Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,498)

Search Parameters:
Keywords = vehicle to vehicle communications

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 589 KiB  
Article
Intelligent Queue Scheduling Method for SPMA-Based UAV Networks
by Kui Yang, Chenyang Xu, Guanhua Qiao, Jinke Zhong and Xiaoning Zhang
Drones 2025, 9(8), 552; https://doi.org/10.3390/drones9080552 - 6 Aug 2025
Abstract
Static Priority-based Multiple Access (SPMA) is an emerging and promising wireless MAC protocol which is widely used in Unmanned Aerial Vehicle (UAV) networks. UAV (Unmanned Aerial Vehicle) networks, also known as drone networks, refer to a system of interconnected UAVs that communicate and [...] Read more.
Static Priority-based Multiple Access (SPMA) is an emerging and promising wireless MAC protocol which is widely used in Unmanned Aerial Vehicle (UAV) networks. UAV (Unmanned Aerial Vehicle) networks, also known as drone networks, refer to a system of interconnected UAVs that communicate and collaborate to perform tasks autonomously or semi-autonomously. These networks leverage wireless communication technologies to share data, coordinate movements, and optimize mission execution. In SPMA, traffic arriving at the UAV network node can be divided into multiple priorities according to the information timeliness, and the packets of each priority are stored in the corresponding queues with different thresholds to transmit packet, thus guaranteeing the high success rate and low latency for the highest-priority traffic. Unfortunately, the multi-priority queue scheduling of SPMA deprives the packet transmitting opportunity of low-priority traffic, which results in unfair conditions among different-priority traffic. To address this problem, in this paper we propose the method of Adaptive Credit-Based Shaper with Reinforcement Learning (abbreviated as ACBS-RL) to balance the performance of all-priority traffic. In ACBS-RL, the Credit-Based Shaper (CBS) is introduced to SPMA to provide relatively fair packet transmission opportunity among multiple traffic queues by limiting the transmission rate. Due to the dynamic situations of the wireless environment, the Q-learning-based reinforcement learning method is leveraged to adaptively adjust the parameters of CBS (i.e., idleslope and sendslope) to achieve better performance among all priority queues. The extensive simulation results show that compared with traditional SPMA protocol, the proposed ACBS-RL can increase UAV network throughput while guaranteeing Quality of Service (QoS) requirements of all priority traffic. Full article
Show Figures

