Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,286)

Search Parameters:
Keywords = urban configurations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2104 KiB  
Article
Landscape Heterogeneity and Transition Drive Wildfire Frequency in the Central Zone of Chile
by Mariam Valladares-Castellanos, Guofan Shao and Douglass F. Jacobs
Remote Sens. 2025, 17(15), 2721; https://doi.org/10.3390/rs17152721 - 6 Aug 2025
Abstract
Wildfire regimes are closely linked to changes in landscape structure, yet the influence of accelerated land use transitions on fire activity remains poorly understood, particularly in rapidly transforming regions like central Chile. Although land use change has been extensively documented in the country, [...] Read more.
Wildfire regimes are closely linked to changes in landscape structure, yet the influence of accelerated land use transitions on fire activity remains poorly understood, particularly in rapidly transforming regions like central Chile. Although land use change has been extensively documented in the country, the specific role of the speed, extent, and spatial configuration of these transitions in shaping fire dynamics requires further investigation. To address this gap, we examined how landscape transitions influence fire frequency in central Chile, a region experiencing rapid land use change and heightened fire activity. Using multi-temporal remote sensing data, we quantified land use transitions, calculated landscape metrics to describe their spatial characteristics, and applied intensity analysis to assess their relationship with fire frequency changes. Our results show that accelerated landscape transitions significantly increased fire frequency, particularly in areas affected by forest plantation rotations, new forest establishment, and urban expansion, with changes exceeding uniform intensity expectations. Regional variations were evident: In the more densely populated northern areas, increased fire frequency was primarily linked to urban development and deforestation, while in the more rural southern regions, forest plantation cycles played a dominant role. Areas with a high number of large forest patches were especially prone to fire frequency increases. These findings demonstrate that both the speed and spatial configuration of landscape transitions are critical drivers of wildfire activity. By identifying the specific land use changes and landscape characteristics that amplify fire risks, this study provides valuable knowledge to inform fire risk reduction, landscape management, and urban planning in Chile and other fire-prone regions undergoing rapid transformation. Full article
Show Figures

Figure 1

22 pages, 4426 KiB  
Article
A Digital Twin Platform for Real-Time Intersection Traffic Monitoring, Performance Evaluation, and Calibration
by Abolfazl Afshari, Joyoung Lee and Dejan Besenski
Infrastructures 2025, 10(8), 204; https://doi.org/10.3390/infrastructures10080204 - 4 Aug 2025
Abstract
Emerging transportation challenges necessitate cutting-edge technologies for real-time infrastructure and traffic monitoring. To create a dynamic digital twin for intersection monitoring, data gathering, performance assessment, and calibration of microsimulation software, this study presents a state-of-the-art platform that combines high-resolution LiDAR sensor data with [...] Read more.
Emerging transportation challenges necessitate cutting-edge technologies for real-time infrastructure and traffic monitoring. To create a dynamic digital twin for intersection monitoring, data gathering, performance assessment, and calibration of microsimulation software, this study presents a state-of-the-art platform that combines high-resolution LiDAR sensor data with VISSIM simulation software. Intending to track traffic flow and evaluate important factors, including congestion, delays, and lane configurations, the platform gathers and analyzes real-time data. The technology allows proactive actions to improve safety and reduce interruptions by utilizing the comprehensive information that LiDAR provides, such as vehicle trajectories, speed profiles, and lane changes. The digital twin technique offers unparalleled precision in traffic and infrastructure state monitoring by fusing real data streams with simulation-based performance analysis. The results show how the platform can transform real-time monitoring and open the door to data-driven decision-making, safer intersections, and more intelligent traffic data collection methods. Using the proposed platform, this study calibrated a VISSIM simulation network to optimize the driving behavior parameters in the software. This study addresses current issues in urban traffic management with real-time solutions, demonstrating the revolutionary impact of emerging technology in intelligent infrastructure monitoring. Full article
Show Figures

