Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (238)

Search Parameters:
Keywords = water user association

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 3335 KiB  
Article
Water User Associations in Drained and Irrigated Areas for More Sustainable Land and Water Management: Experiences from Poland and Ukraine
by Roman Kuryltsiv, Małgorzata Stańczuk-Gałwiaczek and Robert Łuczyński
Sustainability 2025, 17(15), 7100; https://doi.org/10.3390/su17157100 - 5 Aug 2025
Abstract
The level of participation and performance of water user associations (WUAs) in drained and irrigated areas is influenced by many factors. This paper aims to identify the main challenges to the functioning and performance of these associations in Poland and Ukraine using the [...] Read more.
The level of participation and performance of water user associations (WUAs) in drained and irrigated areas is influenced by many factors. This paper aims to identify the main challenges to the functioning and performance of these associations in Poland and Ukraine using the methodology of international comparative analysis. We examined legal, organizational, and financial framework of WUAs performance in Poland and Ukraine based on selected case study areas. The results of the study indicate that creation of WUAs in both countries can be assessed as beneficial for sustainable water development in general. However, it is found that the actions intended to bring benefits can actually exacerbate the problem of drought and water shortages. Research shows that the lack of complete documentation on the layout of the drainage networks plays a huge constraint factor that can lead to problems with controlling the reconstruction of drainage networks and significant deterioration of water relations. Another significant problem is the restriction of the scope of WUA activities in Poland to those types of actions subsidized by the state, while lacking financial resources for other necessary activities. Full article
(This article belongs to the Section Social Ecology and Sustainability)
Show Figures

Figure 1

30 pages, 4875 KiB  
Article
Stochastic Demand-Side Management for Residential Off-Grid PV Systems Considering Battery, Fuel Cell, and PEM Electrolyzer Degradation
by Mohamed A. Hendy, Mohamed A. Nayel and Mohamed Abdelrahem
Energies 2025, 18(13), 3395; https://doi.org/10.3390/en18133395 - 27 Jun 2025
Viewed by 377
Abstract
The proposed study incorporates a stochastic demand side management (SDSM) strategy for a self-sufficient residential system powered from a PV source with a hybrid battery–hydrogen storage system to minimize the total degradation costs associated with key components, including Li-io batteries, fuel cells, and [...] Read more.
The proposed study incorporates a stochastic demand side management (SDSM) strategy for a self-sufficient residential system powered from a PV source with a hybrid battery–hydrogen storage system to minimize the total degradation costs associated with key components, including Li-io batteries, fuel cells, and PEM electrolyzers. The uncertainty in demand forecasting is addressed through a scenario-based generation to enhance the robustness and accuracy of the proposed method. Then, stochastic optimization was employed to determine the optimal operating schedules for deferable appliances and optimal water heater (WH) settings. The optimization problem was solved using a genetic algorithm (GA), which efficiently explores the solution space to determine the optimal operating schedules and reduce degradation costs. The proposed SDSM technique is validated through MATLAB 2020 simulations, demonstrating its effectiveness in reducing component degradation costs, minimizing load shedding, and reducing excess energy generation while maintaining user comfort. The simulation results indicate that the proposed method achieved total degradation cost reductions of 16.66% and 42.6% for typical summer and winter days, respectively, in addition to a reduction of the levelized cost of energy (LCOE) by about 22.5% compared to the average performance of 10,000 random operation scenarios. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

