Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (73)

Search Parameters:
Keywords = viral quasi-species

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 311 KB  
Article
Viral Quasispecies Inference from Single Observations—Mutagens as Accelerators of Quasispecies Evolution
by Josep Gregori, Miquel Salicrú, Marta Ibáñez-Lligoña, Sergi Colomer-Castell, Carolina Campos, Alvaro González-Camuesco and Josep Quer
Microorganisms 2025, 13(9), 2029; https://doi.org/10.3390/microorganisms13092029 - 30 Aug 2025
Viewed by 842
Abstract
RNA virus populations exist as quasispecies-complex, dynamic clouds of closely related but genetically diverse variants generated by high mutation rates during replication. Assessing quasispecies structure and diversity is crucial for understanding viral evolution, adaptation, and response to antiviral treatments. However, comparing single quasispecies [...] Read more.
RNA virus populations exist as quasispecies-complex, dynamic clouds of closely related but genetically diverse variants generated by high mutation rates during replication. Assessing quasispecies structure and diversity is crucial for understanding viral evolution, adaptation, and response to antiviral treatments. However, comparing single quasispecies observations from individual biosamples, especially at different infection or treatment time points, presents statistical challenges. Traditional inferential tests are inapplicable due to the lack of replicate observations, and resampling-based approaches such as the bootstrap and jackknife are limited by biases and non-independence, particularly for diversity indices sensitive to rare haplotypes. In this study, we address these limitations by applying the delta method to derive analytical variances for a set of quasispecies structure indicators specifically designed to assess the quasispecies maturation state. We demonstrate the utility of this approach using high-depth next-generation sequencing data from hepatitis C virus (HCV) quasispecies evolving in vitro under various conditions, including free evolution and exposure to antiviral or mutagenic treatments. Our results reveal that with highly fit HCV quasispecies, sofosbuvir inhibits quasispecies genetic diversity, while mutagenic treatments accelerate maturation, compared to untreated controls. We emphasize the interpretation of results through absolute differences, log-fold changes, and standardized effect sizes, moving beyond mere statistical significance. This framework enables robust, quantitative comparisons of quasispecies diversity from single observations, providing valuable insights into viral adaptation and treatment response. The R code and session info with required libraries and versions is provided in the supplementary material. Full article
(This article belongs to the Special Issue Bioinformatics Research on Viruses)
Show Figures

Figure 1

29 pages, 4178 KB  
Review
Host Immune Response to Dengue Virus Infection: Friend or Foe?
by Priya Dhole, Amir Zaidi, Hardik K. Nariya, Shruti Sinha, Sandhya Jinesh and Shivani Srivastava
Immuno 2024, 4(4), 549-577; https://doi.org/10.3390/immuno4040033 - 21 Nov 2024
Cited by 3 | Viewed by 9582
Abstract
DENV belongs to the Flaviviridae family and possesses a single-stranded RNA genome of positive polarity. DENV infection manifests in mild subclinical forms or severe forms that may be dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS). Despite a lot of effort worldwide, [...] Read more.
DENV belongs to the Flaviviridae family and possesses a single-stranded RNA genome of positive polarity. DENV infection manifests in mild subclinical forms or severe forms that may be dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS). Despite a lot of effort worldwide, the exact mechanism underlying the pathogenesis of severe DENV infection remains elusive. It is believed that both host and viral factors contribute to the outcome of dengue disease. The host factors are age at the time of infection, sex, nutrition, and immune status, including the presence of pre-existing antibodies or reactive T cells. Viral factors include the serotype, genotype, and mutation(s) due to error-prone RNA-dependent polymerase leading to the development of quasispecies. Accumulating bodies of literature have depicted that DENV has many ways to invade and escape the immune system of the host. These invading strategies are directed to overcome innate and adaptive immune responses. Like other viruses, once the infection is established, the host also mounts a series of antiviral responses to combat and eliminate the virus replication. Nevertheless, DENV has evolved a variety of mechanisms to evade the immune system. In this review, we have emphasized the strategies that DENV employs to hijack the host innate (interferon, IFN; toll-like receptors, TLR; major histocompatibility complex, MHC; autophagy; complement; apoptosis; RNAi) and adaptive (antibody-dependent enhancement, ADE; T cell immunity) immune responses, which contribute to the severity of DENV disease. Full article
Show Figures

