Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (502)

Search Parameters:
Keywords = vehicle privacy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3733 KiB  
Article
DNO-RL: A Reinforcement-Learning-Based Approach to Dynamic Noise Optimization for Differential Privacy
by Guixin Wang, Xiangfei Liu, Yukun Zheng, Zeyu Zhang and Zhiming Cai
Electronics 2025, 14(15), 3122; https://doi.org/10.3390/electronics14153122 - 5 Aug 2025
Abstract
With the globalized deployment of cross-border vehicle location services and the trajectory data, which contain user identity information and geographically sensitive features, the variability in privacy regulations in different jurisdictions can further exacerbate the technical and compliance challenges of data privacy protection. Traditional [...] Read more.
With the globalized deployment of cross-border vehicle location services and the trajectory data, which contain user identity information and geographically sensitive features, the variability in privacy regulations in different jurisdictions can further exacerbate the technical and compliance challenges of data privacy protection. Traditional static differential privacy mechanisms struggle to accommodate spatiotemporal heterogeneity in dynamic scenarios because of the use of a fixed privacy budget parameter, leading to wasted privacy budgets or insufficient protection of sensitive regions. This study proposes a reinforcement-learning-based dynamic noise optimization method (DNO-RL) that dynamically adjusts the Laplacian noise scale by real-time sensing of vehicle density, region sensitivity, and the remaining privacy budget via a deep Q-network (DQN), with the aim of providing context-adaptive differential privacy protection for cross-border vehicle location services. Simulation experiments of cross-border scenarios based on the T-Drive dataset showed that DNO-RL reduced the average localization error by 28.3% and saved 17.9% of the privacy budget compared with the local differential privacy under the same privacy budget. This study provides a new paradigm for the dynamic privacy–utility balancing of cross-border vehicular networking services. Full article
Show Figures

Figure 1

32 pages, 1986 KiB  
Article
Machine Learning-Based Blockchain Technology for Secure V2X Communication: Open Challenges and Solutions
by Yonas Teweldemedhin Gebrezgiher, Sekione Reward Jeremiah, Xianjun Deng and Jong Hyuk Park
Sensors 2025, 25(15), 4793; https://doi.org/10.3390/s25154793 - 4 Aug 2025
Abstract
Vehicle-to-everything (V2X) communication is a fundamental technology in the development of intelligent transportation systems, encompassing vehicle-to-vehicle (V2V), infrastructure (V2I), and pedestrian (V2P) communications. This technology enables connected and autonomous vehicles (CAVs) to interact with their surroundings, significantly enhancing road safety, traffic efficiency, and [...] Read more.
Vehicle-to-everything (V2X) communication is a fundamental technology in the development of intelligent transportation systems, encompassing vehicle-to-vehicle (V2V), infrastructure (V2I), and pedestrian (V2P) communications. This technology enables connected and autonomous vehicles (CAVs) to interact with their surroundings, significantly enhancing road safety, traffic efficiency, and driving comfort. However, as V2X communication becomes more widespread, it becomes a prime target for adversarial and persistent cyberattacks, posing significant threats to the security and privacy of CAVs. These challenges are compounded by the dynamic nature of vehicular networks and the stringent requirements for real-time data processing and decision-making. Much research is on using novel technologies such as machine learning, blockchain, and cryptography to secure V2X communications. Our survey highlights the security challenges faced by V2X communications and assesses current ML and blockchain-based solutions, revealing significant gaps and opportunities for improvement. Specifically, our survey focuses on studies integrating ML, blockchain, and multi-access edge computing (MEC) for low latency, robust, and dynamic security in V2X networks. Based on our findings, we outline a conceptual framework that synergizes ML, blockchain, and MEC to address some of the identified security challenges. This integrated framework demonstrates the potential for real-time anomaly detection, decentralized data sharing, and enhanced system scalability. The survey concludes by identifying future research directions and outlining the remaining challenges for securing V2X communications in the face of evolving threats. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

