Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (252)

Search Parameters:
Keywords = urban soil Pb

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1479 KB  
Article
Bioaccumulation and Transfer of Potentially Toxic Elements in the Yam-Soil System and Associated Health Risks in Kampala’s Luzira Industrial Area
by Gabson Baguma, Gadson Bamanya, Hannington Twinomuhwezi, Allan Gonzaga, Timothy Omara, Patrick Onen, Simon Ocakacon, Christopher Angiro, Wilber Waibale and Ronald Ntuwa
J. Xenobiot. 2025, 15(6), 193; https://doi.org/10.3390/jox15060193 - 11 Nov 2025
Viewed by 587
Abstract
Rapid industrialization in peri-urban centers has accelerated the accumulation of potentially toxic elements (PTEs) in agricultural soils, with implications for food safety and public health concerns. This study quantified PTEs (Cu, Cd, Cr, Pb, and Zn) in soils and yam (Colocasia esculenta [...] Read more.
Rapid industrialization in peri-urban centers has accelerated the accumulation of potentially toxic elements (PTEs) in agricultural soils, with implications for food safety and public health concerns. This study quantified PTEs (Cu, Cd, Cr, Pb, and Zn) in soils and yam (Colocasia esculenta) tubers from Kampala’s Luzira Industrial Area. Soil contamination levels were evaluated using the geoaccumulation index (Igeo), contamination factor (CF), and pollution load index (PLI), while soil-to-crop transfer of the PTEs was assessed using the biological accumulation factor (BAF). Statistical analyses (One Way Analysis of Variance, Pearson bivariate correlation, and Principal Component Analysis) were applied to identify relationships among PTEs and sampling sites. Soils exhibited marked industrial influence, with PTE concentrations in the order Zn > Pb > Cu > Cr > Cd. The PLI values above unity confirmed cumulative pollution, with hotspots dominated by Zn, Pb, and Cu. Yam tubers contained lower PTE concentrations but reflected a similar contamination pattern as in the soils. The BAF values were <1 for all the PTEs except Zn, pointing to its greater solubility and mobility in the area’s acidic soils. Health risk assessment indicated that yam consumption was the dominant exposure pathway, with hazard indices (HI) for children exceeding the safe threshold at all industrial sites (HI = 1.14–2.06), and total cancer risks (TCR) ranging from 1.27 × 10−4 to 5.83 × 10−4, well above the US EPA limit. For adults, the TCR also surpassed 1 × 10−4 at sampling points SP3 and SP4. These results found potential transfer of the PTEs from soils into yam tubers, with Cd and Cr being the key drivers of dietary risk. Full article
Show Figures

Graphical abstract

26 pages, 4255 KB  
Article
Distribution of Presumably Contaminating Elements (PCEs) in Roadside Agricultural Soils and Associated Health Risks Across Industrial, Peri-Urban, and Research Areas of Bangladesh
by Md. Sohel Rana, Qingyue Wang, Miho Suzuki, Weiqian Wang, Yugo Isobe, Afia Sultana and Tochukwu Oluwatosin Maduka
Sustainability 2025, 17(21), 9885; https://doi.org/10.3390/su17219885 - 5 Nov 2025
Viewed by 783
Abstract
Agricultural soils near roadways are increasingly contaminated with presumably contaminating elements (PCEs), raising concerns for food safety and health risks in Bangladesh. This study quantified Mn, As, Co, Cr, Zn, Ni, Cu, Cd and Pb in roadside agricultural farm soils at three depths [...] Read more.
Agricultural soils near roadways are increasingly contaminated with presumably contaminating elements (PCEs), raising concerns for food safety and health risks in Bangladesh. This study quantified Mn, As, Co, Cr, Zn, Ni, Cu, Cd and Pb in roadside agricultural farm soils at three depths (0–5, 5–10, 10–15 cm) across industrial, peri-urban, and research areas using ICP-MS. The average mass fractions ranked as Mn > Zn > Cr > Ni > Cu > Pb > Co > As > Cd with peri-urban soils exhibiting the elevated levels of Cr (80.48 mg.kg−1 and Ni (65.81 mg.kg−1). Contamination indices indicated Cd (Contamination Factor: 2.01–2.53) and Ni (Contamination Factor: up to 2.27) as the most enriched elements, with all sites showing a Pollution Load Index (PLI) >1 (1.07–1.66), reflecting cumulative soil deterioration. Cd posed moderate ecological risk (Er: 60.3–75.9), whereas other PCEs were low risk. Health risk assessment showed elevated non-carcinogenic hazard indices (HI: 7.87–10.5 for children; 3.72–4.78 for adults), with Mn, Cr, and Co as major contributors. Cumulative carcinogenic risk (CCR) values were dominated by Cr, reaching 7.22 × 10−4 in industrial areas and 3.98 × 10−4 in peri-urban areas, exceeding the acceptable range (10−6–10−4). Metal mass fractions were consistently higher in surface soils (0–5 cm) than at deeper layers, indicating anthropogenic deposition from traffic and industry. Multivariate analysis distinguished geogenic (Cr-Ni-Cu; Mn-Co-As) from anthropogenic (Cd-Pb-Zn) sources. These findings identify Cd and Cr as priority pollutants, highlighting the need for soil management and pollution control near roadways in Bangladesh. Full article
Show Figures