21 pages, 3123 KiB  
Article
The Impact of Starches from Various Botanical Origins on the Functional and Mechanical Properties of Anhydrous Lotion Body Bars
by Agnieszka Kulawik-Pióro, Beata Fryźlewicz-Kozak, Iwona Tworzydło, Joanna Kruk and Anna Ptaszek
Polymers 2025, 17(13), 1731; https://doi.org/10.3390/polym17131731 - 21 Jun 2025
Viewed by 511
Abstract
Starch, as a natural, low-cost, and vegan-friendly raw material, aligns well with the growing demand for sustainable, zero-waste, and waterless cosmetic products. Its biodegradability and natural origin allow for minimal environmental impact during production and disposal. Anhydrous lotion body bars, solid and water-free [...] Read more.
Starch, as a natural, low-cost, and vegan-friendly raw material, aligns well with the growing demand for sustainable, zero-waste, and waterless cosmetic products. Its biodegradability and natural origin allow for minimal environmental impact during production and disposal. Anhydrous lotion body bars, solid and water-free alternatives to traditional moisturizers, offer high concentrations of active ingredients that are more effective and have a longer shelf life. Their solid form enables packaging in paper-based containers, reducing plastic waste. To address formulation challenges such as excessive greasiness, poor absorption, or lack of structural stability, which are often associated with the high oil content of anhydrous body lotion bars, starch may serve as a promising natural additive. The aim of this study was to optimize the formulation of an innovative starch-based anhydrous lotion bar. For this purpose, physicochemical analyses of starches from various botanical sources (corn, rice, tapioca, waxy corn and potato) were performed, along with evaluations of the functional (including commercially acceptable form, hardness sufficient for application, product stability, reduced greasiness and stickiness) and mechanical properties of the resulting bars. Additionally, the rheological behavior was described using the De Kee model. The results indicate that a 2.5% starch addition, regardless of its botanical origin, provides the best balance between viscosity and ease of application. Moreover, starches with a low moisture content and high oil absorption capacity effectively reduce the greasy skin sensation. These findings demonstrate the potential of starch as a natural multifunctional additive in the development of stable, user-friendly anhydrous lotion body bars. Full article
Show Figures

Figure 1

32 pages, 5267 KiB  
Article
Shifting Landscapes, Escalating Risks: How Land Use Conversion Shapes Long-Term Road Crash Outcomes in Melbourne
by Ali Soltani, Mohsen RoohaniQadikolaei and Amir Sobhani
Future Transp. 2025, 5(2), 75; https://doi.org/10.3390/futuretransp5020075 - 17 Jun 2025
Viewed by 1615
Abstract
Road crashes impose significant societal costs, and while links between static land use and safety are established, the long-term impacts of dynamic land use conversions remain under-explored. This study addresses this gap by investigating and quantifying how specific land use transitions over a [...] Read more.
Road crashes impose significant societal costs, and while links between static land use and safety are established, the long-term impacts of dynamic land use conversions remain under-explored. This study addresses this gap by investigating and quantifying how specific land use transitions over a decade influence subsequent road crash frequency in Metropolitan Melbourne. Our objective was to understand which conversion pathways pose the greatest risks or offer safety benefits, informing urban planning and policy. Utilizing extensive observational data covering numerous land use conversions, we employed Negative Binomial models (selected as the best fit over Poisson and quasi-Poisson alternatives) to analyze the association between various transition types and crash occurrences in surrounding areas. The analysis revealed distinct and statistically significant safety outcomes. Major findings indicate that transitions introducing intensified activity and vulnerable road users, such as converting agricultural land or parks to educational facilities (e.g., Agri → Edu, coefficient ≈ +0.10; Park → Edu, ≈+0.12), or intensifying land use in previously less active zones (e.g., Park → Com, ≈+0.07; Trans → Park, ≈+0.10), significantly elevate long-term crash risk, particularly when infrastructure is inadequate. Conversely, conversions creating low-traffic, nature-focused environments (e.g., Water → Park, ≈–0.16) or channeling activity onto well-suited infrastructure (e.g., Trans → Com, ≈–0.12) demonstrated substantial reductions in crash frequency. The critical role of context-specific infrastructure adaptation, highlighted by increased risks in some park conversions (e.g., Com → Park, ≈+0.06), emerged as a key mediator of safety outcomes. These findings underscore the necessity of integrating dynamic, long-term road safety considerations into land use planning, mandating appropriate infrastructure redesign during conversions, and prioritizing interventions for identified high-risk transition scenarios to foster safer and more sustainable urban development. Full article
Show Figures