Figure 1

24 pages, 2345 KiB  
Article
Towards Intelligent 5G Infrastructures: Performance Evaluation of a Novel SDN-Enabled VANET Framework
by Abiola Ifaloye, Haifa Takruri and Rabab Al-Zaidi
Network 2025, 5(3), 28; https://doi.org/10.3390/network5030028 - 5 Aug 2025
Abstract
Critical Internet of Things (IoT) data in Fifth Generation Vehicular Ad Hoc Networks (5G VANETs) demands Ultra-Reliable Low-Latency Communication (URLLC) to support mission-critical vehicular applications such as autonomous driving and collision avoidance. Achieving the stringent Quality of Service (QoS) requirements for these applications [...] Read more.
Critical Internet of Things (IoT) data in Fifth Generation Vehicular Ad Hoc Networks (5G VANETs) demands Ultra-Reliable Low-Latency Communication (URLLC) to support mission-critical vehicular applications such as autonomous driving and collision avoidance. Achieving the stringent Quality of Service (QoS) requirements for these applications remains a significant challenge. This paper proposes a novel framework integrating Software-Defined Networking (SDN) and Network Functions Virtualisation (NFV) as embedded functionalities in connected vehicles. A lightweight SDN Controller model, implemented via vehicle on-board computing resources, optimised QoS for communications between connected vehicles and the Next-Generation Node B (gNB), achieving a consistent packet delivery rate of 100%, compared to 81–96% for existing solutions leveraging SDN. Furthermore, a Software-Defined Wide-Area Network (SD-WAN) model deployed at the gNB enabled the efficient management of data, network, identity, and server access. Performance evaluations indicate that SDN and NFV are reliable and scalable technologies for virtualised and distributed 5G VANET infrastructures. Our SDN-based in-vehicle traffic classification model for dynamic resource allocation achieved 100% accuracy, outperforming existing Artificial Intelligence (AI)-based methods with 88–99% accuracy. In addition, a significant increase of 187% in flow rates over time highlights the framework’s decreasing latency, adaptability, and scalability in supporting URLLC class guarantees for critical vehicular services. Full article
27 pages, 2972 KiB  
Article
Integrated Sensing and Communication Using Random Padded OTFS with Reduced Interferences
by Pavel Karpovich and Tomasz P. Zielinski
Sensors 2025, 25(15), 4816; https://doi.org/10.3390/s25154816 - 5 Aug 2025
Abstract
The orthogonal time frequency space (OTFS) is a modulation designed to transmit data in high Doppler channels where the usage of the orthogonal frequency division multiplexing (OFDM) is challenging. The random padded OTFS (RP-OTFS) modulation, introduced recently, is an OTFS-like waveform optimized for [...] Read more.
The orthogonal time frequency space (OTFS) is a modulation designed to transmit data in high Doppler channels where the usage of the orthogonal frequency division multiplexing (OFDM) is challenging. The random padded OTFS (RP-OTFS) modulation, introduced recently, is an OTFS-like waveform optimized for more precise estimation of channel state information (CSI) and, in the case of integrated sensing and communication (ISAC), for radar detection as well. One of the main drawbacks of the RP-OTFS is the high level of interference between carriers (the inter-carrier interference—ICI) of Doppler-delay (DD) grid. In the article, we optimize the RP-OTFS waveform in terms of reducing the level of pilot-to-data interference and also offer a way to reduce the data carrier interference. The reduction in the pilot-to-data interference is achieved due to the introduction of the following: (1) redistributing interferences along the DD grid, and (2) special DD grid configuration. In turn, the reduction in data carrier interference is achieved by extrapolating the estimate of channel state information. The proposed approach allows us to reduce the influence of the interference component and, as a result, to improve the probability of correct demodulation in the ISAC RP-OTFS system. Various DD grid configurations for different use cases from a radar point of view are considered in the article. The questions of choosing appropriate values of the DD grid parameters depending on the operating environment are also discussed here. In simulations, the ICI-reduced RP-OTFS is compared with its predecessor, the regular RP-OTFS, and classical modulations: OFDM and zero-padded OTFS, and benefits of its usage are shown: lower bit error rate (BER) of the transmission and higher detection probability of the radar detection. Full article
Show Figures

Figure 1

23 pages, 1804 KiB  
Review
Recent Progress on Underwater Wireless Communication Methods and Applications
by Zhe Li, Weikun Li, Kai Sun, Dixia Fan and Weicheng Cui
J. Mar. Sci. Eng. 2025, 13(8), 1505; https://doi.org/10.3390/jmse13081505 - 5 Aug 2025
Abstract
The rapid advancement of underwater wireless communication technologies is critical to unlocking the full potential of marine resource exploration and environmental monitoring. This paper reviews recent progress in three primary modalities: underwater acoustic communication, radio frequency (RF) communication, and underwater optical wireless communication [...] Read more.
The rapid advancement of underwater wireless communication technologies is critical to unlocking the full potential of marine resource exploration and environmental monitoring. This paper reviews recent progress in three primary modalities: underwater acoustic communication, radio frequency (RF) communication, and underwater optical wireless communication (UWOC), each designed to address specific challenges posed by complex underwater environments. Acoustic communication, while effective for long-range transmission, is constrained by ambient noise and high latency; recent innovations in noise reduction and data rate enhancement have notably improved its reliability. RF communication offers high-speed, short-range capabilities in shallow waters, but still faces challenges in hardware miniaturization and accurate channel modeling. UWOC has emerged as a promising solution, enabling multi-gigabit data rates over medium distances through advanced modulation techniques and turbulence mitigation. Additionally, bio-inspired approaches such as electric field communication provide energy-efficient and robust alternatives under turbid conditions. This paper further examines the practical integration of these technologies in underwater platforms, including autonomous underwater vehicles (AUVs), highlighting trade-offs between energy efficiency, system complexity, and communication performance. By synthesizing recent advancements, this review outlines the advantages and limitations of current underwater communication methods and their real-world applications, offering insights to guide the future development of underwater communication systems for robotic and vehicular platforms. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