Figure 1

20 pages, 2867 KB  
Article
Assessing Urban Soils in the Norilsk Industrial Region Based on Heavy Metal and Petroleum Product Pollution Indices
by Vladimir Myazin, Vyacheslav Vasenev, Maria Korneykova, Natalia Karmanovskaya and Yulia Sotnikova
Land 2025, 14(11), 2199; https://doi.org/10.3390/land14112199 - 5 Nov 2025
Viewed by 556
Abstract
The soil condition of Norilsk, a large industrial city located in the Arctic zone of Russia, was assessed for the first time using pollution indices calculated based on the gross content of Pb, Zn, Co, Cd, Cu, Ni, Cr, Mn, As, and petroleum [...] Read more.
The soil condition of Norilsk, a large industrial city located in the Arctic zone of Russia, was assessed for the first time using pollution indices calculated based on the gross content of Pb, Zn, Co, Cd, Cu, Ni, Cr, Mn, As, and petroleum products. The Nemerov Pollution Index (NPI) classifies all Norilsk soil samples as polluted. According to the PLI index, 86% of the soil samples were characterized as polluted, and according to the total pollution index (Zc), 56% of the soil samples were classified as moderately hazardous and hazardous polluted. All soil samples had a medium, high, or very high environmental risk. The high level of soil pollution in Norilsk and the crucial role of nonferrous metallurgy as the primary source of these metals are confirmed. Pollutant content in the soil varied in different districts of Norilsk, with Mn and petroleum products being significant. The maximum heavy metal pollution occurred in the soils of the enterprise protection zones and in the soil of the industrial zones. Airborne pollutants from industrial enterprises are the main cause of heavy metal soil pollution in the Norilsk agglomeration. The contribution of other sources of pollution, typical for various functional areas of the city (e.g., motor transport and waste), is not expressed. Simultaneously, the hydrocarbon content is determined by the location of areas near roads, which is typical for districts with a high population and intensive traffic. Using the example of the Central District of Norilsk, the landscaping of the territory was shown to play a role in reducing the total content of heavy metals. Based on the physicochemical properties of Norilsk’s urban soils, the following key measures are proposed to improve soil quality: increasing organic matter content; ensuring a neutral pH and a high cation exchange capacity; and reducing soil density, which will reduce the toxic load on plants and negative impact on human health. Full article
Show Figures

Figure 1

15 pages, 1040 KB  
Article
Source Apportionment of Soil Heavy Metals in Urban Agglomerations Based on the APCS-MLR Model
by Yanjie Zhang, Yunxia Wang, Yuan Zhang, Xinmiao Wang, Min Li and Lei Yang
Sustainability 2025, 17(21), 9798; https://doi.org/10.3390/su17219798 - 3 Nov 2025
Viewed by 472
Abstract
In order to study the differential characteristics of heavy metal contamination levels and their sources in soils under various land use types and anthropogenic activities at a regional scale, this study focused on the Beijing–Tianjin–Hebei (BTH) urban agglomeration in North China. We analyzed [...] Read more.
In order to study the differential characteristics of heavy metal contamination levels and their sources in soils under various land use types and anthropogenic activities at a regional scale, this study focused on the Beijing–Tianjin–Hebei (BTH) urban agglomeration in North China. We analyzed heavy metal content in three land use types (urban green spaces, croplands, and vegetable fields/orchards) through field sampling and laboratory analysis, with content determined by inductively coupled plasma mass spectrometry (ICP-MS). The sources of heavy metals were quantitatively apportioned their sources using the absolute principal component score–multiple linear regression (APCS-MLR) method. Results of this study are as follows: (1) Heavy metal content varied among different soil types, with vegetable fields/orchards soils showing relatively higher content. Urban green spaces and cropland soils exhibited comparable heavy metal levels, though urban green spaces displayed higher spatial heterogeneity, while cropland soils showed more homogeneous distributions. (2) The APCS-MLR model identified five pollution sources: mixed traffic–coal combustion sources, industrial sources, agricultural sources, natural sources, and unknown sources. Natural sources were consistently the dominant contributors of arsenic (As), chromium (Cr), and nickel (Ni) across all three land use types, with contribution rates of 32.62–70.26%. Traffic and coal combustion emissions were the primary sources of lead (Pb) and copper (Cu) in urban green spaces, accounting for 40.28–66.26%, while industrial activities showed the highest contributions to zinc (Zn) and cadmium (Cd) in urban green spaces, at 45.88–65.25%. Agricultural activities contributed similarly to Cd accumulation in both cropland and vegetable fields/orchards soils (41.68–51.32%), but their contributions to Cu and Zn in vegetable fields/orchards soils (46.62–55.58%) were significantly higher than those in cropland (9.21–13.40%). Notably, unexplained sources accounted for 18.64–42.59% of heavy metals in vegetable fields/orchards soils, suggesting particularly complex sources in these systems. This study provides a scientific basis for sustainable soil management strategies and promoting coordinated pollution control in urban agglomeration regions. Full article
Show Figures