Figure 1

16 pages, 1720 KB  
Article
Association of Liver Damage and Quasispecies Maturity in Chronic HCV Patients: The Fate of a Quasispecies
by Josep Gregori, Marta Ibañez-Lligoña, Sergi Colomer-Castell, Carolina Campos, Damir García-Cehic and Josep Quer
Microorganisms 2024, 12(11), 2213; https://doi.org/10.3390/microorganisms12112213 - 31 Oct 2024
Cited by 2 | Viewed by 1520
Abstract
Viral diversity and disease progression in chronic infections, and particularly how quasispecies structure affects antiviral treatment, remain key unresolved issues. Previous studies show that advanced liver fibrosis in long-term viral infections is linked to higher rates of antiviral treatment failures. Additionally, treatment failure [...] Read more.
Viral diversity and disease progression in chronic infections, and particularly how quasispecies structure affects antiviral treatment, remain key unresolved issues. Previous studies show that advanced liver fibrosis in long-term viral infections is linked to higher rates of antiviral treatment failures. Additionally, treatment failure is associated with high quasispecies fitness, which indicates greater viral diversity and adaptability. As a result, resistant variants may emerge, reducing retreatment effectiveness and increasing the chances of viral relapse. Additionally, using a mutagenic agent in monotherapy can accelerate virus evolution towards a flat-like quasispecies structure. This study examines 19 chronic HCV patients who failed direct-acting antiviral (DAA) treatments, using NGS to analyze quasispecies structure in relation to fibrosis as a marker of infection duration. Results show that HCV evolves towards a flat-like quasispecies structure over time, leading also to advanced liver damage (fibrosis F3 and F4/cirrhosis). Based on our findings and previous research, we propose that the flat-like fitness quasispecies structure is the final stage of any quasispecies in chronic infections unless eradicated. The longer the infection persists, the lower the chances of achieving a cure. Interestingly, this finding may also be applicable to other chronic infection and drug resistance in cancer. Full article
(This article belongs to the Special Issue Application of Omics in Virus Research)
Show Figures

Figure 1

14 pages, 1224 KB  
Article
In-Host Flat-like Quasispecies: Characterization Methods and Clinical Implications
by Josep Gregori, Sergi Colomer-Castell, Marta Ibañez-Lligoña, Damir Garcia-Cehic, Carolina Campos, Maria Buti, Mar Riveiro-Barciela, Cristina Andrés, Maria Piñana, Alejandra González-Sánchez, Francisco Rodriguez-Frias, Maria Francesca Cortese, David Tabernero, Ariadna Rando-Segura, Tomás Pumarola, Juan Ignacio Esteban, Andrés Antón and Josep Quer
Microorganisms 2024, 12(5), 1011; https://doi.org/10.3390/microorganisms12051011 - 17 May 2024
Cited by 5 | Viewed by 2275
Abstract
The repeated failure to treat patients chronically infected with hepatitis E (HEV) and C (HCV) viruses, despite the absence of resistance-associated substitutions (RAS), particularly in response to prolonged treatments with the mutagenic agents of HEV, suggests that quasispecies structure may play a crucial [...] Read more.
The repeated failure to treat patients chronically infected with hepatitis E (HEV) and C (HCV) viruses, despite the absence of resistance-associated substitutions (RAS), particularly in response to prolonged treatments with the mutagenic agents of HEV, suggests that quasispecies structure may play a crucial role beyond single point mutations. Quasispecies structured in a flat-like manner (referred to as flat-like) are considered to possess high average fitness, occupy a significant fraction of the functional genetic space of the virus, and exhibit a high capacity to evade specific or mutagenic treatments. In this paper, we studied HEV and HCV samples using high-depth next-generation sequencing (NGS), with indices scoring the different properties describing flat-like quasispecies. The significance of these indices was demonstrated by comparing the values obtained from these samples with those from acute infections caused by respiratory viruses (betacoronaviruses, enterovirus, respiratory syncytial viruses, and metapneumovirus). Our results revealed that flat-like quasispecies in HEV and HCV chronic infections without RAS are characterized by numerous low-frequency haplotypes with no dominant one. Surprisingly, these low-frequency haplotypes (at the nucleotide level) exhibited a high level of synonymity, resulting in much lower diversity at the phenotypic level. Currently, clinical approaches for managing flat-like quasispecies are lacking. Here, we propose methods to identifying flat-like quasispecies, which represents an essential initial step towards exploring alternative treatment protocols for viruses resistant to conventional therapies. Full article
Show Figures