12 pages, 246 KiB  
Article
Tobacco-Free Schools in Practice: Policy Presence and Enforcement in Baltimore Schools
by Chidubem Egboluche, Rifath Ara Alam Barsha, Shervin Assari, Michelle Mercure, Marc Laveau, Oluwatosin Olateju and Payam Sheikhattari
Adv. Respir. Med. 2025, 93(4), 28; https://doi.org/10.3390/arm93040028 - 5 Aug 2025
Abstract
Background: School-based tobacco control policies are critical for preventing youth tobacco use. While many districts adopt formal policies to create smoke- and vape-free environments, the degree to which these policies are enforced at the school level may vary, influencing their effectiveness. Little is [...] Read more.
Background: School-based tobacco control policies are critical for preventing youth tobacco use. While many districts adopt formal policies to create smoke- and vape-free environments, the degree to which these policies are enforced at the school level may vary, influencing their effectiveness. Little is known about how consistently such policies are implemented across schools within urban school districts. Objectives: This study aimed to examine the existence and enforcement of school-level tobacco control policies in an urban public school system, using Baltimore City schools as a case example. Methods: We conducted a survey of school personnel from 20 high schools in Baltimore City in 2024. The survey instrument assessed the presence and enforcement of policies related to tobacco use prevention, communication, signage, disciplinary actions, and institutional support. Descriptive statistics (frequencies and percentages) were used to summarize responses. Spearman correlations were also used for bivariate correlations. Additional school-level and neighborhood-level contextual data were collected from the internet (neighborhood socioeconomic status and school performance). Results: While many policies existed across the 20 participating schools, their enforcement was widely inconsistent. Most schools reported the existence of policies prohibiting tobacco use in school buildings (60%) and vehicles (55%). However, few schools had visible tobacco-free signage (35%) or offered cessation programs (15%). Communication of policies to students (70%) and staff (65%) was the most commonly enforced aspect of tobacco control policies. Conclusions: Findings suggest that while tobacco control policies may be adopted across urban school systems, their enforcement at the school level remains uneven. Greater attention may be needed to support policy implementation and to reduce variability in school-level practices. Baltimore City serves as a useful case study to understand these challenges and identify opportunities for strengthening school-based tobacco prevention efforts. Full article
32 pages, 1986 KiB  
Article
Machine Learning-Based Blockchain Technology for Secure V2X Communication: Open Challenges and Solutions
by Yonas Teweldemedhin Gebrezgiher, Sekione Reward Jeremiah, Xianjun Deng and Jong Hyuk Park
Sensors 2025, 25(15), 4793; https://doi.org/10.3390/s25154793 - 4 Aug 2025
Abstract
Vehicle-to-everything (V2X) communication is a fundamental technology in the development of intelligent transportation systems, encompassing vehicle-to-vehicle (V2V), infrastructure (V2I), and pedestrian (V2P) communications. This technology enables connected and autonomous vehicles (CAVs) to interact with their surroundings, significantly enhancing road safety, traffic efficiency, and [...] Read more.
Vehicle-to-everything (V2X) communication is a fundamental technology in the development of intelligent transportation systems, encompassing vehicle-to-vehicle (V2V), infrastructure (V2I), and pedestrian (V2P) communications. This technology enables connected and autonomous vehicles (CAVs) to interact with their surroundings, significantly enhancing road safety, traffic efficiency, and driving comfort. However, as V2X communication becomes more widespread, it becomes a prime target for adversarial and persistent cyberattacks, posing significant threats to the security and privacy of CAVs. These challenges are compounded by the dynamic nature of vehicular networks and the stringent requirements for real-time data processing and decision-making. Much research is on using novel technologies such as machine learning, blockchain, and cryptography to secure V2X communications. Our survey highlights the security challenges faced by V2X communications and assesses current ML and blockchain-based solutions, revealing significant gaps and opportunities for improvement. Specifically, our survey focuses on studies integrating ML, blockchain, and multi-access edge computing (MEC) for low latency, robust, and dynamic security in V2X networks. Based on our findings, we outline a conceptual framework that synergizes ML, blockchain, and MEC to address some of the identified security challenges. This integrated framework demonstrates the potential for real-time anomaly detection, decentralized data sharing, and enhanced system scalability. The survey concludes by identifying future research directions and outlining the remaining challenges for securing V2X communications in the face of evolving threats. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