Figure 1

12 pages, 2067 KiB  
Article
Suppress or Not to Suppress … CRAFT It: A Targeted Metabolomics Case Study Extracting Essential Biomarker Signals Directly from the Full 1H NMR Spectra of Horse Serum Samples
by James Chen, Ayelet Yablon, Christina Metaxas, Matheus Guedin, Joseph Hu, Kenith Conover, Merrill Simpson, Sarah L. Ralston, Krish Krishnamurthy and István Pelczer
Metabolites 2025, 15(6), 387; https://doi.org/10.3390/metabo15060387 - 10 Jun 2025
Viewed by 866
Abstract
Background: There are a few very specific inflammation biomarkers in blood, namely lipoprotein NMe+ signals of protein clusters (GlycA and GlycB) and a composite resonance of phospholipids (SPC). The relative integrals of these resonances provide clear indication of the unique metabolic [...] Read more.
Background: There are a few very specific inflammation biomarkers in blood, namely lipoprotein NMe+ signals of protein clusters (GlycA and GlycB) and a composite resonance of phospholipids (SPC). The relative integrals of these resonances provide clear indication of the unique metabolic changes associated with disease, specifically inflammatory conditions, often related to serious diseases such as cancer or COVID-19 infection. Relatively complicated, yet very efficient experimental methods have been introduced recently (DIRE, JEDI) to suppress the rest of the spectrum, thus allowing measurement of these integrals of interest. Methods: In this study, we introduce a simple alternative processing method using CRAFT (Complete Reduction to Amplitude-Frequency Table), a time-domain (FID) analysis tool which can highlight selected subsets of the spectrum by choice for quantitative analysis. The output of this approach is a direct, spreadsheet-based representation of the required peak amplitude (integral) values, ready for comparative analysis, completely avoiding all the convectional data processing and manipulation steps. The significant advantage of this alternative method is that it only needs a simple water-suppressed 1D spectrum with no further experimental manipulation whatsoever. In addition, there are no pre/post processing steps (such as baseline and/or phase), further minimizing potential dependency on subjective decisions by the user and providing an opportunity to automate the entire process. Results: We applied this methodology to horse serum samples to follow the presence of inflammation for cohorts with or without OCD (Osteochondritis Dissecans) conditions and find diagnostic separation of the of the cohorts through statistical methods. Conclusions: The powerful and simple CRAFT-based approach is suitable to extract selected biomarker information from complex NMR spectra and can be similarly applied to any other biofluid from any source or sample, also retrospectively. There is a potential to extend such a simple analysis to other, previously identified relevant markers as well. Full article
Show Figures

Figure 1

20 pages, 2022 KiB  
Article
Prediction of Expected Fouling Time During Transmembrane Transition in Reverse Osmosis Systems
by Jozsef Lakner and Gabor Lakner
Membranes 2025, 15(6), 170; https://doi.org/10.3390/membranes15060170 - 6 Jun 2025
Viewed by 925
Abstract
Membrane filtration, including reverse osmosis filtration, is widely applied in water treatment worldwide, offering solutions to a broad range of separation challenges. However, due to the porous structure of membranes, they are prone to fouling, which reduces their efficiency and can eventually render [...] Read more.
Membrane filtration, including reverse osmosis filtration, is widely applied in water treatment worldwide, offering solutions to a broad range of separation challenges. However, due to the porous structure of membranes, they are prone to fouling, which reduces their efficiency and can eventually render the membranes incapable of functioning. In such cases, a systemic intervention becomes necessary, highlighting the importance of accurately predicting the expected fouling time. Various approaches for estimating fouling processes and times are well documented in the literature. However, a common limitation of these methods is that they typically assume constant and well-defined operating parameters over time. Under such stable conditions, the process can be described deterministically, and the fouling time can be predicted using straightforward extrapolation techniques. However, in industrial practice, process conditions often fluctuate due to multiple influencing factors, making fouling time a variable quantity. Therefore, it can be more appropriately treated as a random variable characterized by a mean value and standard deviation. Rather than predicting a precise fouling time, it is more relevant to define a probabilistic interval within which the fouling is expected to occur with a specified confidence level (e.g., 95%). The associated maintenance scheduling can then be optimized based on economic criteria. The probability-based model presented herein defines this interval based on operational measurements, thereby providing users with a time window during which maintenance should be planned. From this point forward, the exact timing of interventions becomes a matter of technical feasibility and economic optimization. Full article
Show Figures