Figure 1

19 pages, 2441 KB  
Article
Assessment of Heavy Metal Accumulation in Wastewater–Receiving Soil–Exotic and Indigenous Vegetable Systems and Its Potential Health Risks: A Case Study from Blantyre, Malawi
by Chimwemwe Chiutula, Andrew G. Mtewa, Amon Abraham, Richard Lizwe Steven Mvula, Alfred Maluwa, Fasil Ejigu Eregno and John Njalam’mano
Int. J. Environ. Res. Public Health 2025, 22(11), 1614; https://doi.org/10.3390/ijerph22111614 - 23 Oct 2025
Viewed by 907
Abstract
Urban and peri-urban farmers in Malawi increasingly use treated and untreated wastewater for vegetable production, but little is known about the extent of heavy metal accumulation in both exotic and indigenous vegetables, particularly with respect to differences between edible tissues (leaves vs. stems). [...] Read more.
Urban and peri-urban farmers in Malawi increasingly use treated and untreated wastewater for vegetable production, but little is known about the extent of heavy metal accumulation in both exotic and indigenous vegetables, particularly with respect to differences between edible tissues (leaves vs. stems). This study addresses this gap by measuring the concentrations of cadmium (Cd), chromium (Cr), lead (Pb), zinc (Zn), and copper (Cu) in wastewater, soils, and six vegetables including three exotic and three indigenous irrigated with effluent from the Soche Wastewater Treatment Plant in Blantyre. Metal concentrations were determined using Atomic Absorption Spectrophotometry. Wastewater contained Zn (0.01 ± 0.001 mg/L) and Cu (0.02 ± 0.018 mg/L), both below World Health Organization (WHO) and Malawi Bureau of Standards (MBS) limits (Zn: 0.2 mg/L; Cu: 2 mg/L), while Cd, Cr, and Pb were below detection limit. In soils, Zn reached 56.4 ± 0.5 mg/kg, exceeding the WHO limit of 36 mg/kg; other metals remained within WHO permissible values. Vegetables showed species- and tissue-specific variation in metal accumulation: Cr reached 4.65 mg/kg in Cucurbita moschata stems, Cd up to 0.31 mg/kg in Amaranthus retro-flexus leaves, and Pb up to 4.09 mg/kg in Brassica rapa stems—all above FAO/WHO permissible limits (2.3, 0.2, and 0.3 mg/kg, respectively). Duncan’s post hoc analysis confirmed significant differences (p < 0.05) across matrices and plant parts, with leaves generally accumulating more Zn and Cu than stems. Principal component analysis (PCA) revealed that Zn, Cu, Cr, and Pb in the wastewater-soil-vegetable system largely share a common source, likely wastewater effluent and historical soil contamination, while Cd showed a more sporadic distribution, highlighting differential accumulation pathways. Health risk assessments revealed high Health Risk Index (HRI) values, with Brassica rapa stems (HRI = 92.3) and Brassica rapa subsp. chinensis leaves (HRI = 82.2) exceeding the safe threshold (HRI > 1), indicating potential chronic risks. This study reveals potential health risks associated with wastewater irrigation due to heavy metal accumulation in edible vegetables, and therefore recommends further research on metal speciation, seasonal variation, and bioaccumulation at different crop growth stages. Full article
Show Figures

