Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,324)

Search Parameters:
Keywords = vibration diagnosis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 10748 KiB  
Article
Rolling Bearing Fault Diagnosis Based on Fractional Constant Q Non-Stationary Gabor Transform and VMamba-Conv
by Fengyun Xie, Chengjie Song, Yang Wang, Minghua Song, Shengtong Zhou and Yuanwei Xie
Fractal Fract. 2025, 9(8), 515; https://doi.org/10.3390/fractalfract9080515 (registering DOI) - 6 Aug 2025
Abstract
Rolling bearings are prone to failure, meaning that research on intelligent fault diagnosis is crucial in relation to this key transmission component in rotating machinery. The application of deep learning (DL) has significantly advanced the development of intelligent fault diagnosis. This paper proposes [...] Read more.
Rolling bearings are prone to failure, meaning that research on intelligent fault diagnosis is crucial in relation to this key transmission component in rotating machinery. The application of deep learning (DL) has significantly advanced the development of intelligent fault diagnosis. This paper proposes a novel method for rolling bearing fault diagnosis based on the fractional constant Q non-stationary Gabor transform (FCO-NSGT) and VMamba-Conv. Firstly, a rolling bearing fault experimental platform is established and the vibration signals of rolling bearings under various working conditions are collected using an acceleration sensor. Secondly, a kurtosis-to-entropy ratio (KER) method and the rotational kernel function of the fractional Fourier transform (FRFT) are proposed and applied to the original CO-NSGT to overcome the limitations of the original CO-NSGT, such as the unsatisfactory time–frequency representation due to manual parameter setting and the energy dispersion problem of frequency-modulated signals that vary with time. A lightweight fault diagnosis model, VMamba-Conv, is proposed, which is a restructured version of VMamba. It integrates an efficient selective scanning mechanism, a state space model, and a convolutional network based on SimAX into a dual-branch architecture and uses inverted residual blocks to achieve a lightweight design while maintaining strong feature extraction capabilities. Finally, the time–frequency graph is inputted into VMamba-Conv to diagnose rolling bearing faults. This approach reduces the number of parameters, as well as the computational complexity, while ensuring high accuracy and excellent noise resistance. The results show that the proposed method has excellent fault diagnosis capabilities, with an average accuracy of 99.81%. By comparing the Adjusted Rand Index, Normalized Mutual Information, F1 Score, and accuracy, it is concluded that the proposed method outperforms other comparison methods, demonstrating its effectiveness and superiority. Full article
25 pages, 13175 KiB  
Article
Fault Diagnosis for CNC Machine Tool Feed Systems Based on Enhanced Multi-Scale Feature Network
by Peng Zhang, Min Huang and Weiwei Sun
Lubricants 2025, 13(8), 350; https://doi.org/10.3390/lubricants13080350 - 5 Aug 2025
Abstract
Despite advances in Convolutional Neural Networks (CNNs) for intelligent fault diagnosis in CNC machine tools, bearing fault diagnosis in CNC feed systems remains challenging, particularly in multi-scale feature extraction and generalization across operating conditions. This study introduces an enhanced multi-scale feature network (MSFN) [...] Read more.
Despite advances in Convolutional Neural Networks (CNNs) for intelligent fault diagnosis in CNC machine tools, bearing fault diagnosis in CNC feed systems remains challenging, particularly in multi-scale feature extraction and generalization across operating conditions. This study introduces an enhanced multi-scale feature network (MSFN) that addresses these limitations through three integrated modules designed to extract critical fault features from vibration signals. First, a Soft-Scale Denoising (S2D) module forms the backbone of the MSFN, capturing multi-scale fault features from input signals. Second, a Multi-Scale Adaptive Feature Enhancement (MS-AFE) module based on long-range weighting mechanisms is developed to enhance the extraction of periodic fault features. Third, a Dynamic Sequence–Channel Attention (DSCA) module is incorporated to improve feature representation across channel and sequence dimensions. Experimental results on two datasets demonstrate that the proposed MSFN achieves high diagnostic accuracy and exhibits robust generalization across diverse operating conditions. Moreover, ablation studies validate the effectiveness and contributions of each module. Full article
(This article belongs to the Special Issue Advances in Tool Wear Monitoring 2025)
Show Figures

