Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (178)

Search Parameters:
Keywords = urban power distribution network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1676 KiB  
Article
Data-Driven Distributionally Robust Optimization for Solar-Powered EV Charging Under Spatiotemporal Uncertainty in Urban Distribution Networks
by Tianhao Wang, Xuejiao Zhang, Xiaolin Zheng, Jian Wang, Shiqian Ma, Jian Chen, Mengyu Liu and Wei Wei
Energies 2025, 18(15), 4001; https://doi.org/10.3390/en18154001 - 27 Jul 2025
Viewed by 369
Abstract
The rapid electrification of transportation and the proliferation of rooftop solar photovoltaics (PVs) in urban environments are reshaping the operational dynamics of power distribution networks. However, the inherent uncertainty in electric vehicle (EV) behavior—including arrival times, charging preferences, and state-of-charge—as well as spatially [...] Read more.
The rapid electrification of transportation and the proliferation of rooftop solar photovoltaics (PVs) in urban environments are reshaping the operational dynamics of power distribution networks. However, the inherent uncertainty in electric vehicle (EV) behavior—including arrival times, charging preferences, and state-of-charge—as well as spatially and temporally variable solar generation, presents a profound challenge to existing scheduling frameworks. This paper proposes a novel data-driven distributionally robust optimization (DDRO) framework for solar-powered EV charging coordination under spatiotemporal uncertainty. Leveraging empirical datasets of EV usage and solar irradiance from a smart city deployment, the framework constructs Wasserstein ambiguity sets around historical distributions, enabling worst-case-aware decision-making without requiring the assumption of probability laws. The problem is formulated as a two-stage optimization model. The first stage determines day-ahead charging schedules, solar utilization levels, and grid allocations across an urban-scale distribution feeder. The second stage models real-time recourse actions—such as dynamic curtailment or demand reshaping—after uncertainties are realized. Physical grid constraints are modeled using convexified LinDistFlow equations, while EV behavior is segmented into user classes with individualized uncertainty structures. The model is evaluated on a modified IEEE 123-bus feeder with 52 EV-PV nodes, using 15 min resolution over a 24 h horizon and 12 months of real-world data. Comparative results demonstrate that the proposed DDRO method reduces total operational costs by up to 15%, eliminates voltage violations entirely, and improves EV service satisfaction by more than 30% relative to deterministic and stochastic baselines. This work makes three primary contributions: it introduces a robust, tractable optimization architecture that captures spatiotemporal uncertainty using empirical Wasserstein sets; it integrates behavioral and physical modeling within a unified dispatch framework for urban energy-mobility systems; and it demonstrates the value of robust coordination in simultaneously improving grid resilience, renewable utilization, and EV user satisfaction. The results offer practical insights for city-scale planners seeking to enable the reliable and efficient electrification of mobility infrastructure under uncertainty. Full article
Show Figures

Figure 1

32 pages, 10028 KiB  
Article
Natural Gas Heating in Serbian and Czech Towns: The Role of Urban Topologies and Building Typologies
by Dejan Brkić, Zoran Stajić and Dragana Temeljkovski Novaković
Urban Sci. 2025, 9(7), 284; https://doi.org/10.3390/urbansci9070284 - 21 Jul 2025
Viewed by 448
Abstract
This article presents an analysis on natural gas heating in residential areas, focusing on two primary systems: (1) local heating, where piped gas is delivered directly to individual dwellings equipped with autonomous gas boilers, and (2) district heating, where gas or an alternative [...] Read more.
This article presents an analysis on natural gas heating in residential areas, focusing on two primary systems: (1) local heating, where piped gas is delivered directly to individual dwellings equipped with autonomous gas boilers, and (2) district heating, where gas or an alternative fuel powers a central heating plant, and the generated heat is distributed to buildings via a thermal network. The choice between these systems should first consider safety and environmental factors, followed by the urban characteristics of the settlement. In particular, building typology—such as size, function, and spatial configuration—and urban topology, referring to the relative positioning of buildings, play a crucial role. For example, very tall buildings often exclude the use of piped gas due to safety concerns, whereas in other cases, economic efficiency becomes the determining factor. To support decision-making, a comparative cost analysis is conducted, assessing the required infrastructure for both systems, including pipelines, boilers, and associated components. The study identifies representative residential building types in selected urban areas of Serbia and Czechia that are suitable for either heating approach. Additionally, the article examines the broader energy context in both countries, with emphasis on recent developments in the natural gas sector and their implications for urban heating strategies. Full article
(This article belongs to the Special Issue Urban Building Energy Analysis)
Show Figures