Figure 1

20 pages, 3306 KB  
Article
Linking Atmospheric and Soil Contamination: A Comparative Study of PAHs and Metals in PM10 and Surface Soil near Urban Monitoring Stations
by Nikolina Račić, Stanko Ružičić, Gordana Pehnec, Ivana Jakovljević, Zdravka Sever Štrukil, Jasmina Rinkovec, Silva Žužul, Iva Smoljo, Željka Zgorelec and Mario Lovrić
Toxics 2025, 13(10), 866; https://doi.org/10.3390/toxics13100866 - 12 Oct 2025
Viewed by 664
Abstract
Understanding how atmospheric pollutants interact with soil pollution is essential for assessing long-term environmental and human health risks. This study compares concentrations of polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs) in PM10 and surface soil near air quality monitoring stations [...] Read more.
Understanding how atmospheric pollutants interact with soil pollution is essential for assessing long-term environmental and human health risks. This study compares concentrations of polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs) in PM10 and surface soil near air quality monitoring stations in Zagreb, Croatia. While previous work identified primary emission sources affecting PM10 composition in the area, this study extends the analysis to investigate potential pollutant transfer and accumulation in soils. Multivariate statistical tools, including correlation analysis and principal component analysis (PCA), were employed to gain a deeper understanding of the sources and behavior of pollutants. Results reveal significant correlations between air and soil concentrations for several PTEs and PAHs, particularly when air pollutant data are averaged over extended periods (up to 6 months), indicating cumulative deposition effects. Σ11PAH concentrations in soils ranged from 1.2 to 524 µg/g, while mean BaP in PM10 was 2.2 ng/m3 at traffic-affected stations. Strong positive air–soil correlations were found for Pb and Cu, whereas PAH associations strengthened at longer averaging windows (3–6 months), especially at 10 cm depth. Seasonal variations were observed, with stronger associations in autumn, reflecting intensified emissions and atmospheric conditions that facilitate pollutant transfer. PCA identified similar pollutant groupings in both air and soil matrices, suggesting familiar sources such as traffic emissions, industrial activities, and residential heating. The integrated PCA approach, which jointly analyzed air and soil pollutants, showed coherent behaviour for heavier PAHs and several PTEs (e.g., Pb, Cu), as well as divergence in more volatile or mobile species (e.g., Flu, Zn). Spatial differences among monitoring sites show localized influences on pollutant accumulation. Furthermore, this work demonstrates the value of coordinated air–soil monitoring in urban environments and provides an understanding of pollutant distributions across different components of the environment. Full article
Show Figures

Graphical abstract

23 pages, 5081 KB  
Article
Bioaccessibility-Based Fuzzy Health Risk Assessment and Integrated Management of Toxic Metals Through Multimedia Environmental Exposure near Urban Industrial Complexes
by Siqi Xu, Donghua Zhu, Miao An, Haoyu Wang, Jinyuan Guo, Yazhu Wang, Yongchang Wei and Fei Li
Toxics 2025, 13(10), 861; https://doi.org/10.3390/toxics13100861 - 11 Oct 2025
Viewed by 480
Abstract
Few studies have explored the holistic public health risk assessment associated with toxic elements (TEs) and their bioaccessibility in integrated urban environmental media including soils, vegetables, atmospheric particles, dust, etc. Urban industrial complex areas like Qingshan-Chemical District (QCD) in the Chinese Wuhan city, [...] Read more.
Few studies have explored the holistic public health risk assessment associated with toxic elements (TEs) and their bioaccessibility in integrated urban environmental media including soils, vegetables, atmospheric particles, dust, etc. Urban industrial complex areas like Qingshan-Chemical District (QCD) in the Chinese Wuhan city, located within the Yangtze River Economic Belt, face increasing environmental exposure risks due to industrial activities. This study innovatively assessed the hierarchical risks of toxic metals in 4 environmental media (air PM, dust, soil, vegetables) from the QCD based on field sampling and chemical analysis, and developed an improved fuzzy health risk assessment model based on toxic metals’ in vitro bioaccessibilities of different exposure pathways and triangular fuzzy numbers for handling parameter uncertainties. The study found that the highest health risks were associated with ingestion, particularly from consuming homegrown vegetables. Carcinogenic risks for arsenic (As), lead (Pb), and cadmium (Cd) via ingestion exceeded the admissible threshold of 1.00 × 10−6, with As showing the highest risk ([1.92 × 10−3, 2.37 × 10−3]), followed by Cd ([2.98 × 10−5, 3.67 × 10−5]) and Pb ([7.92 × 10−7, 1.48 × 10−6]). Inhalation risks from soil, dust, and air particulates were below the threshold, indicating lower respiratory concerns. Dermal exposure, especially from soil and dust, posed elevated carcinogenic risks for As ([7.47 × 10−6, 8.06 × 10−6]). With the screened priority risk control toxic metals and pathways, the targeted measures including relocating vegetable planting areas, promoting cultivation of low-enrichment crops, building vegetation buffer zones around the industrial park, etc., were proposed. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Graphical abstract