23 pages, 3580 KiB  
Article
Distributed Collaborative Data Processing Framework for Unmanned Platforms Based on Federated Edge Intelligence
by Siyang Liu, Nanliang Shan, Xianqiang Bao and Xinghua Xu
Sensors 2025, 25(15), 4752; https://doi.org/10.3390/s25154752 - 1 Aug 2025
Viewed by 306
Abstract
Unmanned platforms such as unmanned aerial vehicles, unmanned ground vehicles, and autonomous underwater vehicles often face challenges of data, device, and model heterogeneity when performing collaborative data processing tasks. Existing research does not simultaneously address issues from these three aspects. To address this [...] Read more.
Unmanned platforms such as unmanned aerial vehicles, unmanned ground vehicles, and autonomous underwater vehicles often face challenges of data, device, and model heterogeneity when performing collaborative data processing tasks. Existing research does not simultaneously address issues from these three aspects. To address this issue, this study designs an unmanned platform cluster architecture inspired by the cloud-edge-end model. This architecture integrates federated learning for privacy protection, leverages the advantages of distributed model training, and utilizes edge computing’s near-source data processing capabilities. Additionally, this paper proposes a federated edge intelligence method (DSIA-FEI), which comprises two key components. Based on traditional federated learning, a data sharing mechanism is introduced, in which data is extracted from edge-side platforms and placed into a data sharing platform to form a public dataset. At the beginning of model training, random sampling is conducted from the public dataset and distributed to each unmanned platform, so as to mitigate the impact of data distribution heterogeneity and class imbalance during collaborative data processing in unmanned platforms. Moreover, an intelligent model aggregation strategy based on similarity measurement and loss gradient is developed. This strategy maps heterogeneous model parameters to a unified space via hierarchical parameter alignment, and evaluates the similarity between local and global models of edge devices in real-time, along with the loss gradient, to select the optimal model for global aggregation, reducing the influence of device and model heterogeneity on cooperative learning of unmanned platform swarms. This study carried out extensive validation on multiple datasets, and the experimental results showed that the accuracy of the DSIA-FEI proposed in this paper reaches 0.91, 0.91, 0.88, and 0.87 on the FEMNIST, FEAIR, EuroSAT, and RSSCN7 datasets, respectively, which is more than 10% higher than the baseline method. In addition, the number of communication rounds is reduced by more than 40%, which is better than the existing mainstream methods, and the effectiveness of the proposed method is verified. Full article
Show Figures

Figure 1

24 pages, 650 KiB  
Article
Investigating Users’ Acceptance of Autonomous Buses by Examining Their Willingness to Use and Willingness to Pay: The Case of the City of Trikala, Greece
by Spyros Niavis, Nikolaos Gavanas, Konstantina Anastasiadou and Paschalis Arvanitidis
Urban Sci. 2025, 9(8), 298; https://doi.org/10.3390/urbansci9080298 - 1 Aug 2025
Viewed by 283
Abstract
Autonomous vehicles (AVs) have emerged as a promising sustainable urban mobility solution, expected to lead to enhanced road safety, smoother traffic flows, less traffic congestion, improved accessibility, better energy utilization and environmental performance, as well as more efficient passenger and freight transportation, in [...] Read more.
Autonomous vehicles (AVs) have emerged as a promising sustainable urban mobility solution, expected to lead to enhanced road safety, smoother traffic flows, less traffic congestion, improved accessibility, better energy utilization and environmental performance, as well as more efficient passenger and freight transportation, in terms of time and cost, due to better fleet management and platooning. However, challenges also arise, mostly related to data privacy, security and cyber-security, high acquisition and infrastructure costs, accident liability, even possible increased traffic congestion and air pollution due to induced travel demand. This paper presents the results of a survey conducted among 654 residents who experienced an autonomous bus (AB) service in the city of Trikala, Greece, in order to assess their willingness to use (WTU) and willingness to pay (WTP) for ABs, through testing a range of factors based on a literature review. Results useful to policy-makers were extracted, such as that the intention to use ABs was mostly shaped by psychological factors (e.g., users’ perceptions of usefulness and safety, and trust in the service provider), while WTU seemed to be positively affected by previous experience in using ABs. In contrast, sociodemographic factors were found to have very little effect on the intention to use ABs, while apart from personal utility, users’ perceptions of how autonomous driving will improve the overall life standards in the study area also mattered. Full article
Show Figures