Figure 1

17 pages, 2121 KB  
Article
Immune System Deficiencies Do Not Alter SARS-CoV-2 Evolutionary Rate but Favour the Emergence of Mutations by Extending Viral Persistence
by Laura Manuto, Martina Bado, Marco Cola, Elena Vanzo, Maria Antonello, Giorgia Mazzotti, Monia Pacenti, Giampaolo Cordioli, Lolita Sasset, Anna Maria Cattelan, Stefano Toppo and Enrico Lavezzo
Viruses 2024, 16(3), 447; https://doi.org/10.3390/v16030447 - 13 Mar 2024
Cited by 2 | Viewed by 2052
Abstract
During the COVID-19 pandemic, immunosuppressed patients showed prolonged SARS-CoV-2 infections, with several studies reporting the accumulation of mutations in the viral genome. The weakened immune system present in these individuals, along with the effect of antiviral therapies, are thought to create a favourable [...] Read more.
During the COVID-19 pandemic, immunosuppressed patients showed prolonged SARS-CoV-2 infections, with several studies reporting the accumulation of mutations in the viral genome. The weakened immune system present in these individuals, along with the effect of antiviral therapies, are thought to create a favourable environment for intra-host viral evolution and have been linked to the emergence of new viral variants which strongly challenged containment measures and some therapeutic treatments. To assess whether impaired immunity could lead to the increased instability of viral genomes, longitudinal nasopharyngeal swabs were collected from eight immunocompromised patients and fourteen non-immunocompromised subjects, all undergoing SARS-CoV-2 infection. Intra-host viral evolution was compared between the two groups through deep sequencing, exploiting a probe-based enrichment method to minimise the possibility of artefactual mutations commonly generated in amplicon-based methods, which heavily rely on PCR amplification. Although, as expected, immunocompromised patients experienced significantly longer infections, the acquisition of novel intra-host viral mutations was similar between the two groups. Moreover, a thorough analysis of viral quasispecies showed that the variability of viral populations in the two groups is comparable not only at the consensus level, but also when considering low-frequency mutations. This study suggests that a compromised immune system alone does not affect SARS-CoV-2 within-host genomic variability. Full article
Show Figures

Figure 1

13 pages, 1195 KB  
Article
Intra-Host Evolution Analyses in an Immunosuppressed Patient Supports SARS-CoV-2 Viral Reservoir Hypothesis
by Dominique Fournelle, Fatima Mostefai, Elsa Brunet-Ratnasingham, Raphaël Poujol, Jean-Christophe Grenier, José Héctor Gálvez, Amélie Pagliuzza, Inès Levade, Sandrine Moreira, Mehdi Benlarbi, Guillaume Beaudoin-Bussières, Gabrielle Gendron-Lepage, Catherine Bourassa, Alexandra Tauzin, Simon Grandjean Lapierre, Nicolas Chomont, Andrés Finzi, Daniel E. Kaufmann, Morgan Craig and Julie G. Hussin
Viruses 2024, 16(3), 342; https://doi.org/10.3390/v16030342 - 23 Feb 2024
Cited by 11 | Viewed by 3828
Abstract
Throughout the SARS-CoV-2 pandemic, several variants of concern (VOCs) have been identified, many of which share recurrent mutations in the spike glycoprotein’s receptor-binding domain (RBD). This region coincides with known epitopes and can therefore have an impact on immune escape. Protracted infections in [...] Read more.
Throughout the SARS-CoV-2 pandemic, several variants of concern (VOCs) have been identified, many of which share recurrent mutations in the spike glycoprotein’s receptor-binding domain (RBD). This region coincides with known epitopes and can therefore have an impact on immune escape. Protracted infections in immunosuppressed patients have been hypothesized to lead to an enrichment of such mutations and therefore drive evolution towards VOCs. Here, we present the case of an immunosuppressed patient that developed distinct populations with immune escape mutations throughout the course of their infection. Notably, by investigating the co-occurrence of substitutions on individual sequencing reads in the RBD, we found quasispecies harboring mutations that confer resistance to known monoclonal antibodies (mAbs) such as S:E484K and S:E484A. These mutations were acquired without the patient being treated with mAbs nor convalescent sera and without them developing a detectable immune response to the virus. We also provide additional evidence for a viral reservoir based on intra-host phylogenetics, which led to a viral substrain that evolved elsewhere in the patient’s body, colonizing their upper respiratory tract (URT). The presence of SARS-CoV-2 viral reservoirs can shed light on protracted infections interspersed with periods where the virus is undetectable, and potential explanations for long-COVID cases. Full article
(This article belongs to the Special Issue Intra-Patient Viral Evolution and Diversity)
Show Figures