18 pages, 2227 KB  
Article
Assessment of Heavy Metal Concentrations in Urban Soil of Novi Sad: Correlation Analysis and Leaching Potential
by Ivana Jelić, Dušan Topalović, Maja Rajković, Danica Jovašević, Kristina Pavićević, Marija Janković and Marija Šljivić-Ivanović
Appl. Sci. 2025, 15(19), 10842; https://doi.org/10.3390/app151910842 - 9 Oct 2025
Viewed by 574
Abstract
Soil samples from the urban area of Novi Sad were analyzed to determine the total concentrations of heavy metals including Cr, Pb, Cu, Zn, As, Mn, Ni, Co, Cd and Fe. In addition, leaching tests according to CEN 12457-2—Milli-Q deionized leaching procedure and [...] Read more.
Soil samples from the urban area of Novi Sad were analyzed to determine the total concentrations of heavy metals including Cr, Pb, Cu, Zn, As, Mn, Ni, Co, Cd and Fe. In addition, leaching tests according to CEN 12457-2—Milli-Q deionized leaching procedure and ISO/TS 21268-2—CaCl2 solution leaching procedure were conducted to assess the mobility of these metals. Multivariate statistical methods, including Pearson’s correlation, Principal Component Analysis (PCA) and Cluster Analysis, were applied to identify pollution sources and grouping patterns among elements. The results revealed a distinct clustering of Pb and Zn, separate from other metals, indicating their predominant origin from anthropogenic activities. Contamination Factor (CF), Pollution Load Index (PLI), and Geoaccumulation Index (Igeo) were calculated to evaluate the degree of pollution. Combining total concentration, mobility, and multivariate analyses offers a more comprehensive insight into the extent and origin of pollution in the urban area of Novi Sad. The results obtained are valuable for evaluating the soil conditions in the Western Balkans, which have been recognized as a necessity by the EU. Full article
Show Figures

Figure 1

19 pages, 2870 KB  
Article
Comprehensive Assessment of Heavy Metal(loid) Pollution in Agricultural and Urban Soils near an Oil Refining Facility: Distribution Patterns, Source Apportionment, Ecological Impact, and Probabilistic Health Risk Analysis
by Andrijana Miletić, Jelena Vesković, Milica Lučić, Memet Varol, Dragan Crnković, Nebojša Potkonjak and Antonije Onjia
Urban Sci. 2025, 9(10), 415; https://doi.org/10.3390/urbansci9100415 - 8 Oct 2025
Viewed by 584
Abstract
This study investigated the spatial distribution of HMs in agricultural and urban soils near the largest oil refining complex in Serbia, identified pollution sources, and assessed ecological and human health risks. A large fraction of soil samples showed elevated Hg (40% of samples), [...] Read more.
This study investigated the spatial distribution of HMs in agricultural and urban soils near the largest oil refining complex in Serbia, identified pollution sources, and assessed ecological and human health risks. A large fraction of soil samples showed elevated Hg (40% of samples), Pb (53%), Cd (90%), and As (93%) concentrations compared to the background levels. Hotspots for Pb, As, Hg, Cd, and Zn were observed in the industrial area, indicating significant anthropogenic input. Multivariate analysis, including PMF, revealed four contamination sources: emissions from the oil refining industry, agricultural activities, traffic emissions, and natural background. The pollution indices mostly fell into the moderate pollution range, with As, Hg, and Cd showing the highest enrichment. The potential ecological risk index (RI) indicated that about one-third of the samples had moderate ecological risk and determined a major RI hotspot near the refinery. The health risk assessment identified As and Cr as the largest contributors to non-carcinogenic risk, although the average HI was below one. Monte Carlo simulation confirmed that adults and children had negligible health risks at the 95th percentile and highlighted exposure frequency and body weight as the most influential exposure parameters. Based on source-specific risk, the oil refining industry emissions had the highest impact on HI and TCR values. Full article
Show Figures