Figure 1

19 pages, 6799 KiB  
Article
Analysis of Energy Recovery Out of the Water Supply and Distribution Network of the Brussels Capital Region
by François Nuc and Patrick Hendrick
Energies 2025, 18(14), 3777; https://doi.org/10.3390/en18143777 - 16 Jul 2025
Viewed by 248
Abstract
Water Supply and Distribution Networks (WSDNs) offer underexplored potential for energy recovery. While many studies confirm their technical feasibility, few assess the long-term operational compatibility and economic viability of such solutions. This study evaluates the energy recovery potential of the Brussels Capital Region’s [...] Read more.
Water Supply and Distribution Networks (WSDNs) offer underexplored potential for energy recovery. While many studies confirm their technical feasibility, few assess the long-term operational compatibility and economic viability of such solutions. This study evaluates the energy recovery potential of the Brussels Capital Region’s WSDN using four years (2019–2022) of operational data. Rather than focusing on available technologies, the analysis examines whether the real behavior of the network supports sustainable energy extraction. The approach includes network topology identification, theoretical power modeling, and detailed flow and pressure analysis. The Brussels system, composed of a Water Supply Network (WSN) and a Water Distribution Network (WDN), reveals strong disparities: the WSN offers localized opportunities for energy recovery, while the WDN presents significant operational constraints that limit economic viability. Our findings suggest that day-ahead electricity markets provide more suitable valorization pathways than flexibility markets. Most importantly, the study highlights the necessity of long-term behavioral analysis to avoid misleading conclusions based on short-term data and to support informed investment decisions in the urban water–energy nexus. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

22 pages, 3812 KiB  
Article
Optimal Collaborative Scheduling Strategy of Mobile Energy Storage System and Electric Vehicles Considering SpatioTemporal Characteristics
by Liming Sun and Tao Yu
Processes 2025, 13(7), 2242; https://doi.org/10.3390/pr13072242 - 14 Jul 2025
Cited by 1 | Viewed by 290
Abstract
The widespread adoption of electric vehicles introduces significant challenges to power grid stability due to uncoordinated large-scale charging and discharging behaviors. By addressing these challenges, mobile energy storage systems emerge as a flexible resource. To maximize the synergistic potential of jointly scheduling electric [...] Read more.
The widespread adoption of electric vehicles introduces significant challenges to power grid stability due to uncoordinated large-scale charging and discharging behaviors. By addressing these challenges, mobile energy storage systems emerge as a flexible resource. To maximize the synergistic potential of jointly scheduling electric vehicles and mobile energy storage systems, this study develops a collaborative scheduling model incorporating the prediction of geographically and chronologically varying distributions of electric vehicles. Non-dominated sorting genetic algorithm-III is then applied to solve this model. Validation through case studies, conducted on the IEEE-69 bus system and an actual urban road network in southern China, demonstrates the model’s efficacy. Case studies reveal that compared to the initial disordered state, the optimized strategy yields a 122.6% increase in profits of the electric vehicle charging station operator, a 44.7% reduction in costs to the electric vehicle user, and a 62.5% decrease in voltage deviation. Furthermore, non-dominated sorting genetic algorithm-III exhibits superior comprehensive performance in multi-objective optimization when benchmarked against two alternative algorithms. Full article
(This article belongs to the Topic Advances in Power Science and Technology, 2nd Edition)
Show Figures