Figure 1

20 pages, 4095 KiB  
Article
Integrated Explainable Diagnosis of Gear Wear Faults Based on Dynamic Modeling and Data-Driven Representation
by Zemin Zhao, Tianci Zhang, Kang Xu, Jinyuan Tang and Yudian Yang
Sensors 2025, 25(15), 4805; https://doi.org/10.3390/s25154805 - 5 Aug 2025
Abstract
Gear wear degrades transmission performance, necessitating highly reliable fault diagnosis methods. To address the limitations of existing approaches—where dynamic models rely heavily on prior knowledge, while data-driven methods lack interpretability—this study proposes an integrated bidirectional verification framework combining dynamic modeling and deep learning [...] Read more.
Gear wear degrades transmission performance, necessitating highly reliable fault diagnosis methods. To address the limitations of existing approaches—where dynamic models rely heavily on prior knowledge, while data-driven methods lack interpretability—this study proposes an integrated bidirectional verification framework combining dynamic modeling and deep learning for interpretable gear wear diagnosis. First, a dynamic gear wear model is established to quantitatively reveal wear-induced modulation effects on meshing stiffness and vibration responses. Then, a deep network incorporating Gradient-weighted Class Activation Mapping (Grad-CAM) enables visualized extraction of frequency-domain sensitive features. Bidirectional verification between the dynamic model and deep learning demonstrates enhanced meshing harmonics in wear faults, leading to a quantitative diagnostic index that achieves 0.9560 recognition accuracy for gear wear across four speed conditions, significantly outperforming comparative indicators. This research provides a novel approach for gear wear diagnosis that ensures both high accuracy and interpretability. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

23 pages, 3087 KiB  
Article
MCMBAN: A Masked and Cascaded Multi-Branch Attention Network for Bearing Fault Diagnosis
by Peng Chen, Haopeng Liang and Alaeldden Abduelhadi
Machines 2025, 13(8), 685; https://doi.org/10.3390/machines13080685 - 4 Aug 2025
Abstract
In recent years, deep learning methods have made breakthroughs in the field of rotating equipment fault diagnosis, thanks to their powerful data analysis capabilities. However, the vibration signals usually incorporate fault features and background noise, and these features may be scattered over multiple [...] Read more.
In recent years, deep learning methods have made breakthroughs in the field of rotating equipment fault diagnosis, thanks to their powerful data analysis capabilities. However, the vibration signals usually incorporate fault features and background noise, and these features may be scattered over multiple frequency levels, which increases the complexity of extracting important information from them. To address this problem, this paper proposes a Masked and Cascaded Multi-Branch Attention Network (MCMBAN), which combines the Noise Mask Filter Block (NMFB) with the Multi-Branch Cascade Attention Block (MBCAB), and significantly improves the noise immunity of the fault diagnostic model and the efficiency of fault feature extraction. NMFB novelly combines a wide convolutional layer and a top k neighbor self-attention masking mechanism, so as to efficiently filter unnecessary high-frequency noise in the vibration signal. On the other hand, MBCAB strengthens the interaction between different layers by cascading the convolutional layers of different scales, thus improving the recognition of periodic fault signals and greatly enhancing the diagnosis accuracy of the model when processing complex signals. Finally, the time–frequency analysis technique is employed to explore the internal mechanisms of the model in depth, aiming to validate the effectiveness of NMFB and MBCAB in fault feature recognition and to improve the feature interpretability of the proposed modes in fault diagnosis applications. We validate the superior performance of the network model in dealing with high-noise backgrounds by testing it on a standard bearing dataset from Case Western Reserve University and a self-constructed composite bearing fault dataset, and the experimental results show that its performance exceeded six of the top current fault diagnosis techniques. Full article
(This article belongs to the Special Issue Fault Diagnosis and Fault Tolerant Control in Mechanical System)
Show Figures