Figure 1

12 pages, 759 KiB  
Article
Privacy-Preserving Byzantine-Tolerant Federated Learning Scheme in Vehicular Networks
by Shaohua Liu, Jiahui Hou and Gang Shen
Electronics 2025, 14(15), 3005; https://doi.org/10.3390/electronics14153005 - 28 Jul 2025
Viewed by 215
Abstract
With the rapid development of vehicular network technology, data sharing and collaborative training among vehicles have become key to enhancing the efficiency of intelligent transportation systems. However, the heterogeneity of data and potential Byzantine attacks cause the model to update in different directions [...] Read more.
With the rapid development of vehicular network technology, data sharing and collaborative training among vehicles have become key to enhancing the efficiency of intelligent transportation systems. However, the heterogeneity of data and potential Byzantine attacks cause the model to update in different directions during the iterative process, causing the boundary between benign and malicious gradients to shift continuously. To address these issues, this paper proposes a privacy-preserving Byzantine-tolerant federated learning scheme. Specifically, we design a gradient detection method based on median absolute deviation (MAD), which calculates MAD in each round to set a gradient anomaly detection threshold, thereby achieving precise identification and dynamic filtering of malicious gradients. Additionally, to protect vehicle privacy, we obfuscate uploaded parameters to prevent leakage during transmission. Finally, during the aggregation phase, malicious gradients are eliminated, and only benign gradients are selected to participate in the global model update, which improves the model accuracy. Experimental results on three datasets demonstrate that the proposed scheme effectively mitigates the impact of non-independent and identically distributed (non-IID) heterogeneity and Byzantine behaviors while maintaining low computational cost. Full article
(This article belongs to the Special Issue Cryptography in Internet of Things)
Show Figures

Figure 1

24 pages, 1530 KiB  
Article
A Lightweight Robust Training Method for Defending Model Poisoning Attacks in Federated Learning Assisted UAV Networks
by Lucheng Chen, Weiwei Zhai, Xiangfeng Bu, Ming Sun and Chenglin Zhu
Drones 2025, 9(8), 528; https://doi.org/10.3390/drones9080528 - 28 Jul 2025
Viewed by 397
Abstract
The integration of unmanned aerial vehicles (UAVs) into next-generation wireless networks greatly enhances the flexibility and efficiency of communication and distributed computation for ground mobile devices. Federated learning (FL) provides a privacy-preserving paradigm for device collaboration but remains highly vulnerable to poisoning attacks [...] Read more.
The integration of unmanned aerial vehicles (UAVs) into next-generation wireless networks greatly enhances the flexibility and efficiency of communication and distributed computation for ground mobile devices. Federated learning (FL) provides a privacy-preserving paradigm for device collaboration but remains highly vulnerable to poisoning attacks and is further challenged by the resource constraints and heterogeneous data common to UAV-assisted systems. Existing robust aggregation and anomaly detection methods often degrade in efficiency and reliability under these realistic adversarial and non-IID settings. To bridge these gaps, we propose FedULite, a lightweight and robust federated learning framework specifically designed for UAV-assisted environments. FedULite features unsupervised local representation learning optimized for unlabeled, non-IID data. Moreover, FedULite leverages a robust, adaptive server-side aggregation strategy that uses cosine similarity-based update filtering and dimension-wise adaptive learning rates to neutralize sophisticated data and model poisoning attacks. Extensive experiments across diverse datasets and adversarial scenarios demonstrate that FedULite reduces the attack success rate (ASR) from over 90% in undefended scenarios to below 5%, while maintaining the main task accuracy loss within 2%. Moreover, it introduces negligible computational overhead compared to standard FedAvg, with approximately 7% additional training time. Full article
(This article belongs to the Special Issue IoT-Enabled UAV Networks for Secure Communication)
Show Figures