Figure 1

33 pages, 3891 KiB  
Review
Utility Transformer DC Bias Caused by Metro Stray Current—A Review
by Adisu Makeyaw, Xiaofeng Yang, Xiangxuan Sun, Ke Liu, Tianyi Wu and Lu Chen
Energies 2025, 18(14), 3678; https://doi.org/10.3390/en18143678 - 11 Jul 2025
Viewed by 536
Abstract
The rapid expansion of the urban rail network has increased concerns regarding stray current generated by the DC traction power supply system. This stray current, which arises from inadequate insulation between the rail and the ground, can cause electrochemical corrosion and operational challenges [...] Read more.
The rapid expansion of the urban rail network has increased concerns regarding stray current generated by the DC traction power supply system. This stray current, which arises from inadequate insulation between the rail and the ground, can cause electrochemical corrosion and operational challenges to nearby buried metallic infrastructures. A portion of stray current entering utility transformers may induce DC bias risk, thereby affecting the stability and reliability of distribution networks. This review studies the trends in utility transformer-related DC bias caused by metro stray current. Various modeling approaches and suppression measures are discussed, with an emphasis on comprehensively understanding stray current distribution behavior, the DC bias coupling loop, and its impacts. This review underscores the need for a thorough evaluation of existing DC bias suppression measures, and more effective and efficient measures must be developed to enhance the resilience of distribution networks. The gaps in current research are highlighted, and further studies are advocated, particularly those focusing on dynamic metro conditions, supported by advanced modeling, field applications, and interdisciplinary collaboration, to address the challenges of DC bias in urban rail environments. Full article
(This article belongs to the Topic Power System Protection)
Show Figures

Figure 1

18 pages, 769 KiB  
Article
Optimization of Transmission Power in a 3D UAV-Enabled Communication System
by Jorge Carvajal-Rodríguez, David Vega-Sánchez, Christian Tipantuña, Luis Felipe Urquiza, Felipe Grijalva and Xavier Hesselbach
Drones 2025, 9(7), 485; https://doi.org/10.3390/drones9070485 - 10 Jul 2025
Viewed by 226
Abstract
Unmanned Aerial Vehicles (UAVs) are increasingly used in the new generation of communication systems. They serve as access points, base stations, relays, and gateways to extend network coverage, enhance connectivity, or offer communications services in places lacking telecommunication infrastructure. However, optimizing UAV placement [...] Read more.
Unmanned Aerial Vehicles (UAVs) are increasingly used in the new generation of communication systems. They serve as access points, base stations, relays, and gateways to extend network coverage, enhance connectivity, or offer communications services in places lacking telecommunication infrastructure. However, optimizing UAV placement in three-dimensional (3D) environments with diverse user distributions and uneven terrain conditions is a crucial challenge. Therefore, this paper proposes a novel framework to minimize UAV transmission power while ensuring a guaranteed data rate in realistic and complex scenarios. To this end, using the particle swarm optimization evolution (PSO-E) algorithm, this paper analyzes the impact of user-truncated distribution models for suburban, urban and dense urban environments. Extensive simulations demonstrate that dense urban environments demand higher power than suburban and urban environments, with uniform user distributions requiring the most power in all scenarios. Conversely, Gaussian and exponential distributions exhibit lower power requirements, particularly in scenarios with concentrated user hotspots. The proposed model provides insight into achieving efficient network deployment and power optimization, offering practical solutions for future communication networks in complex 3D scenarios. Full article
(This article belongs to the Section Drone Communications)
Show Figures