Figure 1

19 pages, 1915 KiB  
Article
Irrigation Performance Evaluation for Sustainable Water Management: A Study of Karacabey Water Users Association, Türkiye (2006–2023)
by Müge Kirmikil
Sustainability 2025, 17(9), 4059; https://doi.org/10.3390/su17094059 - 30 Apr 2025
Cited by 1 | Viewed by 593
Abstract
Global climate change exacerbates water scarcity, making efficient water use a critical priority worldwide. In Türkiye, agricultural irrigation accounts for a significant share of water consumption, underscoring the need for sustainable management practices. Water users associations (WUAs) play a crucial role in overseeing [...] Read more.
Global climate change exacerbates water scarcity, making efficient water use a critical priority worldwide. In Türkiye, agricultural irrigation accounts for a significant share of water consumption, underscoring the need for sustainable management practices. Water users associations (WUAs) play a crucial role in overseeing irrigation schemes and optimizing water use in agriculture. This study assesses the irrigation performance of the Karacabey Water Users Association in Bursa Province using data from 2006 to 2023. Seven key irrigation performance indicators were analyzed, revealing an average irrigation ratio (IR) of 69.02%, irrigation water distributed per unit area (WIRR) of 8602.04 m3 ha−1, and a water supply ratio (RWS) of 1.33. The operation and maintenance cost (WOM) per unit irrigation water was calculated as USD 0.02 m−3, while total management, operation, and maintenance costs amounted to USD 0.08 m−3. The production value (WP) per unit irrigation water was found to be 0.89. Correlation and regression analyses indicated that WIRR is significantly influenced by indicators related to production, management, and water consumption. The findings highlight the necessity of a comprehensive approach to improving WUA performance, considering multiple performance indicators. To ensure sustainable agricultural water use, adopting advanced irrigation techniques, modernizing infrastructure, and enhancing management strategies are essential. This study provides valuable insights into enhancing irrigation efficiency and sustainability. Full article
Show Figures

Figure 1

45 pages, 9372 KiB  
Article
Low-Carbon Optimization Operation of Rural Energy System Considering High-Level Water Tower and Diverse Load Characteristics
by Gang Zhang, Jiazhe Liu, Tuo Xie and Kaoshe Zhang
Processes 2025, 13(5), 1366; https://doi.org/10.3390/pr13051366 - 29 Apr 2025
Cited by 1 | Viewed by 449
Abstract
Against the backdrop of the steady advancement of the national rural revitalization strategy and the dual-carbon goals, the low-carbon transformation of rural energy systems is of critical importance. This study first proposes a comprehensive architecture for rural energy supply systems, incorporating four key [...] Read more.
Against the backdrop of the steady advancement of the national rural revitalization strategy and the dual-carbon goals, the low-carbon transformation of rural energy systems is of critical importance. This study first proposes a comprehensive architecture for rural energy supply systems, incorporating four key dimensions: investment, system configuration, user demand, and policy support. Leveraging the abundant wind, solar, and biomass resources available in rural areas, a low-carbon optimization model for rural energy system operation is developed. The model accounts for diverse load characteristics and the integration of elevated water towers, which serve both energy storage and agricultural functions. The optimization framework targets the multi-energy demands of rural production and daily life—including electricity, heating, cooling, and gas—and incorporates the stochastic nature of wind and solar generation. To address renewable energy uncertainty, the Fisher optimal segmentation method is employed to extract representative scenarios. A representative rural region in China is used as the case study, and the system’s performance is evaluated across multiple scenarios using the Gurobi solver. The objective functions include maximizing clean energy benefits and minimizing carbon emissions. Within the system, flexible resources participate in demand response based on their specific response characteristics, thereby enhancing the overall decarbonization level. The energy storage aggregator improves renewable energy utilization and gains economic returns by charging and discharging surplus wind and solar power. The elevated water tower contributes to renewable energy absorption by storing and releasing water, while also supporting irrigation via a drip system. The simulation results demonstrate that the proposed clean energy system and its associated operational strategy significantly enhance the low-carbon performance of rural energy consumption while improving the economic efficiency of the energy system. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