Figure 1

18 pages, 2842 KB  
Systematic Review
HIV-1 Drug Resistance Detected by Next-Generation Sequencing among ART-Naïve Individuals: A Systematic Review and Meta-Analysis
by Fei Ouyang, Defu Yuan, Wenjing Zhai, Shanshan Liu, Ying Zhou and Haitao Yang
Viruses 2024, 16(2), 239; https://doi.org/10.3390/v16020239 - 2 Feb 2024
Cited by 14 | Viewed by 4552
Abstract
Background: There are an increasing number of articles focused on the prevalence and clinical impact of pretreatment HIV drug resistance (PDR) detected by Sanger sequencing (SGS). PDR may contribute to the increased likelihood of virologic failure and the emergence of new resistance mutations. [...] Read more.
Background: There are an increasing number of articles focused on the prevalence and clinical impact of pretreatment HIV drug resistance (PDR) detected by Sanger sequencing (SGS). PDR may contribute to the increased likelihood of virologic failure and the emergence of new resistance mutations. As SGS is gradually replaced by next-generation sequencing (NGS), it is necessary to assess the levels of PDR using NGS in ART-naïve patients systematically. NGS can detect the viral variants (low-abundance drug-resistant HIV-1 variants (LA-DRVs)) of virus quasi-species at levels below 20% that SGS may fail to detect. NGS has the potential to optimize current HIV drug resistance surveillance methods and inform future research directions. As the NGS technique has high sensitivity, it is highly likely that the level of pretreatment resistance would be underestimated using conventional techniques. Methods: For the systematic review and meta-analysis, we searched for original studies published in PubMed, Web of Science, Scopus, and Embase before 30 March 2023 that focused exclusively on the application of NGS in the detection of HIV drug resistance. Pooled prevalence estimates were calculated using a random effects model using the ‘meta’ package in R (version 4.2.3). We described drug resistance detected at five thresholds (>1%, 2%, 5%, 10%, and 20% of virus quasi-species). Chi-squared tests were used to analyze differences between the overall prevalence of PDR reported by SGS and NGS. Results: A total of 39 eligible studies were selected. The studies included a total of 15,242 ART-naïve individuals living with HIV. The prevalence of PDR was inversely correlated with the mutation detection threshold. The overall prevalence of PDR was 29.74% at the 1% threshold, 22.43% at the 2% threshold, 15.47% at the 5% threshold, 12.95% at the 10% threshold, and 11.08% at the 20% threshold. The prevalence of PDR to INSTIs was 1.22% (95%CI: 0.58–2.57), which is the lowest among the values for all antiretroviral drugs. The prevalence of LA-DRVs was 9.45%. At the 2% and 20% detection threshold, the prevalence of PDR was 22.43% and 11.08%, respectively. Resistance to PIs and INSTIs increased 5.52-fold and 7.08-fold, respectively, in those with a PDR threshold of 2% compared with those with PDR at 20%. However, resistance to NRTIs and NNRTIs increased 2.50-fold and 2.37-fold, respectively. There was a significant difference between the 2% and 5% threshold for detecting HIV drug resistance. There was no statistically significant difference between the results reported by SGS and NGS when using the 20% threshold for reporting resistance mutations. Conclusion: In this study, we found that next-generation sequencing facilitates a more sensitive detection of HIV-1 drug resistance than SGS. The high prevalence of PDR emphasizes the importance of baseline resistance and assessing the threshold for optimal clinical detection using NGS. Full article
Show Figures

