Advances in Optical Injection Locking for Visible Light Communication Applications
by Xingchen Liu, Junhui Hu, Qijun Bian, Shulan Yi, Yingnan Ma, Jianyang Shi, Ziwei Li, Junwen Zhang, Nan Chi and Chao Shen
Photonics 2023, 10(3), 291; https://doi.org/10.3390/photonics10030291 - 10 Mar 2023
Cited by 9 | Viewed by 5811
Abstract
The introduction of visible light communication (VLC) technology could increase the capacity of existing wireless communication systems towards 6G networks. In practice, VLC can make good use of lighting system infrastructures to transmit data using light fidelity (Li-Fi). The use of semiconductor light [...] Read more.
The introduction of visible light communication (VLC) technology could increase the capacity of existing wireless communication systems towards 6G networks. In practice, VLC can make good use of lighting system infrastructures to transmit data using light fidelity (Li-Fi). The use of semiconductor light sources, including light-emitting diodes (LEDs) and laser diodes (LDs) are essential to VLC technology because these devices are energy-efficient and have long lifespans. To achieve high-speed VLC links, various technologies have been utilized, including injection locking. Optical injection locking (OIL) is an optical frequency and phase synchronization technique that has been implemented in semiconductor laser systems for performance enhancement. High-performance optoelectronic devices with narrow linewidth, wide tunable emission, large modulation bandwidth and high data transmission rates are desired for advanced VLC. Thus, the features of OIL could be promising for building high-performance VLC systems. In this paper, we present a comprehensive review of the implementation of the injection-locking technique in optical communication systems. The enhancement of characteristics through OIL is elucidated. The applications of OIL in VLC systems are discussed. The prospects of OIL for future VLC systems are evaluated. Full article
(This article belongs to the Special Issue Advances in Visible Light Communication)
Show Figures

Figure 1

12 pages, 10218 KiB  
Article
Generating High-Power, Frequency Tunable Coherent THz Pulse in an X-ray Free-Electron Laser for THz Pump and X-ray Probe Experiments
by Yin Kang, Zhen Wang, Kaiqing Zhang and Chao Feng
Photonics 2023, 10(2), 133; https://doi.org/10.3390/photonics10020133 - 28 Jan 2023
Cited by 9 | Viewed by 3154
Abstract
Precisely synchronized X-ray and strong-field coherent terahertz (THz) enable the coherent THz excitation of many fundamental modes (THz pump) and the capturing of X-ray dynamic images of matter (X-ray probe), while the generation of such a light source is still a challenge for [...] Read more.
Precisely synchronized X-ray and strong-field coherent terahertz (THz) enable the coherent THz excitation of many fundamental modes (THz pump) and the capturing of X-ray dynamic images of matter (X-ray probe), while the generation of such a light source is still a challenge for most existing techniques. In this paper, a novel X-ray free-electron laser based light source is proposed to produce a synchronized high-powered X-ray pulse and strong field, widely frequency tunable coherent THz pulse simultaneously. The technique adopts a frequency beating laser modulated electron bunch with a Giga-electron-volt beam energy to generate an X-ray pulse and a THz pulse sequentially by passing two individual undulator sections with different magnetic periods. Theoretical analysis and numerical simulations are carried out using the beam parameters of the Shanghai soft X-ray free-electron laser facility. The results show that the technique can generate synchronized 4 nm X-ray radiation with a peak power of 1.89 GW, and narrow-band THz radiation with a pulse energy of 1.62 mJ, and the frequency of THz radiation can be continuously tuned from 0.1 to 40 THz. The proposed technique can be used for THz pump and X-ray probe experiments for dynamic research on the interaction between THz pulse and matter at a femtosecond time scale. Full article
(This article belongs to the Special Issue XUV and X-ray Free-Electron Lasers and Applications)
Show Figures