25 pages, 394 KiB  
Article
SMART DShot: Secure Machine-Learning-Based Adaptive Real-Time Timing Correction
by Hyunmin Kim, Zahid Basha Shaik Kadu and Kyusuk Han
Appl. Sci. 2025, 15(15), 8619; https://doi.org/10.3390/app15158619 (registering DOI) - 4 Aug 2025
Viewed by 27
Abstract
The exponential growth of autonomous systems demands robust security mechanisms that can operate within the extreme constraints of real-time embedded environments. This paper introduces SMART DShot, a groundbreaking machine learning-enhanced framework that transforms the security landscape of unmanned aerial vehicle motor control systems [...] Read more.
The exponential growth of autonomous systems demands robust security mechanisms that can operate within the extreme constraints of real-time embedded environments. This paper introduces SMART DShot, a groundbreaking machine learning-enhanced framework that transforms the security landscape of unmanned aerial vehicle motor control systems through seamless integration of adaptive timing correction and real-time anomaly detection within Digital Shot (DShot) communication protocols. Our approach addresses critical vulnerabilities in Electronic Speed Controller (ESC) interfaces by deploying four synergistic algorithms—Kalman Filter Timing Correction (KFTC), Recursive Least Squares Timing Correction (RLSTC), Fuzzy Logic Timing Correction (FLTC), and Hybrid Adaptive Timing Correction (HATC)—each optimized for specific error characteristics and attack scenarios. Through comprehensive evaluation encompassing 32,000 Monte Carlo test iterations (500 per scenario × 16 scenarios × 4 algorithms) across 16 distinct operational scenarios and PolarFire SoC Field-Programmable Gate Array (FPGA) implementation, we demonstrate exceptional performance with 88.3% attack detection rate, only 2.3% false positive incidence, and substantial vulnerability mitigation reducing Common Vulnerability Scoring System (CVSS) severity from High (7.3) to Low (3.1). Hardware validation on PolarFire SoC confirms practical viability with minimal resource overhead (2.16% Look-Up Table utilization, 16.57 mW per channel) and deterministic sub-10 microsecond execution latency. The Hybrid Adaptive Timing Correction algorithm achieves 31.01% success rate (95% CI: [30.2%, 31.8%]), representing a 26.5% improvement over baseline approaches through intelligent meta-learning-based algorithm selection. Statistical validation using Analysis of Variance confirms significant performance differences (F(3,1996) = 30.30, p < 0.001) with large effect sizes (Cohen’s d up to 4.57), where 64.6% of algorithm comparisons showed large practical significance. SMART DShot establishes a paradigmatic shift from reactive to proactive embedded security, demonstrating that sophisticated artificial intelligence can operate effectively within microsecond-scale real-time constraints while providing comprehensive protection against timing manipulation, de-synchronization, burst interference, replay attacks, coordinated multi-channel attacks, and firmware-level compromises. This work provides essential foundations for trustworthy autonomous systems across critical domains including aerospace, automotive, industrial automation, and cyber–physical infrastructure. These results conclusively demonstrate that ML-enhanced motor control systems can achieve both superior security (88.3% attack detection rate with 2.3% false positives) and operational performance (31.01% timing correction success rate, 26.5% improvement over baseline) simultaneously, establishing SMART DShot as a practical, deployable solution for next-generation autonomous systems. Full article
Show Figures