Figure 1

14 pages, 1555 KB  
Article
In-Host HEV Quasispecies Evolution Shows the Limits of Mutagenic Antiviral Treatments
by Sergi Colomer-Castell, Josep Gregori, Damir Garcia-Cehic, Mar Riveiro-Barciela, Maria Buti, Ariadna Rando-Segura, Judit Vico-Romero, Carolina Campos, Marta Ibañez-Lligoña, Caroline Melanie Adombi, Maria Francesca Cortese, David Tabernero, Juan Ignacio Esteban, Francisco Rodriguez-Frias and Josep Quer
Int. J. Mol. Sci. 2023, 24(24), 17185; https://doi.org/10.3390/ijms242417185 - 6 Dec 2023
Cited by 4 | Viewed by 1807
Abstract
Here, we report the in-host hepatitis E virus (HEV) quasispecies evolution in a chronically infected patient who was treated with three different regimens of ribavirin (RBV) for nearly 6 years. Sequential plasma samples were collected at different time points and subjected to RNA [...] Read more.
Here, we report the in-host hepatitis E virus (HEV) quasispecies evolution in a chronically infected patient who was treated with three different regimens of ribavirin (RBV) for nearly 6 years. Sequential plasma samples were collected at different time points and subjected to RNA extraction and deep sequencing using the MiSeq Illumina platforms. Specifically, we RT-PCR amplified a single amplicon from the core region located in the open-reading frame 2 (ORF2). At the nucleotide level (genotype), our analysis showed an increase in the number of rare haplotypes and a drastic reduction in the frequency of the master (most represented) sequence during the period when the virus was found to be insensitive to RBV treatment. Contrarily, at the amino acid level (phenotype), our study revealed conservation of the amino acids, which is represented by a high prevalence of the master sequence. Our findings suggest that using mutagenic antivirals concomitant with high viral loads can lead to the selection and proliferation of a rich set of synonymous haplotypes that express the same phenotype. This can also lead to the selection and proliferation of conservative substitutions that express fitness-enhanced phenotypes. These results have important clinical implications, as they suggest that using mutagenic agents as a monotherapy treatment regimen in the absence of sufficiently effective viral inhibitors can result in diversification and proliferation of a highly diverse quasispecies resistant to further treatment. Therefore, such approaches should be avoided whenever possible. Full article
Show Figures

Figure 1

11 pages, 3766 KB  
Brief Report
Treatment-Emergent Cilgavimab Resistance Was Uncommon in Vaccinated Omicron BA.4/5 Outpatients
by Cesare Ernesto Maria Gruber, Fabio Giovanni Tucci, Martina Rueca, Valentina Mazzotta, Giulia Gramigna, Alessandra Vergori, Lavinia Fabeni, Giulia Berno, Emanuela Giombini, Ornella Butera, Daniele Focosi, Ingrid Guarnetti Prandi, Giovanni Chillemi, Emanuele Nicastri, Francesco Vaia, Enrico Girardi, Andrea Antinori and Fabrizio Maggi
Biomolecules 2023, 13(10), 1538; https://doi.org/10.3390/biom13101538 - 18 Oct 2023
Cited by 2 | Viewed by 2270
Abstract
Mutations in the SARS-CoV-2 Spike glycoprotein can affect monoclonal antibody efficacy. Recent findings report the occurrence of resistant mutations in immunocompromised patients after tixagevimab/cilgavimab treatment. More recently, the Food and Drug Agency revoked the authorization for tixagevimab/cilgavimab, while this monoclonal antibody cocktail is [...] Read more.
Mutations in the SARS-CoV-2 Spike glycoprotein can affect monoclonal antibody efficacy. Recent findings report the occurrence of resistant mutations in immunocompromised patients after tixagevimab/cilgavimab treatment. More recently, the Food and Drug Agency revoked the authorization for tixagevimab/cilgavimab, while this monoclonal antibody cocktail is currently recommended by the European Medical Agency. We retrospectively reviewed 22 immunocompetent patients at high risk for disease progression who received intramuscular tixagevimab/cilgavimab as early COVID-19 treatment and presented a prolonged high viral load. Complete SARS-CoV-2 genome sequences were obtained for a deep investigation of mutation frequencies in Spike protein before and during treatment. At seven days, only one patient showed evidence of treatment-emergent cilgavimab resistance. Quasispecies analysis revealed two different deletions on the Spike protein (S:del138–144 or S:del141–145) in combination with the resistance S:K444N mutation. The structural and dynamic impact of the two quasispecies was characterized by using molecular dynamics simulations, showing the conservation of the principal functional movements in the mutated systems and their capabilities to alter the structure and dynamics of the RBD, responsible for the interaction with the ACE2 human receptor. Our study underlines the importance of prompting an early virological investigation to prevent drug resistance or clinical failures in immunocompetent patients. Full article
(This article belongs to the Special Issue Viral Drug Targets and Discovery of Antiviral Agents)
Show Figures