Figure 1

18 pages, 4682 KiB  
Article
Optimizing EV Charging Station Carrying Capacity Considering Coordinated Multi-Flexibility Resources
by Yalu Fu, Yushen Gong, Chao Shi, Chaoming Zheng, Guangzeng You and Wencong Xiao
World Electr. Veh. J. 2025, 16(7), 381; https://doi.org/10.3390/wevj16070381 - 7 Jul 2025
Viewed by 340
Abstract
The rapid growth of electric vehicles (EVs) poses significant challenges to the safe operation of charging stations and distribution networks. Variations in charging power across different EV manufacturers lead to substantial load fluctuations at charging stations. In some tourist cities in China, charging [...] Read more.
The rapid growth of electric vehicles (EVs) poses significant challenges to the safe operation of charging stations and distribution networks. Variations in charging power across different EV manufacturers lead to substantial load fluctuations at charging stations. In some tourist cities in China, charging loads can surge at specific times, yet existing research mainly focuses on optimizing station location and basic capacity configuration, neglecting sudden peak load management. To address this, we propose a method that enhances charging station carrying capacity (CSCC) by coordinating multi-flexibility resources. This method optimizes the configuration of soft open points (SOPs) to enable flexible interconnections between feeders and incorporates elastic load scheduling for data centers. An optimization model is developed to coordinate these flexible resources, thereby improving the CSCC. Case studies demonstrate that this approach effectively increases CSCC at lower costs, facilitates the utilization of renewable energy, and enhances the overall system economy. The results validate the feasibility and effectiveness of the proposed approach, offering new insights for urban grid planning and EV charging stations optimization. Full article
(This article belongs to the Special Issue Fast-Charging Station for Electric Vehicles: Challenges and Issues)
Show Figures

Figure 1

22 pages, 6339 KiB  
Article
An Enhanced Approach for Urban Sustainability Considering Coordinated Source-Load-Storage in Distribution Networks Under Extreme Natural Disasters
by Jiayi Zhang, Qianggang Wang and Yiyao Zhou
Sustainability 2025, 17(13), 6110; https://doi.org/10.3390/su17136110 - 3 Jul 2025
Viewed by 311
Abstract
Frequent extreme natural disasters can lead to large-scale power outages, significantly compromising the reliability and sustainability of urban power supply, as well as the sustainability of urban development. To address this issue, this paper proposes a two-layer resilience optimization method for distribution networks [...] Read more.
Frequent extreme natural disasters can lead to large-scale power outages, significantly compromising the reliability and sustainability of urban power supply, as well as the sustainability of urban development. To address this issue, this paper proposes a two-layer resilience optimization method for distribution networks aimed at improving voltage quality during post-disaster power restoration, enhancing the resilience of the power grid, and thus improving the sustainability of urban development. Specifically, the upper-layer model determines the topology of the urban distribution network and dispatches emergency resources to restore power and reconstruct the original topology. Based on this restoration, the lower-layer model further enhances voltage quality by prioritizing the dispatch of flexible resources according to voltage sensitivity coefficients derived from power flow calculations. A larger voltage sensitivity coefficient indicates a stronger voltage optimization effect. Thus, the proposed method enables comparable voltage regulation performance with lower operational cost. Simulation findings on the IEEE-33 bus test system revealed that the proposed strategy minimized the impact of voltage fluctuations by 10.92 percent and cut the cost related to restoration by 31.25 percent, as compared to traditional post-disaster restoration plans, which do not entail optimization of system voltages. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

26 pages, 4104 KiB  
Article
Smart Thermostat Development and Validation on an Environmental Chamber Using Surrogate Modelling
by Leonidas Zouloumis, Nikolaos Ploskas, Nikolaos Taousanidis and Giorgos Panaras
Energies 2025, 18(13), 3433; https://doi.org/10.3390/en18133433 - 30 Jun 2025
Viewed by 230
Abstract
The significant contribution of buildings to the global primary energy consumption necessitates the application of energy management methodologies at a building scale. Although dynamic simulation tools and decision-making algorithms are core components of energy management methodologies, they are often accompanied by excessive computational [...] Read more.
The significant contribution of buildings to the global primary energy consumption necessitates the application of energy management methodologies at a building scale. Although dynamic simulation tools and decision-making algorithms are core components of energy management methodologies, they are often accompanied by excessive computational cost. As future controlling structures tend to become autonomized in building heating layouts, encouraging distributed heating services, the research scope calls for creating lightweight building energy system modeling as well monitoring and controlling methods. Following this notion, the proposed methodology turns a programmable controller into a smart thermostat that utilizes surrogate modeling formed by the ALAMO approach and is applied in a 4-m-by-4-m-by-2.85-m environmental chamber setup heated by a heat pump. The results indicate that the smart thermostat trained on the indoor environmental conditions of the chamber for a one-week period attained a predictive RMSE of 0.082–0.116 °C. Consequently, it preplans the heating hours and applies preheating controlling strategies in real time effectively, using only the computational power of a conventional controller, essentially managing to attain at least 97% thermal comfort on the test days. Finally, the methodology has the potential to meet the requirements of future building energy systems featured in urban-scale RES-based district heating networks. Full article
(This article belongs to the Special Issue Optimizing Energy Efficiency and Thermal Comfort in Building)
Show Figures