Figure 1

19 pages, 587 KB  
Article
Assessment of Environmental and Human Health Risks from Heavy Metal Contamination in Community Garden Soils Affected by an Industrial Fire Hazard in New Brunswick, Canada
by Hassan Ikrema, Innocent Mugudamani and Saheed Adeyinka Oke
Environments 2025, 12(10), 362; https://doi.org/10.3390/environments12100362 - 7 Oct 2025
Viewed by 1131
Abstract
Urban community gardens are valued for promoting sustainable food production, yet the accumulation of toxic heavy metals in city soils can present both ecological and public health risks. Therefore, this study was aimed at assessing the environmental and health risks of toxic heavy [...] Read more.
Urban community gardens are valued for promoting sustainable food production, yet the accumulation of toxic heavy metals in city soils can present both ecological and public health risks. Therefore, this study was aimed at assessing the environmental and health risks of toxic heavy metals in community gardens soil contaminated by an industrial fire hazard in New Brunswick, Canada. Both top and subsoil soil samples were collected at Carleton community garden. The collected samples were examined for toxic heavy metals using inductively coupled plasma optical emission spectrometry and inductively coupled plasma mass spectrometry. Ecological risks were evaluated through the ecological risk factor and the potential ecological risk index, while human health risks were determined using a standard human health risk assessment approach. The mean concentration of Pb, Zn, Cu, and Sn exceeded permissible limits when compared to the Canadian soil quality guidelines and upper continental crust values. Findings from the ecological risk assessment showed that all metals were associated with low risk, except for nickel, which posed a high ecological risk across both soil layers. PERI results revealed a low overall ecological threat. The human health risk analysis indicated that children could face non-carcinogenic and carcinogenic risks from As exposure, while adults were not at risk from any of the studied metals. These findings identify arsenic as the primary contaminant of concern, with children representing the most vulnerable population, emphasizing the necessity for targeted mitigation strategies and protective measures to reduce their exposure. The results of this study can inform interventions aimed at safeguarding both environmental and public health, while also raising awareness about the presence and risks of toxic heavy metals, ultimately contributing to the protection of human health and the broader ecosystem. Full article
Show Figures

Figure 1

15 pages, 1519 KB  
Article
Heavy Metal Mobilization in Urban Stormwater Runoff from Residential, Commercial, and Industrial Zones
by Amber Hatter, Daniel P. Heintzelman, Megan Heminghaus, Jonathan Foglein, Mahbubur Meenar and Eli K. Moore
Pollutants 2025, 5(4), 32; https://doi.org/10.3390/pollutants5040032 - 30 Sep 2025
Viewed by 853
Abstract
Increased precipitation and extreme weather due to climate change can remobilize recent and legacy environmental contaminants from soil, sediment, and sewage overflows. Heavy metals are naturally distributed in Earth’s crust, but anthropogenic activity has resulted in concentrated emissions of toxic heavy metals and [...] Read more.
Increased precipitation and extreme weather due to climate change can remobilize recent and legacy environmental contaminants from soil, sediment, and sewage overflows. Heavy metals are naturally distributed in Earth’s crust, but anthropogenic activity has resulted in concentrated emissions of toxic heavy metals and deposition in surrounding communities. Cities around the world are burdened with heavy metal pollution from past and present industrial activity. The city of Camden, NJ, represents a valuable case study of climate impacts on heavy metal mobilization in stormwater runoff due to similar legacy and present-day industrial pollution that has taken place in Camden and in many other cities. Various studies have shown that lead (Pb) and other toxic heavy metals have been emitted in Camden due to historic and recent industrial activity, and deposited in nearby soils and on impervious surfaces. However, it is not known if these heavy metals can be mobilized in urban stormwater, particularly after periods of high precipitation. In this study, Camden, NJ stormwater was collected from streets and parks after heavy rain events in the winter and spring for analysis with inductively coupled plasma-mass spectrometry (ICP-MS) to identify lead (Pb), mercury (Hg), cadmium (Cd), and arsenic (As). Lead was by far the most abundant of the four target elements in stormwater samples followed by Hg, Cd, and As. The locations with the highest Pb concentrations, up to 686.5 ppb, were flooded allies and streets between commercial and residential areas. The highest concentrations of Hg (up to 11.53 ppb, orders of magnitude lower than Pb) were found in partially flooded streets and ditches. Lead stormwater concentrations exceed EPA safe drinking levels at the majority of analyzed locations, and Hg stormwater concentrations exceed EPA safe drinking levels at all analyzed locations. While stormwater is not generally ingested, dermal contact and hand-to-mouth behavior by children are potential routes of exposure. Heavy metal concentrations were lower in stormwater collected from parks and restored areas of Camden, indicating that these areas have a lower heavy metal exposure risk. This study shows that heavy metal pollution can be mobilized in stormwater runoff, resulting in elevated exposure risk in industrial cities. Full article
(This article belongs to the Section Water Pollution)
Show Figures