Figure 1

12 pages, 2058 KB  
Article
Co-Occurrence of Wing Deformity and Impaired Mobility of Alates with Deformed Wing Virus in Solenopsis invicta Buren (Hymenoptera: Formicidae)
by Godfrey P. Miles, Xiaofen F. Liu, Esmaeil Amiri, Michael J. Grodowitz, Margaret L. Allen and Jian Chen
Insects 2023, 14(10), 788; https://doi.org/10.3390/insects14100788 - 27 Sep 2023
Cited by 8 | Viewed by 4120
Abstract
Deformed wing virus (DWV), a major honey bee pathogen, is a generalist insect virus detected in diverse insect phyla, including numerous ant genera. Its clinical symptoms have only been reported in honey bees, bumble bees, and wasps. DWV is a quasispecies virus with [...] Read more.
Deformed wing virus (DWV), a major honey bee pathogen, is a generalist insect virus detected in diverse insect phyla, including numerous ant genera. Its clinical symptoms have only been reported in honey bees, bumble bees, and wasps. DWV is a quasispecies virus with three main variants, which, in association with the ectoparasitic mite, Varroa destructor, causes wing deformity, shortened abdomens, neurological impairments, and colony mortality in honey bees. The red imported fire ant, Solenopsis invicta Buren, is one of the most-invasive and detrimental pests in the world. In this study, we report the co-occurrence of DWV-like symptoms in S. invicta and DWV for the first time and provide molecular evidence of viral replication in S. invicta. Some alates in 17 of 23 (74%) lab colonies and 9 of 14 (64%) field colonies displayed deformed wings (DWs), ranging from a single crumpled wing tip to twisted, shriveled wings. Numerous symptomatic alates also exhibited altered locomotion ranging from an altered gait to the inability to walk. Deformed wings may prevent S. invicta alates from reproducing since mating only occurs during a nuptial flight. The results from conventional RT-PCR and Sanger sequencing confirmed the presence of DWV-A, and viral replication of DWV was confirmed using a modified strand-specific RT-PCR. Our results suggest that S. invicta can potentially be an alternative and reservoir host for DWV. However, further research is needed to determine whether DWV is the infectious agent that causes the DW syndrome in S. invicta. Full article
(This article belongs to the Collection Biology of Social Insect Diseases)
Show Figures