Figure 1

22 pages, 3082 KiB  
Article
A Lightweight Intrusion Detection System with Dynamic Feature Fusion Federated Learning for Vehicular Network Security
by Junjun Li, Yanyan Ma, Jiahui Bai, Congming Chen, Tingting Xu and Chi Ding
Sensors 2025, 25(15), 4622; https://doi.org/10.3390/s25154622 - 25 Jul 2025
Viewed by 326
Abstract
The rapid integration of complex sensors and electronic control units (ECUs) in autonomous vehicles significantly increases cybersecurity risks in vehicular networks. Although the Controller Area Network (CAN) is efficient, it lacks inherent security mechanisms and is vulnerable to various network attacks. The traditional [...] Read more.
The rapid integration of complex sensors and electronic control units (ECUs) in autonomous vehicles significantly increases cybersecurity risks in vehicular networks. Although the Controller Area Network (CAN) is efficient, it lacks inherent security mechanisms and is vulnerable to various network attacks. The traditional Intrusion Detection System (IDS) makes it difficult to effectively deal with the dynamics and complexity of emerging threats. To solve these problems, a lightweight vehicular network intrusion detection framework based on Dynamic Feature Fusion Federated Learning (DFF-FL) is proposed. The proposed framework employs a two-stream architecture, including a transformer-augmented autoencoder for abstract feature extraction and a lightweight CNN-LSTM–Attention model for preserving temporal and local patterns. Compared with the traditional theoretical framework of the federated learning, DFF-FL first dynamically fuses the deep feature representation of each node through the transformer attention module to realize the fine-grained cross-node feature interaction in a heterogeneous data environment, thereby eliminating the performance degradation caused by the difference in feature distribution. Secondly, based on the final loss LAEX,X^ index of each node, an adaptive weight adjustment mechanism is used to make the nodes with excellent performance dominate the global model update, which significantly improves robustness against complex attacks. Experimental evaluation on the CAN-Hacking dataset shows that the proposed intrusion detection system achieves more than 99% F1 score with only 1.11 MB of memory and 81,863 trainable parameters, while maintaining low computational overheads and ensuring data privacy, which is very suitable for edge device deployment. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

25 pages, 1047 KiB  
Article
Integrated Blockchain and Federated Learning for Robust Security in Internet of Vehicles Networks
by Zhikai He, Rui Xu, Binyu Wang, Qisong Meng, Qiang Tang, Li Shen, Zhen Tian and Jianyu Duan
Symmetry 2025, 17(7), 1168; https://doi.org/10.3390/sym17071168 - 21 Jul 2025
Viewed by 352
Abstract
The Internet of Vehicles (IoV) operates in an environment characterized by asymmetric security threats, where centralized vulnerabilities create a critical imbalance that can be disproportionately exploited by attackers. This study addresses this imbalance by proposing a symmetrical security framework that integrates Blockchain and [...] Read more.
The Internet of Vehicles (IoV) operates in an environment characterized by asymmetric security threats, where centralized vulnerabilities create a critical imbalance that can be disproportionately exploited by attackers. This study addresses this imbalance by proposing a symmetrical security framework that integrates Blockchain and Federated Learning (FL) to restore equilibrium in the Vehicle–Road–Cloud ecosystem. The evolution toward sixth-generation (6G) technologies amplifies both the potential of vehicle-to-everything (V2X) communications and its inherent security risks. The proposed framework achieves a delicate balance between robust security and operational efficiency. By leveraging blockchain’s symmetrical and decentralized distribution of trust, the framework ensures data and model integrity. Concurrently, the privacy-preserving approach of FL balances the need for collaborative intelligence with the imperative of safeguarding sensitive vehicle data. A novel Cloud Proxy Re-Encryption Offloading (CPRE-IoV) algorithm is introduced to facilitate efficient model updates. The architecture employs a partitioned blockchain and a smart contract-driven FL pipeline to symmetrically neutralize threats from malicious nodes. Finally, extensive simulations validate the framework’s effectiveness in establishing a resilient and symmetrically secure foundation for next-generation IoV networks. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