32 pages, 2793 KiB  
Article
Perspectives on Innovative Approaches in Agriculture to Managing Water Scarcity in the Middle Rio Grande Basin
by Eleanor C. Hasenbeck, Caroline E. Scruggs, Melinda Morgan, Jingjing Wang, Alex J. Webster and Corina M. Gomez
Agriculture 2025, 15(7), 793; https://doi.org/10.3390/agriculture15070793 - 7 Apr 2025
Viewed by 732
Abstract
Water planning and governance strategies must adapt to challenges associated with population growth, climate change, and projected water shortages. In the Western United States, agriculture is the dominant water use, and agricultural water users are being asked to conserve or share their water [...] Read more.
Water planning and governance strategies must adapt to challenges associated with population growth, climate change, and projected water shortages. In the Western United States, agriculture is the dominant water use, and agricultural water users are being asked to conserve or share their water with other uses. Managing scarce water supplies at the local level often involves creative solutions, many of which are not well documented, especially in the agricultural sector. It is therefore critical to understand ideas to manage scarce water resources from the perspective of agricultural water users and those who work with them. In our research, we used interviews to explore how agricultural water users are managing increasing water scarcity in the Middle Rio Grande basin of central New Mexico and what enables or prevents them from taking innovative action to manage water scarcity. We hypothesized that we would find undocumented water use innovations born out of water users’ responses to lower and more variable water availability in recent years. We primarily recruited interviewees through snowball sampling, with a total of 42 (47%) agricultural water users, decision makers, and non-profit leaders influencing agricultural water governance in the basin accepting our invitation to participate. Our approximately one-hour, semi-structured and open-ended interviews explored agricultural water users’ lived experiences with water governance and opportunities to manage water scarcity. The interviews were recorded, transcribed, coded, and analyzed using HyperRESEARCH software (version 4.5.4). Our results did not support our hypothesis. Instead, we found that agricultural water users struggled to implement well-known innovations amid the pressures of water scarcity, supply uncertainty, administrative complexity, and constraints on their time, labor, and money. Water users and decision makers were mutually interested in implementing innovations in crop choice, flexibility in water storage, use, and management, stricter enforcement of water use efficiency, and access to more efficient irrigation equipment. However, high costs, a lack of knowledge, education, and training, and challenges related to water distribution and scheduling prevented agricultural water users from accessing these and other innovations. Recommendations include incentive-based policies to promote agricultural water use innovations that require high initial costs, improved water accounting at the basin and regional levels to promote flexible and reliable access to agricultural water, targeted education and outreach programming on alternative irrigation methods and cropping patterns, and improved access to irrigation scheduling information to support agricultural water users in planning for water scarcity. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