Figure 1

24 pages, 6041 KiB  
Article
Attention-Guided Residual Spatiotemporal Network with Label Regularization for Fault Diagnosis with Small Samples
by Yanlong Xu, Liming Zhang, Ling Chen, Tian Tan, Xiaolong Wang and Hongguang Xiao
Sensors 2025, 25(15), 4772; https://doi.org/10.3390/s25154772 - 3 Aug 2025
Viewed by 175
Abstract
Fault diagnosis is of great significance for the maintenance of rotating machinery. Deep learning is an intelligent diagnostic technique that is receiving increasing attention. To address the issues of industrial data with small samples and varying working conditions, a residual convolutional neural network [...] Read more.
Fault diagnosis is of great significance for the maintenance of rotating machinery. Deep learning is an intelligent diagnostic technique that is receiving increasing attention. To address the issues of industrial data with small samples and varying working conditions, a residual convolutional neural network based on the attention mechanism is put forward for the fault diagnosis of rotating machinery. The method incorporates channel attention and spatial attention simultaneously, implementing channel-wise recalibration for frequency-dependent feature adjustment and performing spatial context aggregation across receptive fields. Subsequently, a residual module is introduced to address the vanishing gradient problem of the model in deep network structures. In addition, LSTM is used to realize spatiotemporal feature fusion. Finally, label smoothing regularization (LSR) is proposed to balance the distributional disparities among labeled samples. The effectiveness of the method is evaluated by its application to the vibration signal data from the safe injection pump and the Case Western Reserve University (CWRU). The results show that the method has superb diagnostic accuracy and strong robustness. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

26 pages, 8736 KiB  
Article
Uncertainty-Aware Fault Diagnosis of Rotating Compressors Using Dual-Graph Attention Networks
by Seungjoo Lee, YoungSeok Kim, Hyun-Jun Choi and Bongjun Ji
Machines 2025, 13(8), 673; https://doi.org/10.3390/machines13080673 - 1 Aug 2025
Viewed by 233
Abstract
Rotating compressors are foundational in various industrial processes, particularly in the oil-and-gas sector, where reliable fault detection is crucial for maintaining operational continuity. While Graph Attention Network (GAT) frameworks are widely available, this study advances the state of the art by introducing a [...] Read more.
Rotating compressors are foundational in various industrial processes, particularly in the oil-and-gas sector, where reliable fault detection is crucial for maintaining operational continuity. While Graph Attention Network (GAT) frameworks are widely available, this study advances the state of the art by introducing a Bayesian GAT method specifically tailored for vibration-based compressor fault diagnosis. The approach integrates domain-specific digital-twin simulations built with Rotordynamic software (1.3.0), and constructs dual adjacency matrices to encode both physically informed and data-driven sensor relationships. Additionally, a hybrid forecasting-and-reconstruction objective enables the model to capture short-term deviations as well as long-term waveform fidelity. Monte Carlo dropout further decomposes prediction uncertainty into aleatoric and epistemic components, providing a more robust and interpretable model. Comparative evaluations against conventional Long Short-Term Memory (LSTM)-based autoencoder and forecasting methods demonstrate that the proposed framework achieves superior fault-detection performance across multiple fault types, including misalignment, bearing failure, and unbalance. Moreover, uncertainty analyses confirm that fault severity correlates with increasing levels of both aleatoric and epistemic uncertainty, reflecting heightened noise and reduced model confidence under more severe conditions. By enhancing GAT fundamentals with a domain-tailored dual-graph strategy, specialized Bayesian inference, and digital-twin data generation, this research delivers a comprehensive and interpretable solution for compressor fault diagnosis, paving the way for more reliable and risk-aware predictive maintenance in complex rotating machinery. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