Figure 1

40 pages, 4775 KiB  
Article
Optimal Sizing of Battery Energy Storage System for Implicit Flexibility in Multi-Energy Microgrids
by Andrea Scrocca, Maurizio Delfanti and Filippo Bovera
Appl. Sci. 2025, 15(15), 8529; https://doi.org/10.3390/app15158529 (registering DOI) - 31 Jul 2025
Viewed by 155
Abstract
In the context of urban decarbonization, multi-energy microgrids (MEMGs) are gaining increasing relevance due to their ability to enhance synergies across multiple energy vectors. This study presents a block-based MILP framework developed to optimize the operations of a real MEMG, with a particular [...] Read more.
In the context of urban decarbonization, multi-energy microgrids (MEMGs) are gaining increasing relevance due to their ability to enhance synergies across multiple energy vectors. This study presents a block-based MILP framework developed to optimize the operations of a real MEMG, with a particular focus on accurately modeling the structure of electricity and natural gas bills. The objective is to assess the added economic value of integrating a battery energy storage system (BESS) under the assumption it is employed to provide implicit flexibility—namely, bill management, energy arbitrage, and peak shaving. Results show that under assumed market conditions, tariff schemes, and BESS costs, none of the analyzed BESS configurations achieve a positive net present value. However, a 2 MW/4 MWh BESS yields a 3.8% reduction in annual operating costs compared to the base case without storage, driven by increased self-consumption (+2.8%), reduced thermal energy waste (–6.4%), and a substantial decrease in power-based electricity charges (–77.9%). The performed sensitivity analyses indicate that even with a significantly higher day-ahead market price spread, the BESS is not sufficiently incentivized to perform pure energy arbitrage and that the effectiveness of a time-of-use power-based tariff depends not only on the level of price differentiation but also on the BESS size. Overall, this study provides insights into the role of BESS in MEMGs and highlights the need for electricity bill designs that better reward the provision of implicit flexibility by storage systems. Full article
(This article belongs to the Special Issue Innovative Approaches to Optimize Future Multi-Energy Systems)
Show Figures

Figure 1

18 pages, 9390 KiB  
Article
An Integrated SEA–Deep Learning Approach for the Optimal Geometry Performance of Noise Barrier
by Hao Wu, Lingshan He, Ziyu Tao, Duo Zhang and Yunke Luo
Machines 2025, 13(8), 670; https://doi.org/10.3390/machines13080670 - 31 Jul 2025
Viewed by 167
Abstract
The escalating environmental noise pollution along urban rail transit corridors, exacerbated by rapid urbanization, necessitates innovative and efficient noise control measures. A comprehensive investigation was conducted that utilized field measurements of train passing-by noise to establish a statistical energy analysis model for evaluating [...] Read more.
The escalating environmental noise pollution along urban rail transit corridors, exacerbated by rapid urbanization, necessitates innovative and efficient noise control measures. A comprehensive investigation was conducted that utilized field measurements of train passing-by noise to establish a statistical energy analysis model for evaluating the acoustic performance of both vertical (VB) and fully enclosed (FB) barrier configurations. The study incorporated Maa’s theory of micro-perforated plate (MPP) parameter optimization and developed a neural network surrogate model focused on insertion loss maximization for barrier geometric design. Key findings revealed significant barrier-induced near-track noise amplification, with peak effects observed at the point located 1 m from the barrier and 2 m above the rail. Frequency-dependent analysis demonstrated a characteristic rise-and-fall reflection pattern, showing maximum amplifications of 1.47 dB for VB and 4.13 dB for FB within the 400–2000 Hz range. The implementation of optimized MPPs was found to effectively eliminate the near-field noise amplification effects, achieving sound pressure level reductions of 4–8 dB at acoustically sensitive locations. Furthermore, the high-precision surrogate model (R2 = 0.9094, MSE = 0.8711) facilitated optimal geometric design solutions. The synergistic combination of MPP absorption characteristics and geometric optimization resulted in substantially enhanced barrier performance, offering practical solutions for urban rail noise mitigation strategies. Full article
(This article belongs to the Special Issue Advances in Noises and Vibrations for Machines)
Show Figures