28 pages, 19521 KiB  
Article
Sustainable Management of an Urban Green Space in a Papua New Guinean City: Accessibility, Use and Preferences
by Eugene Ejike Ezebilo
Urban Sci. 2024, 8(4), 243; https://doi.org/10.3390/urbansci8040243 - 4 Dec 2024
Viewed by 1191
Abstract
Urban green spaces provide recreation opportunities that contribute to physical wellbeing, health, and social wellbeing. However, managing green spaces to promote access and use for recreation and at the same time meet the preferences of visitors is often challenging, especially in developing countries. [...] Read more.
Urban green spaces provide recreation opportunities that contribute to physical wellbeing, health, and social wellbeing. However, managing green spaces to promote access and use for recreation and at the same time meet the preferences of visitors is often challenging, especially in developing countries. Using Port Moresby Nature Park (PMNP) in Papua New Guinea as a case study, the objective of this study was to examine visitors’ perceptions of how to manage the park to improve its use for recreation, perceptions of acceptable user fees and preferences for nature types and recreation amenity alternatives. Data were obtained using interviews with 295 visitors to PMNP, of which 291 responses was valid for this study. The data were analysed using descriptive statistics and a multinomial logit regression marginal effect model. The results showed that PMNP can be improved by constructing more toilets, providing more benches at strategic positions, providing water fountains, expanding the children’s playgrounds and training more PMNP staff in customer care. A picnic area was the most preferred and an area containing the Papuan hornbill was the least preferred. On average, the visitors would pay 35% more than the park user fee. A recreation amenity associated with reptiles and birds of paradise was the most preferred and an amenity with only reptiles was the least preferred. Multinomial logit regression model results revealed that preferences for recreation amenity alternatives were influenced by demographic characteristics, the nature type visited, recreation activities, the level of the park user fee, and the time spent at and distance of the interviewees’ dwelling to PMNP. The most important explanatory variables associated with the choice of each of the recreation amenities as reflected by marginal effects include the use of a children’s playground for recreation, grilling and partying during recreation, engagement in walking in natural areas during recreation, the use of animal-dominated areas during recreation and the use of picnic areas during recreation. These findings will assist park managers in making informed decisions by considering visitors’ preferences, the affordability of the park user fee and how to improve an urban green space in a sustainable manner. Full article
Show Figures

Figure 1

19 pages, 6224 KiB  
Article
Implications of Tropical Cyclone Rainfall Spatial–Temporal Variability on Flood Hazard Assessments in the Caribbean Lesser Antilles
by Catherine Nabukulu, Victor. G. Jetten and Janneke Ettema
GeoHazards 2024, 5(4), 1275-1293; https://doi.org/10.3390/geohazards5040060 - 29 Nov 2024
Viewed by 1537
Abstract
Tropical cyclones (TCs) significantly impact the Caribbean Lesser Antilles, often causing severe wind and water damage. Traditional flood hazard assessments simplify TC rainfall as single-peak, short-duration events tied to specific return periods, overlooking the spatial–temporal variability in rainfall that TCs introduce. To address [...] Read more.
Tropical cyclones (TCs) significantly impact the Caribbean Lesser Antilles, often causing severe wind and water damage. Traditional flood hazard assessments simplify TC rainfall as single-peak, short-duration events tied to specific return periods, overlooking the spatial–temporal variability in rainfall that TCs introduce. To address this limitation, a new user-friendly tool incorporates spatial–temporal rainfall variability into TC-related flood hazard assessments. The tool utilizes satellite precipitation data to break down TC-associated rainfall into distinct pathways/scenarios, mapping them to ground locations and linking them to specific sections of the storm’s rainfall footprint. This approach demonstrates how different areas can be affected differently by the same TC. In this study, we apply the tool to evaluate rainfall patterns and flood hazards in St. George’s, Grenada, during Hurricane Beryl in 2024. The scenario representing the 75th quantile in Spatial Region 2 (S2-Q0.75) closely matched the actual rainfall observed in the study area. By generating multiple hazard maps based on various rainfall scenarios, the tool provides decision-makers with valuable insights into the multifaced flood hazard risks posed by a single TC. Ultimately, island communities can enhance their early warning and mitigation strategies for TC impacts. Full article
Show Figures