Figure 1

2 pages, 158 KB  
Abstract
Effect of Manuka Honey Eye Drops among Patients Diagnosed with Adenoviral Keratoconjunctivitis in The Gaza Strip
by Aysha F. Alagha, Riad El-Qidra, Marwan O. Jalambo and Bassam Alhabibi
Proceedings 2023, 88(1), 5; https://doi.org/10.3390/proceedings2023088005 - 28 Jul 2023
Viewed by 4154
Abstract
A large amount of research has established that honey has potent antibacterial activity. However, the sensitivity of infection-causing viral species to honey has been scarcely studied. This study was designed to evaluate the effect of Manuka Honey eye drops among patients diagnosed with [...] Read more.
A large amount of research has established that honey has potent antibacterial activity. However, the sensitivity of infection-causing viral species to honey has been scarcely studied. This study was designed to evaluate the effect of Manuka Honey eye drops among patients diagnosed with adenovirus conjunctivitis. Sixty-one patients with adenovirus keratoconjunctivitis were recruited in this quasi-experimental, multi-center study. All eligible subjects were randomly categorized into two groups: the first group was the control group, which was treated with steroids (conventional treatment), while the second group was the intervention group, which was treated with Manuka Honey drops at a concentration of 16.5% four times per day with conventional treatment (steroids). Symptoms in both groups, as well as the total ocular symptom score (TOSS), were compared. The results of the experimental group demonstrate the effectiveness of Manuka Honey eye drops in relieving symptoms of adenovirus keratoconjunctivitis. The findings of this study indicated that there was a statistically significant difference between the groups in terms of the number of days they had adenovirus keratoconjunctivitis (p > 0.001). Also, the mean itchy, redness, and tearing scores on day 4 among the patients in the intervention group were less than those in the control group (p > 0.001). In addition, the TOSS score on day 4 and day 8 among the patients in the intervention group was extremely lower than those in the control group (p > 0.001). The results of this study have shown important improvements in the symptoms of adenovirus keratoconjunctivitis. Our findings showed positive results within a short period, meaning that our results suggest that Manuka honey eye drops show promise as an adjunct natural treatment and that prescribing them in conjunction with conventional steroids can help alleviate the symptoms of adenovirus keratoconjunctivitis. Full article
15 pages, 2508 KB  
Article
Directed Evolution of Seneca Valley Virus in Tumorsphere and Monolayer Cell Cultures of a Small-Cell Lung Cancer Model
by Shakeel Waqqar, Kai Lee, Blair Lawley, Timothy Bilton, Miguel E. Quiñones-Mateu, Mihnea Bostina and Laura N. Burga
Cancers 2023, 15(9), 2541; https://doi.org/10.3390/cancers15092541 - 28 Apr 2023
Cited by 5 | Viewed by 2981
Abstract
The Seneca Valley virus (SVV) is an oncolytic virus from the picornavirus family, characterized by a 7.3-kilobase RNA genome encoding for all the structural and functional viral proteins. Directed evolution by serial passaging has been employed for oncolytic virus adaptation to increase the [...] Read more.
The Seneca Valley virus (SVV) is an oncolytic virus from the picornavirus family, characterized by a 7.3-kilobase RNA genome encoding for all the structural and functional viral proteins. Directed evolution by serial passaging has been employed for oncolytic virus adaptation to increase the killing efficacy towards certain types of tumors. We propagated the SVV in a small-cell lung cancer model under two culture conditions: conventional cell monolayer and tumorspheres, with the latter resembling more closely the cellular structure of the tumor of origin. We observed an increase of the virus-killing efficacy after ten passages in the tumorspheres. Deep sequencing analyses showed genomic changes in two SVV populations comprising 150 single nucleotides variants and 72 amino acid substitutions. Major differences observed in the tumorsphere-passaged virus population, compared to the cell monolayer, were identified in the conserved structural protein VP2 and in the highly variable P2 region, suggesting that the increase in the ability of the SVV to kill cells over time in the tumorspheres is acquired by capsid conservation and positively selecting mutations to counter the host innate immune responses. Full article
(This article belongs to the Special Issue Molecular Immunotherapy of Solid Tumors)
Show Figures

Figure 1

28 pages, 5344 KB  
Article
Insights into In Vitro Adaptation of EV71 and Analysis of Reduced Virulence by In Silico Predictions
by Jia Xuen Koh, Malihe Masomian, Mohd Ishtiaq Anasir, Seng-Kai Ong and Chit Laa Poh
Vaccines 2023, 11(3), 629; https://doi.org/10.3390/vaccines11030629 - 11 Mar 2023
Viewed by 3008
Abstract
EV-A71 is a common viral pathogen that causes hand, foot and mouth disease. It is a single-stranded RNA virus that has a low fidelity RNA polymerase and, as a result, spontaneous mutations frequently occur in the EV-A71 genome. The mutations within the genome [...] Read more.
EV-A71 is a common viral pathogen that causes hand, foot and mouth disease. It is a single-stranded RNA virus that has a low fidelity RNA polymerase and, as a result, spontaneous mutations frequently occur in the EV-A71 genome. The mutations within the genome give rise to quasispecies within the viral population that could be further defined by haplotypes. In vitro virulence of EV-A71 was shown by plaque size in Rhabdomyosarcoma (RD) cells, which was substantiated by in vitro characterizations of growth, RNA replication, binding, attachment and host cell internalization. Viruses could exhibit different host cell adaptations in different cell lines during viral passaging. The EV-A71/WT (derived from EV-A71 subgenotype B4) was shown to comprise six haplotypes through next-generation sequencing, where only EV-A71/Hap2 was found to be cultivable in RD cells, while EV-A71/Hap4 was the only cultivable haplotype in Vero cells. The EV-A71/WT produced plaques of four different sizes (small, medium, big, huge) in RD cells, while only two plaque variants (small, medium) were present in Vero cells. The small plaque variant isolated from RD cells displayed lower RNA replication rates, slower in vitro growth kinetics, higher TCID50 and lower attachment, binding and entry ability when compared against EV-A71/WT due to the mutation at 3D-S228P that disrupted the active site of the RNA polymerase, resulting in low replication and growth of the variant. Full article
Show Figures