23 pages, 8450 KiB  
Article
Spatio-Temporal Collaborative Perception-Enabled Fault Feature Graph Construction and Topology Mining for Variable Operating Conditions Diagnosis
by Jiaxin Zhao, Xing Wu, Chang Liu and Feifei He
Sensors 2025, 25(15), 4664; https://doi.org/10.3390/s25154664 - 28 Jul 2025
Viewed by 251
Abstract
Industrial equipment fault diagnosis faces dual challenges: significant data distribution discrepancies caused by diverse operating conditions impair generalization capabilities, while underutilized spatio-temporal information from multi-source data hinders feature extraction. To address this, we propose a spatio-temporal collaborative perception-driven feature graph construction and topology [...] Read more.
Industrial equipment fault diagnosis faces dual challenges: significant data distribution discrepancies caused by diverse operating conditions impair generalization capabilities, while underutilized spatio-temporal information from multi-source data hinders feature extraction. To address this, we propose a spatio-temporal collaborative perception-driven feature graph construction and topology mining methodology for variable-condition diagnosis. First, leveraging the operational condition invariance and cross-condition consistency of fault features, we construct fault feature graphs using single-source data and similarity clustering, validating topological similarity and representational consistency under varying conditions. Second, we reveal spatio-temporal correlations within multi-source feature topologies. By embedding multi-source spatio-temporal information into fault feature graphs via spatio-temporal collaborative perception, we establish high-dimensional spatio-temporal feature topology graphs based on spectral similarity, extending generalized feature representations into the spatio-temporal domain. Finally, we develop a graph residual convolutional network to mine topological information from multi-source spatio-temporal features under complex operating conditions. Experiments on variable/multi-condition datasets demonstrate the following: feature graphs seamlessly integrate multi-source information with operational variations; the methodology precisely captures spatio-temporal delays induced by vibrational direction/path discrepancies; and the proposed model maintains both high diagnostic accuracy and strong generalization capacity under complex operating conditions, delivering a highly reliable framework for rotating machinery fault diagnosis. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

26 pages, 34763 KiB  
Article
A Rolling-Bearing-Fault Diagnosis Method Based on a Dual Multi-Scale Mechanism Applicable to Noisy-Variable Operating Conditions
by Jing Kang, Taiyong Wang, Ye Wei, Usman Haladu Garba and Ying Tian
Sensors 2025, 25(15), 4649; https://doi.org/10.3390/s25154649 - 27 Jul 2025
Viewed by 330
Abstract
Rolling bearings serve as the most widely utilized general components in drive systems for rotating machinery, and they are susceptible to regular malfunctions. To address the performance degradation encountered by current convolutional neural network-based rolling-bearing-fault diagnosis methods due to significant noise interference and [...] Read more.
Rolling bearings serve as the most widely utilized general components in drive systems for rotating machinery, and they are susceptible to regular malfunctions. To address the performance degradation encountered by current convolutional neural network-based rolling-bearing-fault diagnosis methods due to significant noise interference and variable working conditions in industrial settings, we propose a rolling-bearing-fault diagnosis method based on dual multi-scale mechanism applicable to noisy-variable operating conditions. The suggested approach begins with the implementation of Variational Mode Decomposition (VMD) on the initial vibration signal. This is succeeded by a denoising process that utilizes the goodness-of-fit test based on the Anderson–Darling (AD) distance for enhanced accuracy. This approach targets the intrinsic mode functions (IMFs), which capture information across multiple scales, to obtain the most precise denoised signal possible. Subsequently, we introduce the Dynamic Weighted Multi-Scale Feature Convolutional Neural Network (DWMFCNN) model, which integrates two structures: multi-scale feature extraction and dynamic weighting of these features. Ultimately, the signal that has been denoised is utilized as input for the DWMFCNN model to recognize different kinds of rolling-bearing faults. Results from the experiments show that the suggested approach shows an improved denoising performance and a greater adaptability to changing working conditions. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

19 pages, 5198 KiB  
Article
Research on a Fault Diagnosis Method for Rolling Bearings Based on the Fusion of PSR-CRP and DenseNet
by Beining Cui, Zhaobin Tan, Yuhang Gao, Xinyu Wang and Lv Xiao
Processes 2025, 13(8), 2372; https://doi.org/10.3390/pr13082372 - 25 Jul 2025
Viewed by 390
Abstract
To address the challenges of unstable vibration signals, indistinct fault features, and difficulties in feature extraction during rolling bearing operation, this paper presents a novel fault diagnosis method based on the fusion of PSR-CRP and DenseNet. The Phase Space Reconstruction (PSR) method transforms [...] Read more.
To address the challenges of unstable vibration signals, indistinct fault features, and difficulties in feature extraction during rolling bearing operation, this paper presents a novel fault diagnosis method based on the fusion of PSR-CRP and DenseNet. The Phase Space Reconstruction (PSR) method transforms one-dimensional bearing vibration data into a three-dimensional space. Euclidean distances between phase points are calculated and mapped into a Color Recurrence Plot (CRP) to represent the bearings’ operational state. This approach effectively reduces feature extraction ambiguity compared to RP, GAF, and MTF methods. Fault features are extracted and classified using DenseNet’s densely connected topology. Compared with CNN and ViT models, DenseNet improves diagnostic accuracy by reusing limited features across multiple dimensions. The training set accuracy was 99.82% and 99.90%, while the test set accuracy is 97.03% and 95.08% for the CWRU and JNU datasets under five-fold cross-validation; F1 scores were 0.9739 and 0.9537, respectively. This method achieves highly accurate diagnosis under conditions of non-smooth signals and inconspicuous fault characteristics and is applicable to fault diagnosis scenarios for precision components in aerospace, military systems, robotics, and related fields. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