Figure 1

13 pages, 1801 KiB  
Article
Concomitant Potentially Contagious Factors Detected in Poland and Regarding Acanthamoeba Strains, Etiological Agents of Keratitis in Humans
by Lidia Chomicz, Jacek P. Szaflik, Agnieszka Kuligowska, David Bruce Conn, Wanda Baltaza, Beata Szostakowska, Paweł J. Zawadzki, Monika Dybicz, Anna Machalińska, Konrad Perkowski, Anna Bajer and Jerzy Szaflik
Microorganisms 2024, 12(12), 2445; https://doi.org/10.3390/microorganisms12122445 - 28 Nov 2024
Viewed by 1029
Abstract
Background: Diseases in humans caused by amphizoic amoebae that can result in visual impairment and even blindness, have recently been identified more frequently worldwide. Etiologically complex incidents of keratitis, including those connected with Acanthamoeba strains detected in Poland, were evaluated in this study. [...] Read more.
Background: Diseases in humans caused by amphizoic amoebae that can result in visual impairment and even blindness, have recently been identified more frequently worldwide. Etiologically complex incidents of keratitis, including those connected with Acanthamoeba strains detected in Poland, were evaluated in this study. Methods: Corneal samples from cases resistant to antimicrobial therapy assessed for epidemiological, microbiological and parasitological aspects were investigated by phase-contrast microscope, slit lamp and by confocal microscopy. In vitro techniques were applied for detection of bacteria and fungi, and corneal isolates cultured under axenic condition using BSC medium—for detection of Acanthamoeba spp.; molecular techniques were applied for amoeba species identification. Results: Most etiologically complicated keratitis cases, detected in ~84% of incidents, was due to exposure of contact lenses to tap water or pool water; trophozoites and cysts of Acanthamoeba, concomitant bacteriae, e.g., Pseudomonas aeruginosa, fungi and microfilariae were identified in contact lens users. Conclusions: In samples from contact lens wearers where microbial keratitis is identified along with some connection with the patient’s exposure to contaminated water environments, a risk of Acanthamoeba spp. infections should be considered. Understanding the complicated relationship between Acanthamoeba spp., co-occurring pathogens including associated endosymbionts is needed. In vivo confocal microscopy and in vitro cultivation were necessary to identify potentially contagious concomitant factors affecting the complex course of the keratitis. Full article
Show Figures

Figure 1

25 pages, 9538 KiB  
Article
Internet of Things-Driven Precision in Fish Farming: A Deep Dive into Automated Temperature, Oxygen, and pH Regulation
by Md. Naymul Islam Nayoun, Syed Akhter Hossain, Karim Mohammed Rezaul, Kazy Noor e Alam Siddiquee, Md. Shabiul Islam and Tajnuva Jannat
Computers 2024, 13(10), 267; https://doi.org/10.3390/computers13100267 - 12 Oct 2024
Cited by 2 | Viewed by 4160
Abstract
The research introduces a revolutionary Internet of Things (IoT)-based system for fish farming, designed to significantly enhance efficiency and cost-effectiveness. By integrating the NodeMcu12E ESP8266 microcontroller, this system automates the management of critical water quality parameters such as pH, temperature, and oxygen levels, [...] Read more.
The research introduces a revolutionary Internet of Things (IoT)-based system for fish farming, designed to significantly enhance efficiency and cost-effectiveness. By integrating the NodeMcu12E ESP8266 microcontroller, this system automates the management of critical water quality parameters such as pH, temperature, and oxygen levels, essential for fostering optimal fish growth conditions and minimizing mortality rates. The core of this innovation lies in its intelligent monitoring and control mechanism, which not only supports accelerated fish development but also ensures the robustness of the farming process through automated adjustments whenever the monitored parameters deviate from desired thresholds. This smart fish farming solution features an Arduino IoT cloud-based framework, offering a user-friendly web interface that enables fish farmers to remotely monitor and manage their operations from any global location. This aspect of the system emphasizes the importance of efficient information management and the transformation of sensor data into actionable insights, thereby reducing the need for constant human oversight and significantly increasing operational reliability. The autonomous functionality of the system is a key highlight, designed to persist in adjusting the environmental conditions within the fish farm until the optimal parameters are restored. This capability greatly diminishes the risks associated with manual monitoring and adjustments, allowing even those with limited expertise in aquaculture to achieve high levels of production efficiency and sustainability. By leveraging data-driven technologies and IoT innovations, this study not only addresses the immediate needs of the fish farming industry but also contributes to solving the broader global challenge of protein production. It presents a scalable and accessible approach to modern aquaculture, empowering stakeholders to maximize output and minimize risks associated with fish farming, thereby paving the way for a more sustainable and efficient future in the global food supply. Full article
(This article belongs to the Section Internet of Things (IoT) and Industrial IoT)
Show Figures