Figure 1

18 pages, 3071 KB  
Article
Elemental Composition of Magnetic Nanoparticles in Wildland–Urban Interface Fire Ashes Revealed by Single Particle-Inductively Coupled Plasma-Time-of-Flight-Mass Spectrometer
by Mahbub Alam, Austin R. J. Downey, Bo Cai and Mohammed Baalousha
Nanomaterials 2025, 15(18), 1420; https://doi.org/10.3390/nano15181420 - 15 Sep 2025
Viewed by 624
Abstract
This study investigates the elemental composition of magnetic nanoparticles (MNPs) in eleven wildland–urban interface (WUI) fire ashes, including one vegetation, six structural, and four vehicle ashes, along with three fire-impacted soil samples. The WUI fire ash samples were collected following the 2020 North [...] Read more.
This study investigates the elemental composition of magnetic nanoparticles (MNPs) in eleven wildland–urban interface (WUI) fire ashes, including one vegetation, six structural, and four vehicle ashes, along with three fire-impacted soil samples. The WUI fire ash samples were collected following the 2020 North Complex (NC) Fire and Sonoma–Lake–Napa unit (LNU) Lightning Complex Fire in California. Efficiency of magnetic separation was confirmed via Time-Domain Nuclear Magnetic Resonance (TD-NMR); the relaxometry showed that the transverse relaxation rate R2 decreased from 2.02 s−1 before separation to 0.29 s−1 after separation (ΔR2 = −1.73 s−1; −86%), due to the removal of magnetic particles. The particle number concentrations, size distributions, and elemental compositions (and ratios) of MNPs were determined using single particle-inductively coupled plasma–time-of-flight-mass spectrometry (SP-ICP-TOF-MS). The major types of nanoparticles (NPs) detected in the magnetically separated MNPs were Fe-, Ti-, Cr-, Pb-, Mn-, and Zn-bearing NPs. The iron-bearing NPs accounted for 3.2 to 83.5% of the magnetically separated MNPs, and decreased following the order vegetation ash (77.4%) > soil (63.2–69.9%) > structural (3.2–83.5%) ash. The titanium-bearing NPs accounted for 3.3 to 66.1% of the magnetically separated MNPs, and decreased following the order vehicle (14.1–66.1%) > structural (3.5–36.4%) > vegetation (3.3%) ash. The majority of the detected NPs in the fire ashes occurred in the form of multi-metal (mm) NPs, attributed to the presence of NPs as heteroaggregates and/or due to the sorption of metals on the surfaces of NPs during combustion. However, a notable fraction (3–91%) of the detected NPs occurred as single-metal (sm) NPs, particularly smFe-bearing NPs, which accounted for 48 to 91% of all the Fe-bearing particles in the magnetically separated MNPs. The elemental ratios (e.g., Al/Fe, Ti/Fe, Cr/Fe, and Zn/Fe) in the magnetically separated MNPs from structural and vehicle ashes were higher than those in the soil samples and vegetation ashes, indicating enrichment of metals in magnetically separated NPs from vehicle and structural ashes compared to vegetation ash. Overall, this study demonstrates that the MNPs generated by WUI fire ash are associated with potentially toxic elements (e.g., Cr and Zn), exacerbating the environmental and human health risks of WUI fires. This study also highlights the need for further research into the properties, environmental fate, transport, and interactions of MNPs with biological systems during and following WUI fires. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

21 pages, 8616 KB  
Article
Heavy Metal Concentrations in Debrecen’s Urban Soils: Implications for Upcoming Industrial Projects
by Zsolt Zoltán Fehér, Tamás Magyar, Florence Alexandra Tóth and Péter Tamás Nagy
Soil Syst. 2025, 9(3), 97; https://doi.org/10.3390/soilsystems9030097 - 9 Sep 2025
Cited by 1 | Viewed by 952
Abstract
Monitoring the concentration of heavy metals in urban soils is of a paramount importance for several reasons. These inorganic pollutants can pose a significant health risk to living organisms, as they are toxic even at low concentrations and can be present in the [...] Read more.
Monitoring the concentration of heavy metals in urban soils is of a paramount importance for several reasons. These inorganic pollutants can pose a significant health risk to living organisms, as they are toxic even at low concentrations and can be present in the soil for a long period of time. This study assesses the spatial distribution, concentration levels, and potential anthropogenic and natural sources of eight typical heavy metals (As, Cd, Co, Cr, Cu, Ni, Pb and Zn) occurring in urban surface soils across Debrecen, Hungary. A total of 295 topsoil samples were collected; heavy metal concentrations were determined by energy-dispersive X-ray fluorescence (EDXRF) spectrometry. The results were interpreted using descriptive statistics, correlation analysis, hierarchical clustering, factor analysis, ordinary kriging interpolation, and spatial-discriminant analysis. The dual origin of the metal contaminants was revealed: As, Co, Pb, and Zn showed strong anthropogenic signatures associated with traffic, urban waste, and construction materials, whereas Cr and Ni were associated with natural geogenic sources. Cd reflected both lithogenic and point-source urban pollution. The current evaluation incorporated Hungarian and Dutch regulatory benchmarks to identify exceedances of environmental quality thresholds. It was found that only Cd and Cr exceeded the Hungarian target values, on average. Linear discriminant analysis based on pollution maps highlighted contamination hotspots around traffic corridors and newly industrialized zones. The importance of high-resolution soil monitoring in the rapidly urbanizing city is highlighted. Given its anticipated industrial and transportation developments, accumulations of heavy metals are probably going to be further exacerbated; therefore, the results provide a critical baseline for future environmental assessments and long-term monitoring. Full article
Show Figures