24 pages, 5256 KiB  
Article
In-Wheel Motor Fault Diagnosis Method Based on Two-Stream 2DCNNs with DCBA Module
by Junwei Zhu, Xupeng Ouyang, Zongkang Jiang, Yanlong Xu, Hongtao Xue, Huiyu Yue and Huayuan Feng
Sensors 2025, 25(15), 4617; https://doi.org/10.3390/s25154617 - 25 Jul 2025
Viewed by 207
Abstract
To address the challenge of fault diagnosis for in-wheel motors in four-wheel independent driving systems under variable driving conditions and harsh environments, this paper proposes a novel method based on two-stream 2DCNNs (two-dimensional convolutional neural networks) with a DCBA (depthwise convolution block attention) [...] Read more.
To address the challenge of fault diagnosis for in-wheel motors in four-wheel independent driving systems under variable driving conditions and harsh environments, this paper proposes a novel method based on two-stream 2DCNNs (two-dimensional convolutional neural networks) with a DCBA (depthwise convolution block attention) module. The main contributions are twofold: (1) A DCBA module is introduced to extract multi-scale features—including prominent, local, and average information—from grayscale images reconstructed from vibration signals across different domains; and (2) a two-stream network architecture is designed to learn complementary feature representations from time-domain and time–frequency-domain signals, which are fused through fully connected layers to improve diagnostic accuracy. Experimental results demonstrate that the proposed method achieves high recognition accuracy under various working speeds, loads, and road surfaces. Comparative studies with SENet, ECANet, CBAM, and single-stream 2DCNN models confirm its superior performance and robustness. The integration of DCBA with dual-domain feature learning effectively enhances fault feature extraction under complex operating conditions. Full article
(This article belongs to the Special Issue Intelligent Maintenance and Fault Diagnosis of Mobility Equipment)
Show Figures

Figure 1

19 pages, 28897 KiB  
Article
MetaRes-DMT-AS: A Meta-Learning Approach for Few-Shot Fault Diagnosis in Elevator Systems
by Hongming Hu, Shengying Yang, Yulai Zhang, Jianfeng Wu, Liang He and Jingsheng Lei
Sensors 2025, 25(15), 4611; https://doi.org/10.3390/s25154611 - 25 Jul 2025
Viewed by 262
Abstract
Recent advancements in deep learning have spurred significant research interest in fault diagnosis for elevator systems. However, conventional approaches typically require substantial labeled datasets that are often impractical to obtain in real-world industrial environments. This limitation poses a fundamental challenge for developing robust [...] Read more.
Recent advancements in deep learning have spurred significant research interest in fault diagnosis for elevator systems. However, conventional approaches typically require substantial labeled datasets that are often impractical to obtain in real-world industrial environments. This limitation poses a fundamental challenge for developing robust diagnostic models capable of performing reliably under data-scarce conditions. To address this critical gap, we propose MetaRes-DMT-AS (Meta-ResNet with Dynamic Meta-Training and Adaptive Scheduling), a novel meta-learning framework for few-shot fault diagnosis. Our methodology employs Gramian Angular Fields to transform 1D raw sensor data into 2D image representations, followed by episodic task construction through stochastic sampling. During meta-training, the system acquires transferable prior knowledge through optimized parameter initialization, while an adaptive scheduling module dynamically configures support/query sets. Subsequent regularization via prototype networks ensures stable feature extraction. Comprehensive validation using the Case Western Reserve University bearing dataset and proprietary elevator acceleration data demonstrates the framework’s superiority: MetaRes-DMT-AS achieves state-of-the-art few-shot classification performance, surpassing benchmark models by 0.94–1.78% in overall accuracy. For critical few-shot fault categories—particularly emergency stops and severe vibrations—the method delivers significant accuracy improvements of 3–16% and 17–29%, respectively. Full article
(This article belongs to the Special Issue Signal Processing and Sensing Technologies for Fault Diagnosis)
Show Figures