Figure 1

14 pages, 650 KiB  
Article
Determining the Spanish Public’s Intention to Adopt Hydrogen Fuel-Cell Vehicles
by Roser Sala, Lila Gonçalves, Hitomi Sato, Ning Huan, Toshiyuki Yamamoto, Dimitrios Tzioutzios and Jose-Blas Navarro
World Electr. Veh. J. 2025, 16(8), 436; https://doi.org/10.3390/wevj16080436 - 4 Aug 2025
Viewed by 45
Abstract
Understanding what people think about hydrogen energy and how this influences their acceptance of the associated technology is a critical area of research. The public’s willingness to adopt practical applications of hydrogen energy, such as hydrogen fuel-cell vehicles (HFCVs), is a key factor [...] Read more.
Understanding what people think about hydrogen energy and how this influences their acceptance of the associated technology is a critical area of research. The public’s willingness to adopt practical applications of hydrogen energy, such as hydrogen fuel-cell vehicles (HFCVs), is a key factor in their deployment. To analyse the direct and indirect effects of key attitudinal variables that could influence the intention to use HFCVs in Spain, an online questionnaire was administered to a representative sample of the Spanish population (N = 1000). A path analysis Structural Equation Model (SEM) was applied to determine the effect of different attitudinal variables. A high intention to adopt HFCVs in Spain was found (3.8 out of 5), assuming their wider availability in the future. The path analysis results indicated that general acceptance of hydrogen technology and perception of its benefits had the greatest effect on the public’s intention to adopt HFCVs. Regarding indirect effects, the role of trust in hydrogen technology was notable, having significant mediating effects not only through general acceptance of hydrogen energy and local acceptance of hydrogen refuelling stations (HRS), but also through positive and negative emotions and benefits perception. The findings will assist in focusing the future hydrogen communication strategies of both the government and the private (business) sector. Full article
Show Figures

Figure 1

19 pages, 3154 KiB  
Article
Optimizing the Operation of Local Energy Communities Based on Two-Stage Scheduling
by Ping He, Lei Zhou, Jingwen Wang, Zhuo Yang, Guozhao Lv, Can Cai and Hongbo Zou
Processes 2025, 13(8), 2449; https://doi.org/10.3390/pr13082449 - 2 Aug 2025
Viewed by 227
Abstract
Flexible energy sources such as electric vehicles and the battery energy storage systems of intelligent distribution systems can provide system-wide auxiliary services such as frequency regulation for power systems. This paper proposes an optimal method for operating the local energy community that is [...] Read more.
Flexible energy sources such as electric vehicles and the battery energy storage systems of intelligent distribution systems can provide system-wide auxiliary services such as frequency regulation for power systems. This paper proposes an optimal method for operating the local energy community that is based on two-stage scheduling. Firstly, the basic concepts of the local energy community and flexible service are introduced in detail. Taking LEC as the reserve unit of artificial frequency recovery, an energy information interaction model among LEC, balance service providers, and the power grid is established. Then, a two-stage scheduling framework is proposed to ensure the rationality and economy of community energy scheduling. In the first stage, day-ahead scheduling uses the energy community management center to predict the up/down flexibility capacity that LEC can provide by adjusting the BESS control parameters. In the second stage, real-time scheduling aims at maximizing community profits and scheduling LEC based on the allocation and activation of standby flexibility determined in real time. Finally, the correctness of the two-stage scheduling framework is verified through a case study. The results show that the control parameters used in the day-ahead stage can significantly affect the real-time profitability of LEC, and that LEC benefits more in the case of low BESS utilization than in the case of high BESS utilization and non-participation in frequency recovery reserve. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