Figure 1

31 pages, 2298 KiB  
Review
Optical Fiber-Based Structural Health Monitoring: Advancements, Applications, and Integration with Artificial Intelligence for Civil and Urban Infrastructure
by Nikita V. Golovastikov, Nikolay L. Kazanskiy and Svetlana N. Khonina
Photonics 2025, 12(6), 615; https://doi.org/10.3390/photonics12060615 - 16 Jun 2025
Cited by 1 | Viewed by 1390
Abstract
Structural health monitoring (SHM) plays a vital role in ensuring the safety, durability, and performance of civil infrastructure. This review delves into the significant advancements in optical fiber sensor (OFS) technologies such as Fiber Bragg Gratings, Distributed Temperature Sensing, and Brillouin-based systems, which [...] Read more.
Structural health monitoring (SHM) plays a vital role in ensuring the safety, durability, and performance of civil infrastructure. This review delves into the significant advancements in optical fiber sensor (OFS) technologies such as Fiber Bragg Gratings, Distributed Temperature Sensing, and Brillouin-based systems, which have emerged as powerful tools for enhancing SHM capabilities. Offering high sensitivity, resistance to electromagnetic interference, and real-time distributed monitoring, these sensors present a superior alternative to conventional methods. This paper also explores the integration of OFSs with Artificial Intelligence (AI), which enables automated damage detection, intelligent data analysis, and predictive maintenance. Through case studies across key infrastructure domains, including bridges, tunnels, high-rise buildings, pipelines, and offshore structures, the review demonstrates the adaptability and scalability of these sensor systems. Moreover, the role of SHM is examined within the broader context of civil and urban infrastructure, where IoT connectivity, AI-driven analytics, and big data platforms converge to create intelligent and responsive infrastructure. While challenges remain, such as installation complexity, calibration issues, and cost, ongoing innovation in hybrid sensor networks, low-power systems, and edge computing points to a promising future. This paper offers a comprehensive amalgamation of current progress and future directions, outlining a strategic path for next-generation SHM in resilient urban environments. Full article
Show Figures

Figure 1

22 pages, 7220 KiB  
Article
Identifying Polycentric Urban Structure Using the Minimum Cycle Basis of Road Network as Building Blocks
by Yuanbiao Li, Tingyu Wang, Yu Zhao and Bo Yang
Entropy 2025, 27(6), 618; https://doi.org/10.3390/e27060618 - 11 Jun 2025
Viewed by 375
Abstract
A graph’s minimum cycle basis is defined as the smallest collection of cycles that exhibit linear independence in the cycle space, serving as fundamental building blocks for constructing any cyclic structure within the graph. These bases are useful in various contexts, including the [...] Read more.
A graph’s minimum cycle basis is defined as the smallest collection of cycles that exhibit linear independence in the cycle space, serving as fundamental building blocks for constructing any cyclic structure within the graph. These bases are useful in various contexts, including the intricate analysis of electrical networks, structural engineering endeavors, chemical processes, and surface reconstruction techniques, etc. This study investigates the urban road networks of six Chinese cities to analyze their topological features, node centrality, and robustness (resilience to traffic disruptions) using motif analysis and minimum cycle bases methodologies. Some interesting conclusions are obtained: the frequency of motifs containing cycles exceeds that of random networks with equivalent degree sequences; the frequency distribution of minimum cycle lengths and surface areas obeys the power-law distribution. The cycle contribution rate is introduced to investigate the centrality of nodes within road networks, and has a significant impact on the total number of cycles in the robustness analysis. Finally, we construct two types of cycle-based dual networks for urban road networks by representing cycles as nodes and establishing edges between two cycles sharing a common node and edge, respectively. The results show that cycle-based dual networks exhibit small-world and scale-free properties. The research facilitates a comprehensive understanding of the cycle structure characteristics in urban road networks, thereby providing a theoretical foundation for both subsequent modeling endeavors of transportation networks and optimization strategies for existing road infrastructure. Full article
(This article belongs to the Section Complexity)
Show Figures