Figure 1

22 pages, 12545 KiB  
Article
Denoised Improved Envelope Spectrum for Fault Diagnosis of Aero-Engine Inter-Shaft Bearing
by Danni Li, Longting Chen, Hanbin Zhou, Jinyuan Tang, Xing Zhao and Jingsong Xie
Appl. Sci. 2025, 15(15), 8270; https://doi.org/10.3390/app15158270 - 25 Jul 2025
Viewed by 224
Abstract
The inter-shaft bearing is an important component of aero-engine rotor systems. It works between a high-pressure rotor and a low-pressure rotor. Effective fault diagnosis of it is significant for an aero-engine. The casing vibration signals can promptly and intuitively reflect changes in the [...] Read more.
The inter-shaft bearing is an important component of aero-engine rotor systems. It works between a high-pressure rotor and a low-pressure rotor. Effective fault diagnosis of it is significant for an aero-engine. The casing vibration signals can promptly and intuitively reflect changes in the operational health status of an aero-engine’s support system. However, affected by a complex vibration transmission path and vibration of the dual-rotor, the intrinsic vibration information of the inter-shaft bearing is faced with strong noise and a dual-frequency excitation problem. This excitation is caused by the wide span of vibration source frequency distribution that results from the quite different rotational speeds of the high-pressure rotor and low-pressure rotor. Consequently, most existing fault diagnosis methods cannot effectively extract inter-shaft bearing characteristic frequency information from the casing signal. To solve this problem, this paper proposed the denoised improved envelope spectrum (DIES) method. First, an improved envelope spectrum generated by a spectrum subtraction method is proposed. This method is applied to solve the multi-source interference with wide-band distribution problem under dual-frequency excitation. Then, an improved adaptive-thresholding approach is subsequently applied to the resultant subtracted spectrum, so as to eliminate the influence of random noise in the spectrum. An experiment on a public run-to-failure bearing dataset validates that the proposed method can effectively extract an incipient bearing fault characteristic frequency (FCF) from strong background noise. Furthermore, the experiment on the inter-shaft bearing of an aero-engine test platform validates the effectiveness and superiority of the proposed DIES method. The experimental results demonstrate that this proposed method can clearly extract fault-related information from dual-frequency excitation interference. Even amid strong background noise, it precisely reveals the inter-shaft bearing’s fault-related spectral components. Full article
Show Figures

Figure 1

24 pages, 4430 KiB  
Article
Early Bearing Fault Diagnosis in PMSMs Based on HO-VMD and Weighted Evidence Fusion of Current–Vibration Signals
by Xianwu He, Xuhui Liu, Cheng Lin, Minjie Fu, Jiajin Wang and Jian Zhang
Sensors 2025, 25(15), 4591; https://doi.org/10.3390/s25154591 - 24 Jul 2025
Viewed by 313
Abstract
To address the challenges posed by weak early fault signal features, strong noise interference, low diagnostic accuracy, poor reliability when using single information sources, and the limited availability of high-quality samples in practical applications for permanent magnet synchronous motor (PMSM) bearings, this paper [...] Read more.
To address the challenges posed by weak early fault signal features, strong noise interference, low diagnostic accuracy, poor reliability when using single information sources, and the limited availability of high-quality samples in practical applications for permanent magnet synchronous motor (PMSM) bearings, this paper proposes an early bearing fault diagnosis method based on Hippopotamus Optimization Variational Mode Decomposition (HO-VMD) and weighted evidence fusion of current–vibration signals. The HO algorithm is employed to optimize the parameters of VMD for adaptive modal decomposition of current and vibration signals, resulting in the generation of intrinsic mode functions (IMFs). These IMFs are then selected and reconstructed based on their kurtosis to suppress noise and harmonic interference. Subsequently, the reconstructed signals are demodulated using the Teager–Kaiser Energy Operator (TKEO), and both time-domain and energy spectrum features are extracted. The reliability of these features is utilized to adaptively weight the basic probability assignment (BPA) functions. Finally, a weighted modified Dempster–Shafer evidence theory (WMDST) is applied to fuse multi-source feature information, enabling an accurate assessment of the PMSM bearing health status. The experimental results demonstrate that the proposed method significantly enhances the signal-to-noise ratio (SNR) and enables precise diagnosis of early bearing faults even in scenarios with limited sample sizes. Full article
Show Figures