24 pages, 3172 KiB  
Article
A DDPG-LSTM Framework for Optimizing UAV-Enabled Integrated Sensing and Communication
by Xuan-Toan Dang, Joon-Soo Eom, Binh-Minh Vu and Oh-Soon Shin
Drones 2025, 9(8), 548; https://doi.org/10.3390/drones9080548 - 1 Aug 2025
Viewed by 296
Abstract
This paper proposes a novel dual-functional radar-communication (DFRC) framework that integrates unmanned aerial vehicle (UAV) communications into an integrated sensing and communication (ISAC) system, termed the ISAC-UAV architecture. In this system, the UAV’s mobility is leveraged to simultaneously serve multiple single-antenna uplink users [...] Read more.
This paper proposes a novel dual-functional radar-communication (DFRC) framework that integrates unmanned aerial vehicle (UAV) communications into an integrated sensing and communication (ISAC) system, termed the ISAC-UAV architecture. In this system, the UAV’s mobility is leveraged to simultaneously serve multiple single-antenna uplink users (UEs) and perform radar-based sensing tasks. A key challenge stems from the target position uncertainty due to movement, which impairs matched filtering and beamforming, thereby degrading both uplink reception and sensing performance. Moreover, UAV energy consumption associated with mobility must be considered to ensure energy-efficient operation. We aim to jointly maximize radar sensing accuracy and minimize UAV movement energy over multiple time steps, while maintaining reliable uplink communications. To address this multi-objective optimization, we propose a deep reinforcement learning (DRL) framework based on a long short-term memory (LSTM)-enhanced deep deterministic policy gradient (DDPG) network. By leveraging historical target trajectory data, the model improves prediction of target positions, enhancing sensing accuracy. The proposed DRL-based approach enables joint optimization of UAV trajectory and uplink power control over time. Extensive simulations validate that our method significantly improves communication quality and sensing performance, while ensuring energy-efficient UAV operation. Comparative results further confirm the model’s adaptability and robustness in dynamic environments, outperforming existing UAV trajectory planning and resource allocation benchmarks. Full article
Show Figures

Figure 1

18 pages, 10032 KiB  
Article
Design and Efficiency Analysis of High Maneuvering Underwater Gliders for Kuroshio Observation
by Zhihao Tian, Bing He, Heng Zhang, Cunzhe Zhang, Tongrui Zhang and Runfeng Zhang
Oceans 2025, 6(3), 48; https://doi.org/10.3390/oceans6030048 - 1 Aug 2025
Viewed by 148
Abstract
The Kuroshio Current’s flow velocity imposes exacting requirements on underwater vehicle propulsive systems. Ecological preservation necessitates low-noise propeller designs to mitigate operational disturbances. As technological evolution advances toward greater intelligence and system integration, intelligent unmanned systems are positioning themselves as a critical frontier [...] Read more.
The Kuroshio Current’s flow velocity imposes exacting requirements on underwater vehicle propulsive systems. Ecological preservation necessitates low-noise propeller designs to mitigate operational disturbances. As technological evolution advances toward greater intelligence and system integration, intelligent unmanned systems are positioning themselves as a critical frontier in marine innovation. In recent years, the global research community has increased its efforts towards the development of high-maneuverability underwater vehicles. However, propeller design optimization ignores the key balance between acoustic performance and hydrodynamic efficiency, as well as the appropriate speed threshold for blade rotation. In order to solve this problem, the propeller design of the NACA 65A010 airfoil is optimized by using OpenProp v3.3.4 and XFlow 2022 software, aiming at innovating the propulsion system of shallow water agile submersibles. The study presents an integrated design framework combining lattice Boltzmann method (LBM) simulations synergized with fully Lagrangian-LES modeling, implementing rotational speed thresholds to detect cavitation inception, followed by advanced acoustic propagation analysis. Through rigorous comparative assessment of hydrodynamic metrics, we establish an optimization protocol for propeller selection tailored to littoral zone operational demands. Studies have shown that increasing the number of propeller blades can reduce the single-blade load and delay cavitation, but too many blades will aggravate the complexity of the flow field, resulting in reduced efficiency and noise rebound. It is concluded that the propeller with five blades, a diameter of 234 mm, and a speed of 500 RPM exhibits the best performance. Under these conditions, the water efficiency is 69.01%, and the noise is the lowest, which basically realizes the balance between hydrodynamic efficiency and acoustic performance. This paradigm-shifting research carries substantial implications for next-generation marine vehicles, particularly in optimizing operational stealth and energy efficiency through intelligent propulsion architecture. Full article
Show Figures