Figure 1

23 pages, 16311 KiB  
Article
Stratum Responses and Disaster Mitigation Strategies During Pressurized Pipe Bursts: Role of Geotextile Reinforcement
by Zhongjie Hao, Hui Chao, Yong Tan, Ziye Wang, Zekun Su and Xuecong Li
Buildings 2025, 15(15), 2696; https://doi.org/10.3390/buildings15152696 - 30 Jul 2025
Viewed by 179
Abstract
Urban subsurface pipeline bursts can induce catastrophic cascading effects, including ground collapse, infrastructure failure, and socioeconomic losses. However, stratum responses during the erosion cavity expansion phase and corresponding disaster mitigation strategies have rarely been researched. In this study, a numerical model validated through [...] Read more.
Urban subsurface pipeline bursts can induce catastrophic cascading effects, including ground collapse, infrastructure failure, and socioeconomic losses. However, stratum responses during the erosion cavity expansion phase and corresponding disaster mitigation strategies have rarely been researched. In this study, a numerical model validated through experimental tests was employed to investigate the effects of internal water pressures, burial depths, and different geotextile-based disaster mitigation strategies. It was revealed that a burial depth-dependent critical internal water pressure governed the erosion cavity expansion, and a predictive equation was derived based on the limit equilibrium theory. Higher internal water pressure accelerated the erosion cavity expansion and amplified the stratum stress within a range of twice the diameter D. Increased burial depth d reduced peak ground heave but linearly expanded the heave zone range, concurrently elevating the overall stratum stress level and generating larger stress reduction zones (i.e., when d/D = 3.0, the range of the stress reduction zone was 8.0D). All geotextile layout configurations exhibited different disaster mitigation effects (the peak ground heave was reduced by at least 15%). The semi-circular closely fitted configuration (SCCF) optimally restricted the expansion of the erosion cavity, reduced the stratum displacement (i.e., 39% reduction in the peak ground heave), and avoided stress concentration. Comprehensive analysis indicated that SCCF was suited for low-pressure pipelines in deformation-sensitive stratum and semi-circular configuration (SC) was suitable for deformation-insensitive pipeline sections. These findings provide actionable insights for tailoring mitigation strategies to specific operational risks. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

18 pages, 3500 KiB  
Article
Effect of Window Structure and Mounting on Sound Insulation: A Laboratory-Based Study
by Leszek Dulak and Artur Nowoświat
Sustainability 2025, 17(15), 6892; https://doi.org/10.3390/su17156892 - 29 Jul 2025
Viewed by 166
Abstract
The acoustic performance of windows significantly influences evaluations of building quality, particularly in urban environments. This study presents the results of laboratory tests on the airborne sound insulation of windows with dimensions greater than those specified in ISO 10140-5:2021-10. The aim was to [...] Read more.
The acoustic performance of windows significantly influences evaluations of building quality, particularly in urban environments. This study presents the results of laboratory tests on the airborne sound insulation of windows with dimensions greater than those specified in ISO 10140-5:2021-10. The aim was to determine the impact of construction details and installation techniques on sound insulation, specifically Rw and Rw + Ctr values. The experimental variables included mounting methods (expansion tape versus low-pressure polyurethane foam), the presence or absence of a threshold in the lower frame, and the type of mullion (fixed versus movable). The tests involved two types of IGUs characterized by different acoustic properties. The findings indicate that the frame configuration, including threshold and mullion type, has a negligible influence on sound insulation. However, the standard method for estimating acoustic performance (EN 14351-1:2006 + A2:2017), which relies on IGU-based data, proved unreliable for modern window assemblies. The estimated values of Rw and Rw + Ctr were consistently lower than those obtained from direct laboratory measurements. These results highlight the need for verification through full-size window testing and suggest that reliance on simplified estimation procedures may lead to underperformance in real-world acoustic applications. Full article
(This article belongs to the Special Issue Advancements in Green Building Materials, Structures, and Techniques)
Show Figures

Figure 1

15 pages, 1776 KiB  
Article
Do Metropolitan Zoning Asymmetries Influence the Geography of Suburban Growth and Gentrification?
by Hyojung Lee and Kfir Mordechay
Land 2025, 14(8), 1555; https://doi.org/10.3390/land14081555 - 29 Jul 2025
Viewed by 324
Abstract
Zoning policies play a critical role in shaping the geography of urban and suburban development in the United States. Using data from the National Zoning and Land-Use Database and tract-level census data from 42 Metropolitan Statistical Areas, we classify metros into four zoning [...] Read more.
Zoning policies play a critical role in shaping the geography of urban and suburban development in the United States. Using data from the National Zoning and Land-Use Database and tract-level census data from 42 Metropolitan Statistical Areas, we classify metros into four zoning regime types based on the relative restrictiveness of urban and suburban land-use policies and compare trends in population growth and neighborhood change across these regimes. Our findings show that suburban areas have outpaced urban cores in population growth across all zoning configurations, with the most pronounced growth occurring in metros where restrictive urban zoning coexists with permissive suburban regulation. This growth is disproportionately concentrated in affluent suburban neighborhoods, suggesting a spatial sorting of access to resources and amenities. We also find that urban–suburban gentrification gaps are the smallest in these asymmetrical zoning regimes, suggesting that permissive suburban land use may facilitate spillover effects from constrained cores. These findings suggest that zoning asymmetries shape not only the geography of growth but also the spatial dynamics of gentrification. We argue for a metropolitan perspective on land-use governance to better understand the interconnected nature of suburbanization and the spatial expansion of gentrification. Full article
Show Figures