Figure 1

27 pages, 5193 KiB  
Article
Fault Diagnosis Method of Plunger Pump Based on Meta-Learning and Improved Multi-Channel Convolutional Neural Network Under Small Sample Condition
by Xiwang Yang, Jiancheng Ma, Hongjun Hu, Jinying Huang and Licheng Jing
Sensors 2025, 25(15), 4587; https://doi.org/10.3390/s25154587 - 24 Jul 2025
Viewed by 186
Abstract
A fault diagnosis method based on meta-learning and an improved multi-channel convolutional neural network (MAML-MCCNN-ISENet) was proposed to solve the problems of insufficient feature extraction and low fault type identification accuracy of vibration signals at small sample sizes. The signal is first preprocessed [...] Read more.
A fault diagnosis method based on meta-learning and an improved multi-channel convolutional neural network (MAML-MCCNN-ISENet) was proposed to solve the problems of insufficient feature extraction and low fault type identification accuracy of vibration signals at small sample sizes. The signal is first preprocessed using adaptive chirp mode decomposition (ACMD) methods. A multi-channel input structure is then employed to process the multidimensional signal information after preprocessing. The improved squeeze and excitation networks (ISENets) have been enhanced to concurrently enhance the network’s adaptive perception of the significance of each channel feature. On this basis, a meta-learning strategy is introduced, the learning process of model initialization parameters is improved, the network is optimized by a multi-task learning mechanism, and the initial parameters of the diagnosis model are adaptively adjusted, so that the model can quickly adapt to new fault diagnosis tasks on limited datasets. Then, the overfitting problem under small sample conditions is alleviated, and the accuracy and robustness of fault identification are improved. Finally, the performance of the model is verified on the experimental data of the fault diagnosis of the laboratory plunger pump and the vibration dataset of the centrifugal pump of the Saint Longoval Institute of Engineering and Technology. The results show that the diagnostic accuracy of the proposed method for various diagnostic tasks can reach more than 90% on small samples. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

20 pages, 4960 KiB  
Article
A Fault Diagnosis Method for Planetary Gearboxes Using an Adaptive Multi-Bandpass Filter, RCMFE, and DOA-LSSVM
by Xin Xia, Aiguo Wang and Haoyu Sun
Symmetry 2025, 17(8), 1179; https://doi.org/10.3390/sym17081179 - 23 Jul 2025
Viewed by 177
Abstract
Effective fault feature extraction and classification methods serve as the foundation for achieving the efficient fault diagnosis of planetary gearboxes. Considering the vibration signals of planetary gearboxes that contain both symmetrical and asymmetrical components, this paper proposes a novel feature extraction method integrating [...] Read more.
Effective fault feature extraction and classification methods serve as the foundation for achieving the efficient fault diagnosis of planetary gearboxes. Considering the vibration signals of planetary gearboxes that contain both symmetrical and asymmetrical components, this paper proposes a novel feature extraction method integrating an adaptive multi-bandpass filter (AMBPF) and refined composite multi-scale fuzzy entropy (RCMFE). And a dream optimization algorithm (DOA)–least squares support vector machine (LSSVM) is also proposed for fault classification. Firstly, the AMBPF is proposed, which can effectively and adaptively separate the meshing frequencies, harmonic frequencies, and their sideband frequency information of the planetary gearbox, and is combined with RCMFE for fault feature extraction. Secondly, the DOA is employed to optimize the parameters of the LSSVM, aiming to enhance its classification efficiency. Finally, the fault diagnosis of the planetary gearbox is achieved by the AMBPF, RCMFE, and DOA-LSSVM. The experimental results demonstrate that the proposed method achieves significantly higher diagnostic efficiency and exhibits superior noise immunity in planetary gearbox fault diagnosis. Full article
(This article belongs to the Special Issue Symmetry in Fault Detection and Diagnosis for Dynamic Systems)
Show Figures

Figure 1

Back to TopTop