Figure 1

25 pages, 5824 KiB  
Article
Identifying Hubs Through Influential Nodes in Transportation Network by Using a Gravity Centrality Approach
by Worawit Tepsan, Aniwat Phaphuangwittayakul, Saronsad Sokantika and Napat Harnpornchai
Algorithms 2025, 18(6), 356; https://doi.org/10.3390/a18060356 - 10 Jun 2025
Viewed by 1233
Abstract
Hubs are strategic locations that function as central nodes within clusters of cities, playing a pivotal role in the distribution of goods, services, and connectivity. Identifying these vital hubs—through analyzing influential locations within transportation networks—is essential for effective urban planning, logistics optimization, and [...] Read more.
Hubs are strategic locations that function as central nodes within clusters of cities, playing a pivotal role in the distribution of goods, services, and connectivity. Identifying these vital hubs—through analyzing influential locations within transportation networks—is essential for effective urban planning, logistics optimization, and enhancing infrastructure resilience. This task becomes even more crucial in developing and less-developed countries, where such hubs can significantly accelerate urban growth and drive economic development. However, existing hub identification approaches face notable limitations. Traditional centrality measures often yield low variance in node scores, making it difficult to distinguish truly influential nodes. Moreover, these methods typically rely solely on either local metrics or global network structures, limiting their effectiveness. To address these challenges, we propose a novel method called Hybrid Community-based Gravity Centrality (HCGC), which integrates local influence measures, community detection, and gravity-based modeling to more effectively identify influential nodes in complex networks. Through extensive experiments, we demonstrate that HCGC consistently outperforms existing methods in terms of spreading ability across varying truncation radii. To further validate our approach, we introduce ThaiNet, a newly constructed real-world transportation network dataset. The results show that HCGC not only preserves the strengths of traditional local approaches but also captures broader structural patterns, making it a powerful and practical tool for real-world network analysis. Full article
(This article belongs to the Section Algorithms for Multidisciplinary Applications)
Show Figures

Figure 1

16 pages, 3043 KiB  
Article
Green Last-Mile Delivery: Adapting Beverage Distribution to Low Emission Urban Areas
by Alessandro Giordano and Panayotis Christidis
Future Transp. 2025, 5(2), 65; https://doi.org/10.3390/futuretransp5020065 - 3 Jun 2025
Viewed by 413
Abstract
Electrifying urban last-mile logistics is an important step towards reducing carbon emissions which requires replacing conventional vehicles with low-carbon alternatives that offer comparable operational and cost characteristics. This study presents a methodology for evaluating the feasibility of electrifying an urban delivery fleet, using [...] Read more.
Electrifying urban last-mile logistics is an important step towards reducing carbon emissions which requires replacing conventional vehicles with low-carbon alternatives that offer comparable operational and cost characteristics. This study presents a methodology for evaluating the feasibility of electrifying an urban delivery fleet, using data from a major beverage company in Seville as a case study. Applying a fleet and route optimization algorithm for various vehicle combinations, we demonstrate that emerging electric vehicle options, combined with a redesigned fleet mix and an optimized routing, can already enable cost-efficient electrification of distribution activities in the city centre. Furthermore, our analysis suggests that full electrification of the company’s local distribution network may be possible by 2030, depending on the availability of larger electric trucks. Our results show that currently available electric vehicles can fully substitute conventional options in the case study context, with higher capital costs offset by lower energy costs in most cases. The electrification of urban logistics can yield significant environmental benefits, particularly if powered by a clean energy mix. Full article
(This article belongs to the Special Issue Innovation in Last-Mile and Long-Distance Transportation)
Show Figures