Figure 1

19 pages, 3612 KB  
Article
The Impact of Continuous Heavy Metal Emissions from Road Traffic on the Effectiveness of the Phytoremediation Process of Contaminated Soils
by Max Lewandowski, Marcin Landrat and Aleksandra Kowalczyk
Appl. Sci. 2025, 15(17), 9748; https://doi.org/10.3390/app15179748 - 4 Sep 2025
Viewed by 993
Abstract
Heavy metals are among the most toxic and persistent environmental pollutants, accumulating in soils and living organisms. Phytoremediation, the use of plants to remove contaminants, is considered one of the promising methods for cleaning soils contaminated with metals. This study assessed the effectiveness [...] Read more.
Heavy metals are among the most toxic and persistent environmental pollutants, accumulating in soils and living organisms. Phytoremediation, the use of plants to remove contaminants, is considered one of the promising methods for cleaning soils contaminated with metals. This study assessed the effectiveness of phytoremediation of heavy metals in soil using lettuce (Lactuca sativa) as a phytoaccumulative species. Despite the successful extraction of significant amounts of metals by the plants, post-harvest soil analysis revealed persistently elevated concentrations of elements such as iron (Fe), lead (Pb), and zinc (Zn). To clarify the reasons behind the limited improvement in soil quality, additional field investigations were conducted and identified a nearby highway as a continuous source of heavy metal emissions. In the next phase of the study, metal concentrations were analyzed in dust deposited along the highway, confirming their significant contribution to ongoing secondary soil contamination. The findings emphasize the importance of considering both environmental and anthropogenic factors when designing long-term phytoremediation strategies in urban and traffic-impacted areas. Full article
Show Figures

Figure 1

15 pages, 2172 KB  
Article
Source Apportionment and Ecological Risk Assessment of Heavy Metals in Urban Fringe Areas: A Case Study of Kaifeng West Lake, China
by Jinting Huang, Bingyan Jin and Feng Zhou
Toxics 2025, 13(9), 720; https://doi.org/10.3390/toxics13090720 - 27 Aug 2025
Viewed by 760
Abstract
Exploring the pollution characteristics and ecological risks of urbanization on lakes in urban fringe areas has guiding significance for the control and scientific management of heavy metal pollution in lakes in urban fringe areas. Taking the West Lake in Kaifeng city as an [...] Read more.
Exploring the pollution characteristics and ecological risks of urbanization on lakes in urban fringe areas has guiding significance for the control and scientific management of heavy metal pollution in lakes in urban fringe areas. Taking the West Lake in Kaifeng city as an example, the samples of the sediments and surface water of the lake were collected, and the contents of heavy metals (As, Cd, Cr, Cu, Ni, Pb, and Zn) were measured, assessing the degree and ecological risk of heavy metal pollution using the Geo-Accumulation Index (Igeo) and Potential Ecological Risk Index methods (RI); and the sources of pollution were identified. The results show that the heavy metal concentrations in the surface water of the West Lake in Kaifeng city are generally low; average concentrations of Cd, Cu, Zn, Cr, Ni, Pb, and As in sediments are 3.120, 1.810, 1.700, 1.540, 1.000, 0.990, and 0.430 times higher than the background value of fluvo-aquic soil, respectively. The sequence of the average Igeo from high to low is Cd (1.020) > Cu (0.220) > Zn (0.160) > Cr (0.000) > Pb (−0.610) > Ni (−0.640) > As (−1.850). Among them, contaminations with Pb are classed as moderately polluted; As pollution is relatively light, while other heavy metals are unpolluted. The average Potential Ecological Risk Coefficient (E) values for seven heavy metals are Cd (93.500) > Cu (9.040) > Ni (4.990) > Pb (4.950) > As (4.290) > Cr (3.080) > Zn (1.700). Cd is at a considerable potential ecological risk, while other heavy metals are at low ecological risks. Heavy metal pollution in sediment of West Lake in Kaifeng mainly comes from traffic activities such as yacht machinery wear and gasoline burning. The research findings provide a scientific foundation for developing effective mitigation strategies against heavy metal contamination in peri-urban lacustrine ecosystems. Full article
Show Figures

Figure 1

Back to TopTop