Figure 1

36 pages, 27306 KiB  
Article
Integrating Social Network and Space Syntax: A Multi-Scale Diagnostic–Optimization Framework for Public Space Optimization in Nomadic Heritage Villages of Xinjiang
by Hao Liu, Rouziahong Paerhati, Nurimaimaiti Tuluxun, Saierjiang Halike, Cong Wang and Huandi Yan
Buildings 2025, 15(15), 2670; https://doi.org/10.3390/buildings15152670 - 28 Jul 2025
Viewed by 348
Abstract
Nomadic heritage villages constitute significant material cultural heritage. Under China’s cultural revitalization and rural development strategies, these villages face spatial degradation driven by tourism and urbanization. Current research predominantly employs isolated analytical approaches—space syntax often overlooks social dynamics while social network analysis (SNA) [...] Read more.
Nomadic heritage villages constitute significant material cultural heritage. Under China’s cultural revitalization and rural development strategies, these villages face spatial degradation driven by tourism and urbanization. Current research predominantly employs isolated analytical approaches—space syntax often overlooks social dynamics while social network analysis (SNA) overlooks physical interfaces—hindering the development of holistic solutions for socio-spatial resilience. This study proposes a multi-scale integrated assessment framework combining social network analysis (SNA) and space syntax to systematically evaluate public space structures in traditional nomadic villages of Xinjiang. The framework provides scientific evidence for optimizing public space design in these villages, facilitating harmonious coexistence between spatial functionality and cultural values. Focusing on three heritage villages—representing compact, linear, and dispersed morphologies—the research employs a hierarchical “village-street-node” analytical model to dissect spatial configurations and their socio-functional dynamics. Key findings include the following: Compact villages exhibit high central clustering but excessive concentration, necessitating strategies to enhance network resilience and peripheral connectivity. Linear villages demonstrate weak systemic linkages, requiring “segment-connection point supplementation” interventions to mitigate structural elongation. Dispersed villages maintain moderate network density but face challenges in visual integration and centrality, demanding targeted activation of key intersections to improve regional cohesion. By merging SNA’s social attributes with space syntax’s geometric precision, this framework bridges a methodological gap, offering comprehensive spatial optimization solutions. Practical recommendations include culturally embedded placemaking, adaptive reuse of transitional spaces, and thematic zoning to balance heritage conservation with tourism needs. Analyzing Xinjiang’s unique spatial–social interactions provides innovative insights for sustainable heritage village planning and replicable solutions for comparable global cases. Full article
Show Figures

Figure 1

23 pages, 1075 KiB  
Article
How Does Social Capital Promote Willingness to Pay for Green Energy? A Social Cognitive Perspective
by Lingchao Huang and Wei Li
Sustainability 2025, 17(15), 6849; https://doi.org/10.3390/su17156849 - 28 Jul 2025
Viewed by 230
Abstract
Individual willingness to pay (WTP) for green energy plays a vital role in mitigating climate change. Based on social cognitive theory (SCT), which emphasizes the dynamic interaction among individual cognition, behavior and the environment, this study develops a theoretical model to identify factors [...] Read more.
Individual willingness to pay (WTP) for green energy plays a vital role in mitigating climate change. Based on social cognitive theory (SCT), which emphasizes the dynamic interaction among individual cognition, behavior and the environment, this study develops a theoretical model to identify factors influencing green energy WTP. The study is based on 585 valid questionnaire responses from urban areas in China and uses Structural Equation Modeling (SEM) to reveal the linear causal path. Meanwhile, fuzzy-set Qualitative Comparative Analysis (fsQCA) is utilized to identify the combined paths of multiple conditions leading to a high WTP, making up for the limitations of SEM in explaining complex mechanisms. The SEM analysis shows that social trust, social networks, and social norms have a significant positive impact on individual green energy WTP. And this influence is further transmitted through the mediating role of environmental self-efficacy and expectations of environmental outcomes. The FsQCA results identified three combined paths of social capital and environmental cognitive conditions, including the Network–Norm path, the Network–efficacy path and the Network–Outcome path, all of which can achieve a high level of green energy WTP. Among them, the social networks are a core condition in every path and a key element for enhancing the high green energy WTP. This study promotes the expansion of SCT, from emphasizing the linear role of individual cognition to focusing on the configuration interaction between social structure and psychological cognition, provides empirical evidence for formulating differentiated social intervention strategies and environmental education policies, and contributes to sustainable development and the green energy transition. Full article
Show Figures