Figure 1

37 pages, 25836 KiB  
Article
Urban Green Infrastructure and Ecosystem Service Supply: A Study Concerning the Functional Urban Area of Cagliari, Italy
by Federica Isola, Sabrina Lai, Federica Leone and Corrado Zoppi
Sustainability 2024, 16(19), 8628; https://doi.org/10.3390/su16198628 - 5 Oct 2024
Cited by 3 | Viewed by 3102
Abstract
Urban green infrastructure (UGI) is a network composed of natural and semi-natural areas, such as greenspaces, open areas, and water bodies, designed to enhance the provision of ecosystem services and to meet the needs and expectations of local communities. UGIs should be accessible [...] Read more.
Urban green infrastructure (UGI) is a network composed of natural and semi-natural areas, such as greenspaces, open areas, and water bodies, designed to enhance the provision of ecosystem services and to meet the needs and expectations of local communities. UGIs should be accessible and should improve the well-being and health of their users, protect and enhance biodiversity, and allow for the enjoyment of natural resources. The study proposes a methodological approach to defining a UGI, conceived as a network of areas connected by urban ecological corridors and suitable for providing climate regulation, flood risk mitigation, outdoor recreation, and biodiversity and habitat quality enhancement. The methodology is applied to the functional urban area (FUA) of the City of Cagliari, Italy. The analysis results show that areas with high values of climate regulation, carbon storage and sequestration, and habitat quality enhancement are particularly suitable to be part of a UGI. Although values for outdoor recreation appear to be less significant, the provision of this service is particularly relevant within the Cagliari FUA. However, areas characterized by high values of flood risk mitigation show a different behavior, which highlights how the presence of impermeable surface within urban areas is associated with a loss of patch connectivity. Full article
(This article belongs to the Special Issue Assessing Ecosystem Services Applying Local Perspectives)
Show Figures

Figure 1

5 pages, 539 KiB  
Proceeding Paper
Enhancing Insights into Intermittent Water Supply Systems: Uncertainty and Sensitivity Analyses of Hydraulic Model
by Döndü Sarışen, Raziyeh Farmani and Fayyaz Ali Memon
Eng. Proc. 2024, 69(1), 109; https://doi.org/10.3390/engproc2024069109 - 10 Sep 2024
Viewed by 561
Abstract
So far, many researchers have attempted to tackle issues associated with intermittent water supply (IWS) systems, such as the inequitable distribution of water, by employing deterministic models that rely on multiple assumptions about input parameters. However, owing to the diverse practices and operations [...] Read more.
So far, many researchers have attempted to tackle issues associated with intermittent water supply (IWS) systems, such as the inequitable distribution of water, by employing deterministic models that rely on multiple assumptions about input parameters. However, owing to the diverse practices and operations associated with IWS systems, significant uncertainty prevails in various aspects, including user water consumption, supply characteristics, and household tank sizes. In this work, a novel uncertainty quantification framework for assessing uncertain model input parameters is proposed. Full article
Show Figures

Figure 1

Back to TopTop