19 pages, 626 KiB  
Article
A Strong Anonymous Privacy Protection Authentication Scheme Based on Certificateless IOVs
by Xiaohu He, Shan Gao, Hua Wang and Chuyan Wang
Symmetry 2025, 17(7), 1163; https://doi.org/10.3390/sym17071163 - 21 Jul 2025
Viewed by 170
Abstract
The Internet of Vehicles (IoVs) uses vehicles as the main carrier to communicate with other entities, promoting efficient transmission and sharing of traffic data. Using real identities for communication may leak private data, so pseudonyms are commonly used as identity credentials. However, existing [...] Read more.
The Internet of Vehicles (IoVs) uses vehicles as the main carrier to communicate with other entities, promoting efficient transmission and sharing of traffic data. Using real identities for communication may leak private data, so pseudonyms are commonly used as identity credentials. However, existing anonymous authentication schemes have limitations, including large vehicle storage demands, information redundancy, time-dependent pseudonym updates, and public–private key updates coupled with pseudonym changes. To address these issues, we propose a certificateless strong anonymous privacy protection authentication scheme that allows vehicles to autonomously generate and dynamically update pseudonyms. Additionally, the trusted authority transmits each entity’s partial private key via a session key, eliminating reliance on secure channels during transmission. Based on the elliptic curve discrete logarithm problem, the scheme’s existential unforgeability is proven in the random oracle model. Performance analysis shows that it outperforms existing schemes in computational cost and communication overhead, with the total computational cost reduced by 70.29–91.18% and communication overhead reduced by 27.75–82.55%, making it more suitable for privacy-sensitive and delay-critical IoV environments. Full article
(This article belongs to the Special Issue Applications Based on Symmetry in Applied Cryptography)
Show Figures

Figure 1

36 pages, 8047 KiB  
Article
Fed-DTB: A Dynamic Trust-Based Framework for Secure and Efficient Federated Learning in IoV Networks: Securing V2V/V2I Communication
by Ahmed Alruwaili, Sardar Islam and Iqbal Gondal
J. Cybersecur. Priv. 2025, 5(3), 48; https://doi.org/10.3390/jcp5030048 - 19 Jul 2025
Viewed by 475
Abstract
The Internet of Vehicles (IoV) presents a vast opportunity for optimised traffic flow, road safety, and enhanced usage experience with the influence of Federated Learning (FL). However, the distributed nature of IoV networks creates certain inherent problems regarding data privacy, security from adversarial [...] Read more.
The Internet of Vehicles (IoV) presents a vast opportunity for optimised traffic flow, road safety, and enhanced usage experience with the influence of Federated Learning (FL). However, the distributed nature of IoV networks creates certain inherent problems regarding data privacy, security from adversarial attacks, and the handling of available resources. This paper introduces Fed-DTB, a new dynamic trust-based framework for FL that aims to overcome these challenges in the context of IoV. Fed-DTB integrates the adaptive trust evaluation that is capable of quickly identifying and excluding malicious clients to maintain the authenticity of the learning process. A performance comparison with previous approaches is shown, where the Fed-DTB method improves accuracy in the first two training rounds and decreases the per-round training time. The Fed-DTB is robust to non-IID data distributions and outperforms all other state-of-the-art approaches regarding the final accuracy (87–88%), convergence rate, and adversary detection (99.86% accuracy). The key contributions include (1) a multi-factor trust evaluation mechanism with seven contextual factors, (2) correlation-based adaptive weighting that dynamically prioritises trust factors based on vehicular conditions, and (3) an optimisation-based client selection strategy that maximises collaborative reliability. This work opens up opportunities for more accurate, secure, and private collaborative learning in future intelligent transportation systems with the help of federated learning while overcoming the conventional trade-off of security vs. efficiency. Full article
Show Figures