Figure 1

27 pages, 1739 KiB  
Article
Hybrid Small Modular Reactor—Renewable Systems for Smart Cities: A Simulation-Based Assessment for Clean and Resilient Urban Energy Transitions
by Nikolay Hinov
Energies 2025, 18(15), 3993; https://doi.org/10.3390/en18153993 - 27 Jul 2025
Viewed by 536
Abstract
The global transition to clean energy necessitates integrated solutions that ensure both environmental sustainability and energy security. This paper proposes a scenario-based modeling framework for urban hybrid energy systems combining small modular reactors (SMRs), photovoltaic (PV) generation, and battery storage within a smart [...] Read more.
The global transition to clean energy necessitates integrated solutions that ensure both environmental sustainability and energy security. This paper proposes a scenario-based modeling framework for urban hybrid energy systems combining small modular reactors (SMRs), photovoltaic (PV) generation, and battery storage within a smart grid architecture. SMRs offer compact, low-carbon, and reliable baseload power suitable for urban environments, while PV and storage enhance system flexibility and renewable integration. Six energy mix scenarios are evaluated using a lifecycle-based cost model that incorporates both capital expenditures (CAPEX) and cumulative carbon costs over a 25-year horizon. The modeling results demonstrate that hybrid SMR–renewable systems—particularly those with high nuclear shares—can reduce lifecycle CO2 emissions by over 90%, while maintaining long-term economic viability under carbon pricing assumptions. Scenario C, which combines 50% SMR, 40% PV, and 10% battery, emerges as a balanced configuration offering deep decarbonization with moderate investment levels. The proposed framework highlights key trade-offs between emissions and capital cost and seeking resilient and scalable pathways to support the global clean energy transition and net-zero commitments. Full article
(This article belongs to the Special Issue Challenges and Opportunities in the Global Clean Energy Transition)
Show Figures

Figure 1

16 pages, 1145 KiB  
Article
A Hybrid Transformer–Mamba Model for Multivariate Metro Energy Consumption Forecasting
by Liheng Long, Zhiyao Chen, Junqian Wu, Qing Fu, Zirui Zhang, Fan Feng and Ronghui Zhang
Electronics 2025, 14(15), 2986; https://doi.org/10.3390/electronics14152986 - 26 Jul 2025
Viewed by 346
Abstract
With the rapid growth of urban populations and the expansion of metro networks, accurate energy consumption prediction has become a critical task for optimizing metro operations and supporting low-carbon city development. Traditional statistical and machine learning methods often struggle to model the complex, [...] Read more.
With the rapid growth of urban populations and the expansion of metro networks, accurate energy consumption prediction has become a critical task for optimizing metro operations and supporting low-carbon city development. Traditional statistical and machine learning methods often struggle to model the complex, nonlinear, and time-varying nature of metro energy data. To address these challenges, this paper proposes MTMM, a novel hybrid model that integrates the multi-head attention mechanism of the Transformer with the efficient, state-space-based Mamba architecture. The Transformer effectively captures long-range temporal dependencies, while Mamba enhances inference speed and reduces complexity. Additionally, the model incorporates multivariate energy features, leveraging the correlations among different energy consumption types to improve predictive performance. Experimental results on real-world data from the Guangzhou Metro demonstrate that MTMM significantly outperforms existing methods in terms of both MAE and MSE. The model also shows strong generalization ability across different prediction lengths and time step configurations, offering a promising solution for intelligent energy management in metro systems. Full article
(This article belongs to the Special Issue AI Applications for Smart Grid)
Show Figures