Figure 1

23 pages, 3580 KiB  
Article
Distributed Collaborative Data Processing Framework for Unmanned Platforms Based on Federated Edge Intelligence
by Siyang Liu, Nanliang Shan, Xianqiang Bao and Xinghua Xu
Sensors 2025, 25(15), 4752; https://doi.org/10.3390/s25154752 - 1 Aug 2025
Viewed by 306
Abstract
Unmanned platforms such as unmanned aerial vehicles, unmanned ground vehicles, and autonomous underwater vehicles often face challenges of data, device, and model heterogeneity when performing collaborative data processing tasks. Existing research does not simultaneously address issues from these three aspects. To address this [...] Read more.
Unmanned platforms such as unmanned aerial vehicles, unmanned ground vehicles, and autonomous underwater vehicles often face challenges of data, device, and model heterogeneity when performing collaborative data processing tasks. Existing research does not simultaneously address issues from these three aspects. To address this issue, this study designs an unmanned platform cluster architecture inspired by the cloud-edge-end model. This architecture integrates federated learning for privacy protection, leverages the advantages of distributed model training, and utilizes edge computing’s near-source data processing capabilities. Additionally, this paper proposes a federated edge intelligence method (DSIA-FEI), which comprises two key components. Based on traditional federated learning, a data sharing mechanism is introduced, in which data is extracted from edge-side platforms and placed into a data sharing platform to form a public dataset. At the beginning of model training, random sampling is conducted from the public dataset and distributed to each unmanned platform, so as to mitigate the impact of data distribution heterogeneity and class imbalance during collaborative data processing in unmanned platforms. Moreover, an intelligent model aggregation strategy based on similarity measurement and loss gradient is developed. This strategy maps heterogeneous model parameters to a unified space via hierarchical parameter alignment, and evaluates the similarity between local and global models of edge devices in real-time, along with the loss gradient, to select the optimal model for global aggregation, reducing the influence of device and model heterogeneity on cooperative learning of unmanned platform swarms. This study carried out extensive validation on multiple datasets, and the experimental results showed that the accuracy of the DSIA-FEI proposed in this paper reaches 0.91, 0.91, 0.88, and 0.87 on the FEMNIST, FEAIR, EuroSAT, and RSSCN7 datasets, respectively, which is more than 10% higher than the baseline method. In addition, the number of communication rounds is reduced by more than 40%, which is better than the existing mainstream methods, and the effectiveness of the proposed method is verified. Full article
Show Figures

Figure 1

25 pages, 4273 KiB  
Review
How Can Autonomous Truck Systems Transform North Dakota’s Agricultural Supply Chain Industry?
by Emmanuel Anu Thompson, Jeremy Mattson, Pan Lu, Evans Tetteh Akoto, Solomon Boadu, Herman Benjamin Atuobi, Kwabena Dadson and Denver Tolliver
Future Transp. 2025, 5(3), 100; https://doi.org/10.3390/futuretransp5030100 - 1 Aug 2025
Viewed by 137
Abstract
The swift advancements in autonomous vehicle systems have facilitated their implementation across various industries, including agriculture. However, studies primarily focus on passenger vehicles, with fewer examining autonomous trucks. Therefore, this study reviews autonomous truck systems implementation in North Dakota’s agricultural industry to develop [...] Read more.
The swift advancements in autonomous vehicle systems have facilitated their implementation across various industries, including agriculture. However, studies primarily focus on passenger vehicles, with fewer examining autonomous trucks. Therefore, this study reviews autonomous truck systems implementation in North Dakota’s agricultural industry to develop comprehensive technology readiness frameworks and strategic deployment approaches. The review integrates systematic literature review and event history analysis of 52 studies, categorized using Social–Ecological–Technological Systems framework across six dimensions: technological, economic, social change, legal, environmental, and implementation challenges. The Technology Readiness Level (TRL) analysis reveals 39.5% of technologies achieving commercial readiness (TRL 8–9), including GPS/RTK positioning and V2V communication demonstrated through Minn-Dak Farmers Cooperative deployments, while gaps exist in TRL 4–6 technologies, particularly cold-weather operations. Nonetheless, challenges remain, including legislative fragmentation, inadequate rural infrastructure, and barriers to public acceptance. The study provides evidence-based recommendations that support a strategic three-phase deployment approach for the adoption of autonomous trucks in agriculture. Full article
Show Figures