Figure 1

31 pages, 4220 KiB  
Article
A Novel Multi-Server Federated Learning Framework in Vehicular Edge Computing
by Fateme Mazloomi, Shahram Shah Heydari and Khalil El-Khatib
Future Internet 2025, 17(7), 315; https://doi.org/10.3390/fi17070315 - 19 Jul 2025
Viewed by 278
Abstract
Federated learning (FL) has emerged as a powerful approach for privacy-preserving model training in autonomous vehicle networks, where real-world deployments rely on multiple roadside units (RSUs) serving heterogeneous clients with intermittent connectivity. While most research focuses on single-server or hierarchical cloud-based FL, multi-server [...] Read more.
Federated learning (FL) has emerged as a powerful approach for privacy-preserving model training in autonomous vehicle networks, where real-world deployments rely on multiple roadside units (RSUs) serving heterogeneous clients with intermittent connectivity. While most research focuses on single-server or hierarchical cloud-based FL, multi-server FL can alleviate the communication bottlenecks of traditional setups. To this end, we propose an edge-based, multi-server FL (MS-FL) framework that combines performance-driven aggregation at each server—including statistical weighting of peer updates and outlier mitigation—with an application layer handover protocol that preserves model updates when vehicles move between RSU coverage areas. We evaluate MS-FL on both MNIST and GTSRB benchmarks under shard- and Dirichlet-based non-IID splits, comparing it against single-server FL and a two-layer edge-plus-cloud baseline. Over multiple communication rounds, MS-FL with the Statistical Performance-Aware Aggregation method and Dynamic Weighted Averaging Aggregation achieved up to a 20-percentage-point improvement in accuracy and consistent gains in precision, recall, and F1-score (95% confidence), while matching the low latency of edge-only schemes and avoiding the extra model transfer delays of cloud-based aggregation. These results demonstrate that coordinated cooperation among servers based on model quality and seamless handovers can accelerate convergence, mitigate data heterogeneity, and deliver robust, privacy-aware learning in connected vehicle environments. Full article
Show Figures

Figure 1

25 pages, 732 KiB  
Article
Accuracy-Aware MLLM Task Offloading and Resource Allocation in UAV-Assisted Satellite Edge Computing
by Huabing Yan, Hualong Huang, Zijia Zhao, Zhi Wang and Zitian Zhao
Drones 2025, 9(7), 500; https://doi.org/10.3390/drones9070500 - 16 Jul 2025
Viewed by 366
Abstract
This paper presents a novel framework for optimizing multimodal large language model (MLLM) inference through task offloading and resource allocation in UAV-assisted satellite edge computing (SEC) networks. MLLMs leverage transformer architectures to integrate heterogeneous data modalities for IoT applications, particularly real-time monitoring in [...] Read more.
This paper presents a novel framework for optimizing multimodal large language model (MLLM) inference through task offloading and resource allocation in UAV-assisted satellite edge computing (SEC) networks. MLLMs leverage transformer architectures to integrate heterogeneous data modalities for IoT applications, particularly real-time monitoring in remote areas. However, cloud computing dependency introduces latency, bandwidth, and privacy challenges, while IoT device limitations require efficient distributed computing solutions. SEC, utilizing low-earth orbit (LEO) satellites and unmanned aerial vehicles (UAVs), extends mobile edge computing to provide ubiquitous computational resources for remote IoTDs. We formulate the joint optimization of MLLM task offloading and resource allocation as a mixed-integer nonlinear programming (MINLP) problem, minimizing latency and energy consumption while optimizing offloading decisions, power allocation, and UAV trajectories. To address the dynamic SEC environment characterized by satellite mobility, we propose an action-decoupled soft actor–critic (AD-SAC) algorithm with discrete–continuous hybrid action spaces. The simulation results demonstrate that our approach significantly outperforms conventional deep reinforcement learning methods in convergence and system cost reduction compared to baseline algorithms. Full article
Show Figures

Figure 1

39 pages, 7470 KiB  
Article
Estimation of Fractal Dimension and Semantic Segmentation of Motion-Blurred Images by Knowledge Distillation in Autonomous Vehicle
by Seong In Jeong, Min Su Jeong and Kang Ryoung Park
Fractal Fract. 2025, 9(7), 460; https://doi.org/10.3390/fractalfract9070460 - 15 Jul 2025
Viewed by 400
Abstract
Research on semantic segmentation for remote sensing road scenes advanced significantly, driven by autonomous driving technology. However, motion blur from camera or subject movements hampers segmentation performance. To address this issue, we propose a knowledge distillation-based semantic segmentation network (KDS-Net) that is robust [...] Read more.
Research on semantic segmentation for remote sensing road scenes advanced significantly, driven by autonomous driving technology. However, motion blur from camera or subject movements hampers segmentation performance. To address this issue, we propose a knowledge distillation-based semantic segmentation network (KDS-Net) that is robust to motion blur, eliminating the need for image restoration networks. KDS-Net leverages innovative knowledge distillation techniques and edge-enhanced segmentation loss to refine edge regions and improve segmentation precision across various receptive fields. To enhance the interpretability of segmentation quality under motion blur, we incorporate fractal dimension estimation to quantify the geometric complexity of class-specific regions, allowing for a structural assessment of predictions generated by the proposed knowledge distillation framework for autonomous driving. Experiments on well-known motion-blurred remote sensing road scene datasets (CamVid and KITTI) demonstrate mean IoU scores of 72.42% and 59.29%, respectively, surpassing state-of-the-art methods. Additionally, the lightweight KDS-Net (21.44 M parameters) enables real-time edge computing, mitigating data privacy concerns and communication overheads in internet of vehicles scenarios. Full article
Show Figures