Figure 1

16 pages, 2147 KiB  
Review
Progress and Perspectives of Spectroscopic Studies on Carbon K-Edge Using Novel Soft X-ray Pulsed Sources
by Zeinab Ebrahimpour, Marcello Coreno, Luca Giannessi, Massimo Ferrario, Augusto Marcelli, Federico Nguyen, Seyed Javad Rezvani, Francesco Stellato and Fabio Villa
Condens. Matter 2022, 7(4), 72; https://doi.org/10.3390/condmat7040072 - 6 Dec 2022
Cited by 2 | Viewed by 3236
Abstract
The development of novel coherent and brilliant sources, such as soft X-ray free electron laser (FEL) and high harmonic generation (HHG), enables new ultrafast analysis of the electronic and structural dynamics of a wide variety of materials. Soft X-ray FEL delivers high-brilliance beams [...] Read more.
The development of novel coherent and brilliant sources, such as soft X-ray free electron laser (FEL) and high harmonic generation (HHG), enables new ultrafast analysis of the electronic and structural dynamics of a wide variety of materials. Soft X-ray FEL delivers high-brilliance beams with a short pulse duration, high spatial coherence and photon energy tunability. In comparison with FELs, HHG X-ray sources are characterized by a wide spectral bandwidth and few- to sub-femtosecond pulses. The approach will lead to the time-resolved reconstruction of molecular dynamics, shedding light on different photochemical pathways. The high peak brilliance of soft X-ray FELs facilitates investigations in a nonlinear regime, while the broader spectral bandwidth of the HHG sources may provide the simultaneous probing of multiple components. Significant technical breakthroughs in these novel sources are under way to improve brilliance, pulse duration, and to control spectral bandwidth, spot size, and energy resolution. Therefore, in the next few years, the new generation of soft X-ray sources combined with novel experimental techniques, new detectors, and computing capabilities will allow for the study of several extremely fast dynamics, such as vibronic dynamics. In the present review, we discuss recent developments in experiments, performed with soft X-ray FELs and HHG sources, operating near the carbon K-absorption edge, being a key atomic component in biosystems and soft materials. Different spectroscopy methods such as time-resolved pump-probe techniques, nonlinear spectroscopies and photoelectron spectroscopy studies have been addressed in an attempt to better understand fundamental physico-chemical processes. Full article
Show Figures

Figure 1

15 pages, 1535 KiB  
Review
Phase-Matching in Nonlinear Crystal-Based Monochromatic Terahertz-Wave Generation
by Pengxiang Liu, Chuncao Niu, Feng Qi, Wei Li, Weifan Li, Qiaoqiao Fu, Liyuan Guo and Zhongyang Li
Crystals 2022, 12(9), 1231; https://doi.org/10.3390/cryst12091231 - 1 Sep 2022
Cited by 7 | Viewed by 3550
Abstract
Optically pumped nonlinear frequency down conversion is a proven approach for monochromatic terahertz (THz)-wave generation that provides superior properties such as continuous and wide tunability as well as laser-like linewidth and beam quality. Phase-matching (PM) is an important connection between the pump sources [...] Read more.
Optically pumped nonlinear frequency down conversion is a proven approach for monochromatic terahertz (THz)-wave generation that provides superior properties such as continuous and wide tunability as well as laser-like linewidth and beam quality. Phase-matching (PM) is an important connection between the pump sources and nonlinear crystals and determines the direction of energy flow (as well as the output power). In past decades, a variety of peculiar PM configurations in the THz region have been invented and are different from the traditional ones in the optical region. We summarize the configurations that have been applied in nonlinear THz-wave generation, which mainly fall in two categories: scalar (collinear) PM and vector PM (including macroscopic noncollinear PM and microscopic vector PM). The development of this technique could relax the matching conditions in a wide range of nonlinear crystals and pump wavelengths and could finally promote the improvement of coherent THz sources. Full article
(This article belongs to the Special Issue Nonlinear Crystals for Terahertz Generation)
Show Figures

Figure 1

Back to TopTop