Figure 1

26 pages, 3012 KiB  
Perspective
The Palisades Fire of Los Angeles: Lessons to Be Learned
by Vytenis Babrauskas
Fire 2025, 8(8), 303; https://doi.org/10.3390/fire8080303 - 31 Jul 2025
Viewed by 200
Abstract
In 1961, Los Angeles experienced the disastrous Bel Air fire, which swept through an affluent neighborhood situated in a hilly, WUI (wildland–urban interface) location. In January 2025, the city was devastated again by a nearly-simultaneous series of wildfires, the most severe of which [...] Read more.
In 1961, Los Angeles experienced the disastrous Bel Air fire, which swept through an affluent neighborhood situated in a hilly, WUI (wildland–urban interface) location. In January 2025, the city was devastated again by a nearly-simultaneous series of wildfires, the most severe of which took place close to the 1961 fire location. Disastrous WUI fires are, unfortunately, an anticipatable occurrence in many U.S. cities. A number of issues identified earlier remained the same. Some were largely solved, while other new ones have emerged. The paper examines the Palisades Fire of January, 2025 in this context. In the intervening decades, the population of the city grew substantially. But firefighting resources did not keep pace. Very likely, the single-most-important factor in causing the 2025 disasters is that the Los Angeles Fire Department operational vehicle count shrank to 1/5 of what it was in 1961 (per capita). This is likely why critical delays were experienced in the initial attack on the Palisades Fire, leading to a runaway conflagration. Two other crucial issues were the management of vegetation and the adequacy of water supplies. On both these issues, the Palisades Fire revealed serious problems. A problem which arose after 1961 involves the unintended consequences of environmental legislation. Communities will continue to be devastated by wildfires unless adequate vegetation management is accomplished. Yet, environmental regulations are focused on maintaining the status quo, often making vegetation management difficult or ineffective. House survival during a wildfire is strongly affected by whether good vegetation management practices and good building practices (“ignition-resistant” construction features) have been implemented. The latter have not been mandatory for housing built prior to 2008, and the vast majority of houses in the area predated such building code requirements. California has also suffered from a highly counterproductive stance on insurance regulation. This has resulted in some residents not having property insurance, due to the inhospitable operating conditions for insurance firms in the state. Because of the historical precedent, the details in this paper focus on the Palisades Fire; however, many of the lessons learned apply to managing fires in all WUI areas. Policy recommendations are offered, which could help to reduce the potential for future conflagrations. Full article
Show Figures

Figure 1

22 pages, 1007 KiB  
Systematic Review
Mapping Drone Applications in Rural and Regional Cities: A Scoping Review of the Australian State of Practice
by Christine Steinmetz-Weiss, Nancy Marshall, Kate Bishop and Yuan Wei
Appl. Sci. 2025, 15(15), 8519; https://doi.org/10.3390/app15158519 (registering DOI) - 31 Jul 2025
Viewed by 140
Abstract
Consumer-accessible and user-friendly smart products such as unmanned aerial vehicles (UAVs), or drones, have become widely used, adaptable, and acceptable devices to observe, assess, measure, and explore urban and natural environments. A drone’s relatively low cost and flexibility in the level of expertise [...] Read more.
Consumer-accessible and user-friendly smart products such as unmanned aerial vehicles (UAVs), or drones, have become widely used, adaptable, and acceptable devices to observe, assess, measure, and explore urban and natural environments. A drone’s relatively low cost and flexibility in the level of expertise required to operate it has enabled users from novice to industry professionals to adapt a malleable technology to various disciplines. This review examines the academic literature and maps how drones are currently being used in 93 rural and regional city councils in New South Wales, Australia. Through a systematic review of the academic literature and scrutiny of current drone use in these councils using publicly available information found on council websites, findings reveal potential uses of drone technology for local governments who want to engage with smart technology devices. We looked at how drones were being used in the management of the council’s environment; health and safety initiatives; infrastructure; planning; social and community programmes; and waste and recycling. These findings suggest that drone technology is increasingly being utilised in rural and regional areas. While the focus is on rural and regional New South Wales, a review of the academic literature and local council websites provides a snapshot of drone use examples that holds global relevance for local councils in urban and remote areas seeking to incorporate drone technology into their daily practice of city, town, or region governance. Full article
Show Figures

Figure 1

Back to TopTop