Figure 1

12 pages, 3207 KB  
Article
High-Resolution Genomic Profiling of a Genotype 3b Hepatitis C Virus from a Flare of an Occult Hepatitis Patient with Acute-on-Chronic Liver Failure
by Xue Mei, Jingyi Zou, Bisheng Shi, Zhiping Qian and Zhigang Yi
Viruses 2023, 15(3), 634; https://doi.org/10.3390/v15030634 - 26 Feb 2023
Cited by 1 | Viewed by 2562
Abstract
Acute-on-chronic liver failure (ACLF) is defined as a syndrome of acutely decompensated cirrhosis in patients with chronic liver disease (CLD). Here we report an ACLF case caused by a flare of occult hepatitis C infection. This patient was infected with hepatitis C virus [...] Read more.
Acute-on-chronic liver failure (ACLF) is defined as a syndrome of acutely decompensated cirrhosis in patients with chronic liver disease (CLD). Here we report an ACLF case caused by a flare of occult hepatitis C infection. This patient was infected with hepatitis C virus (HCV) more than a decade ago and hospitalized due to alcohol-associated CLD. Upon admission, the HCV RNA in the serum was negative and the anti-HCV antibody was positive, whereas the viral RNA in the plasma dramatically increased during hospitalization, which suggests an occult hepatitis C infection. Overlapped fragments encompassing the nearly whole HCV viral genome were amplified, cloned, and sequenced. Phylogenetic analysis indicated an HCV genotype 3b strain. Sanger sequencing to 10-fold coverage of the 9.4-kb nearly whole genome reveals high diversity of viral quasispecies, an indicator of chronic infection. Inherent resistance-associated substitutions (RASs) in the NS3 and NS5A but not in the NS5B regions were identified. The patient developed liver failure and accepted liver transplantation, followed by direct-acting antiviral (DAA) treatment. The hepatitis C was cured by the DAA treatment despite the existence of RASs. Thus, care should be taken for occult hepatitis C in patients with alcoholic cirrhosis. The analysis of viral genetic diversity may help to identify an occult hepatitis C virus infection and predict the efficacy of anti-viral treatment. Full article
(This article belongs to the Special Issue Pathophysiology of Viral Hepatitis)
Show Figures

Figure 1

16 pages, 334 KB  
Review
The Burden of Survivors: How Can Phage Infection Impact Non-Infected Bacteria?
by Andrey V. Letarov and Maria A. Letarova
Int. J. Mol. Sci. 2023, 24(3), 2733; https://doi.org/10.3390/ijms24032733 - 1 Feb 2023
Cited by 10 | Viewed by 5931
Abstract
The contemporary understanding of complex interactions in natural microbial communities and the numerous mechanisms of bacterial communication challenge the classical concept of bacteria as unicellular organisms. Microbial populations, especially those in densely populated habitats, appear to behave cooperatively, coordinating their reactions in response [...] Read more.
The contemporary understanding of complex interactions in natural microbial communities and the numerous mechanisms of bacterial communication challenge the classical concept of bacteria as unicellular organisms. Microbial populations, especially those in densely populated habitats, appear to behave cooperatively, coordinating their reactions in response to different stimuli and behaving as a quasi-tissue. The reaction of such systems to viral infection is likely to go beyond each cell or species tackling the phage attack independently. Bacteriophage infection of a fraction of the microbial community may also exert an influence on the physiological state and/or phenotypic features of those cells that have not yet had direct contact with the virus or are even intrinsically unable to become infected by the particular virus. These effects may be mediated by sensing the chemical signals released by lysing or by infected cells as well as by more indirect mechanisms. Full article
(This article belongs to the Special Issue Bacteriophage Biology: From Genomics to Therapy)
Show Figures

Graphical abstract

Back to TopTop