Figure 1

18 pages, 3657 KiB  
Article
Vehicle Trajectory Data Augmentation Using Data Features and Road Map
by Jianfeng Hou, Wei Song, Yu Zhang and Shengmou Yang
Electronics 2025, 14(14), 2755; https://doi.org/10.3390/electronics14142755 - 9 Jul 2025
Viewed by 340
Abstract
With the advancement of intelligent transportation systems, vehicle trajectory data have become a key component in areas like traffic flow prediction, route planning, and traffic management. However, high-quality, publicly available trajectory datasets are scarce due to concerns over privacy, copyright, and data collection [...] Read more.
With the advancement of intelligent transportation systems, vehicle trajectory data have become a key component in areas like traffic flow prediction, route planning, and traffic management. However, high-quality, publicly available trajectory datasets are scarce due to concerns over privacy, copyright, and data collection costs. The lack of data creates challenges for training machine learning models and optimizing algorithms. To address this, we propose a new method for generating synthetic vehicle trajectory data, leveraging traffic flow characteristics and road maps. The approach begins by estimating hourly traffic volumes, then it uses the Poisson distribution modeling to assign departure times to synthetic trajectories. Origin and destination (OD) distributions are determined by analyzing historical data, allowing for the assignment of OD pairs to each synthetic trajectory. Path planning is then applied using a road map to generate a travel route. Finally, trajectory points, including positions and timestamps, are calculated based on road segment lengths and recommended speeds, with noise added to enhance realism. This method offers flexibility to incorporate additional information based on specific application needs, providing valuable opportunities for machine learning in intelligent transportation systems. Full article
(This article belongs to the Special Issue Big Data and AI Applications)
Show Figures

Figure 1

27 pages, 5516 KiB  
Article
Federated Learning for Secure In-Vehicle Communication
by Maroua Ghamri, Selma Boumerdassi, Aissa Belmeguenai and Nour-El-Houda Yellas
Telecom 2025, 6(3), 48; https://doi.org/10.3390/telecom6030048 - 2 Jul 2025
Viewed by 450
Abstract
The Controller Area Network (CAN) protocol is one of the important communication standards in autonomous vehicles, enabling real-time information sharing across in-vehicle (IV) components to realize smooth coordination and dependability in vital activities. Without encryption and authentication, CAN reveals several vulnerabilities related to [...] Read more.
The Controller Area Network (CAN) protocol is one of the important communication standards in autonomous vehicles, enabling real-time information sharing across in-vehicle (IV) components to realize smooth coordination and dependability in vital activities. Without encryption and authentication, CAN reveals several vulnerabilities related to message attacks within the IV Network (IVN). Traditional centralized Intrusion Detection Systems (IDS) where all the historical data is grouped on one node result in privacy risks and scalability issues, making them unsuitable for real-time intrusion detection. To address these challenges, we propose a Deep Federated Learning (FL) architecture for intrusion detection in IVN. We propose a Bidirectional Long Short Term Memory (BiLSTM) architecture to capture temporal dependencies in the CAN bus and ensure enhanced feature extraction and multi-class classification. By evaluating our framework on three real-world datasets, we show how our proposal outperforms a baseline LSTM model from the state of the art. Full article
Show Figures

Figure 1

Back to TopTop