Background: Theta-band cordance is a quantitative EEG (qEEG) metric that integrates absolute and relative spectral power and correlates with regional cerebral perfusion. Although widely applied in psychiatric and neurophysiological research, its longitudinal trajectory in healthy adults remains largely unknown. This study aimed to characterize multi-year changes in theta cordance across cortical regions, determine which areas show stability versus decline, and evaluate whether individuals maintain a trait-like cordance profile over time.
Methods: Nineteen cognitively healthy, medication-free adults underwent resting-state EEG recordings at two time points, separated by an average of 6.4 years (range: 1.9–14.8). Theta cordance (4–8 Hz) was computed at 19 scalp electrodes using the Leuchter algorithm and aggregated into eight lobar regions (left/right frontal, temporal, parietal, occipital). Paired-samples
t-tests assessed longitudinal changes. Inter-regional Pearson correlations examined evolving connectivity patterns. Canonical correlation analysis (CCA), validated via LOOCV and bootstrap confidence intervals, evaluated multivariate stability between baseline and follow-up cordance profiles.
Results: Theta cordance remained normally distributed at both time points. Significant longitudinal decreases emerged in the right temporal (t(18) = 5.34,
p < 0.001, d = 1.23) and right frontal (t(18) = 2.65,
p = 0.016, d = 0.61) regions, while other lobes showed no significant change. Midline Cz demonstrated a robust increase over time (
p < 0.001). CCA revealed a strong cross-time association (Rc = 0.999,
p = 0.029), indicating preservation of a stable, frontally anchored cordance profile despite regional right-hemisphere decline. Inter-regional correlation matrices showed both preserved posterior synchrony and emerging inverse anterior–posterior and cross-hemispheric relationships, suggesting age-related reorganization of cortical connectivity.
Conclusions: Theta cordance exhibits a mixed pattern of trait-like stability and region-specific aging effects. A dominant, stable fronto-central profile persists across years, yet the right frontal and right temporal cortices show significant decline, consistent with lateralized vulnerability in normative aging. Evolving inter-regional correlation patterns further indicate network-level reorganization. Longitudinal cordance assessment may provide a noninvasive marker of functional brain aging and help differentiate normal aging trajectories from early pathological change. This longitudinal quantitative EEG (qEEG) study examined theta-band cordance dynamics across cortical regions in healthy adults over an average follow-up of 6.4 years (range: 1.9–14.8). Resting-state EEGs were recorded at two time points from 19 participants and analyzed using Leuchter’s cordance algorithm across 19 scalp electrodes. Regional cordance values were computed for frontal, temporal, parietal, and occipital lobes. Paired-samples
t-tests revealed significant longitudinal decreases in theta cordance in the right frontal (
p = 0.016, d = 0.61) and right temporal lobes (
p < 0.001, d = 1.23), while other regions remained stable. Inter-regional Pearson correlations showed strong bilateral synchrony in posterior regions and emergent inverse anterior–posterior relationships over time. Canonical correlation analysis revealed a robust multivariate association (Rc = 0.999,
p = 0.029) between baseline and follow-up patterns. Partial correlations (controlling for follow-up interval) identified region-specific trait stability, highest in left occipital and right frontal cortices. These findings suggest that theta cordance reflects both longitudinally stable neural traits and regionally specific aging effects in cortical physiology.
Full article