Figure 1

24 pages, 4719 KiB  
Article
Urban Resilience and Energy Demand in Tropical Climates: A Functional Zoning Approach for Emerging Cities
by Javier Urquizo and Hugo Rivera-Torres
Urban Sci. 2025, 9(6), 203; https://doi.org/10.3390/urbansci9060203 - 2 Jun 2025
Viewed by 740
Abstract
The management of power supply and distribution is becoming increasingly challenging because of the significant increase in energy demand brought on by global population growth. Buildings are estimated to be accountable for 40% of the worldwide use of energy, which underlines how important [...] Read more.
The management of power supply and distribution is becoming increasingly challenging because of the significant increase in energy demand brought on by global population growth. Buildings are estimated to be accountable for 40% of the worldwide use of energy, which underlines how important accurate demand estimation is for the design and construction of electrical infrastructure. In this respect, transmission and distribution network planning must be adjusted to ensure a smooth transition to the National Interconnected System (NIS). A technical and analytical scientific approach to a modern neighbourhood in Ecuador called “the Nuevo Samborondón” case study (NSCS) is laid out in this article. Collecting geo-referenced data, evaluating the current electrical infrastructure, and forecasting energy demand constitute the first stages in this research procedure. The sector’s energy behaviour is accurately modelled using advanced programs such as 3D design software for modelling and drawing urban architecture along with a whole building energy simulation program and geographical information systems (GIS). For the purpose of recreating several operational situations and building the distribution infrastructure while giving priority to the current urban planning, an electrical system model is subsequently developed using power system analysis software at both levels of transmission and distribution. Furthermore, seamless digital substations are suggested as a component of the nation’s electrical infrastructure upgrade to provide redundancy and zero downtime. According to our findings, installing a 69 kV ring is a crucial step in electrifying NSCS and aligning electrical network innovations with urban planning. The system’s capacity to adjust and optimize power distribution would be strengthened provided the algorithms were given the freedom to react dynamically to changes or disruptions brought about by distributed generation sources. Full article
Show Figures

Figure 1

18 pages, 1517 KiB  
Article
Power Supply Resilience Under Typhoon Disasters: A Recovery Strategy Considering the Coordinated Dispatchable Potential of Electric Vehicles and Mobile Energy Storage
by Xinyi Dong, Xiaofu Xiong, Di Yang, Song Wang and Yanghaoran Zhu
Processes 2025, 13(6), 1638; https://doi.org/10.3390/pr13061638 - 23 May 2025
Viewed by 522
Abstract
In recent years, extreme natural disasters, such as typhoons, have become increasingly frequent, leading to persistent power outages in urban distribution grids. These outages pose significant challenges to the stability of urban power supply systems. With the growing number of electric vehicle (EV) [...] Read more.
In recent years, extreme natural disasters, such as typhoons, have become increasingly frequent, leading to persistent power outages in urban distribution grids. These outages pose significant challenges to the stability of urban power supply systems. With the growing number of electric vehicle (EV) users and the expanding EV industry, and considering the potential of EVs as flexible load storage resources, this paper proposes a post-disaster power supply restoration strategy that takes into account the potential of coordinated scheduling of EVs and mobile energy storage. First, a compression method based on the Minkowski addition is proposed for the EV cluster model in charging stations, which establishes an EV dispatchable model. Second, the spatiotemporal matrix of failure rates for distribution network elements is calculated using the Batts wind field model, enabling the generation of distribution network failure scenarios under typhoon conditions. Finally, the power supply restoration strategy of multi-source coordination with the participation of EV cluster and mobile storage is formulated with the objective of minimizing the loss of the distribution network side. Simulation results demonstrate that the proposed strategy effectively utilizes the load storage potential of EVs and mobile energy storage, enhances recovery performance, ensures cost-effectiveness, and explicitly solves the islanding operation stability problem. Full article
Show Figures

Figure 1

Back to TopTop