Figure 1

14 pages, 38692 KiB  
Article
Development of a Microscale Urban Airflow Modeling System Incorporating Buildings and Terrain
by Hyo-Been An and Seung-Bu Park
Atmosphere 2025, 16(8), 905; https://doi.org/10.3390/atmos16080905 - 25 Jul 2025
Viewed by 163
Abstract
We developed a microscale airflow modeling system with detailed building and terrain data to better understand the urban microclimate. Building shapes and heights, and terrain elevation data were integrated to construct a high-resolution urban surface geometry. The system, based on computational fluid dynamics [...] Read more.
We developed a microscale airflow modeling system with detailed building and terrain data to better understand the urban microclimate. Building shapes and heights, and terrain elevation data were integrated to construct a high-resolution urban surface geometry. The system, based on computational fluid dynamics using OpenFOAM, can resolve complex flow structures around built environments. Inflow boundary conditions were generated using logarithmic wind profiles derived from Automatic Weather System (AWS) observations under neutral stability. After validation with wind-tunnel data for a single block, the system was applied to airflow modeling around a university campus in Seoul using AWS data from four nearby stations. The results demonstrated that the system captured key flow characteristics such as channeling, wake, and recirculation induced by complex terrain and building configurations. In particular, easterly inflow cases with high-rise buildings on the leeward side of a mountain exhibited intensified wakes and internal recirculations, with elevated centers influenced by tall structures. This modeling framework, with further development, could support diverse urban applications for microclimate and air quality, facilitating urban resilience. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

23 pages, 1593 KiB  
Article
Natural Ventilation Technique of uNVeF in Urban Residential Unit Through a Case Study
by Ming-Lun Alan Fong and Wai-Kit Chan
Urban Sci. 2025, 9(8), 291; https://doi.org/10.3390/urbansci9080291 - 25 Jul 2025
Viewed by 873
Abstract
The present study was motivated by the need to enhance indoor air quality and reduce airborne disease transmission in dense urban environments where high-rise residential buildings face challenges in achieving effective natural ventilation. The problem lies in the lack of scalable and convenient [...] Read more.
The present study was motivated by the need to enhance indoor air quality and reduce airborne disease transmission in dense urban environments where high-rise residential buildings face challenges in achieving effective natural ventilation. The problem lies in the lack of scalable and convenient tools to optimize natural ventilation rate, particularly in urban settings with varying building heights. To address this, the scientific technique developed with an innovative metric, the urbanized natural ventilation effectiveness factor (uNVeF), integrates regression analysis of wind direction, velocity, air change rate per hour (ACH), window configurations, and building height to quantify ventilation efficiency. By employing a field measurement methodology, the measurements were conducted across 25 window-opening scenarios in a 13.9 m2 residential unit on the 35/F of a Hong Kong public housing building, supplemented by the Hellman Exponential Law with a site-specific friction coefficient (0.2907, R2 = 0.9232) to estimate the lower floor natural ventilation rate. The results confirm compliance with Hong Kong’s statutory 1.5 ACH requirement (Practice Note for Authorized Persons, Registered Structural Engineers, and Registered Geotechnical Engineers) and achieving a peak ACH at a uNVeF of 0.953 with 75% window opening. The results also revealed that lower floors can maintain 1.5 ACH with adjusted window configurations. Using the Wells–Riley model, the estimation results indicated significant airborne disease infection risk reductions of 96.1% at 35/F and 93.4% at 1/F compared to the 1.5 ACH baseline which demonstrates a strong correlation between ACH, uNVeF and infection risks. The uNVeF framework offers a practical approach to optimize natural ventilation and provides actionable guidelines, together with future research on the scope of validity to refine this technique for residents and developers. The implications in the building industry include setting up sustainable design standards, enhancing public health resilience, supporting policy frameworks for energy-efficient urban planning, and potentially driving innovation in high-rise residential construction and retrofitting globally. Full article
Show Figures

Figure 1

24 pages, 13362 KiB  
Article
Optimizing the Spatial Configuration of Renewable Energy Communities: A Model Applied in the RECMOP Project
by Michele Grimaldi and Alessandra Marra
Sustainability 2025, 17(15), 6744; https://doi.org/10.3390/su17156744 - 24 Jul 2025
Viewed by 233
Abstract
Renewable Energy Communities (RECs) are voluntary coalitions of citizens, small and medium-sized enterprises and local authorities, which cooperate to share locally produced renewable energy, providing environmental, economic, and social benefits rather than profits. Despite a favorable European and Italian regulatory framework, their development [...] Read more.
Renewable Energy Communities (RECs) are voluntary coalitions of citizens, small and medium-sized enterprises and local authorities, which cooperate to share locally produced renewable energy, providing environmental, economic, and social benefits rather than profits. Despite a favorable European and Italian regulatory framework, their development is still limited in the Member States. To this end, this paper proposes a methodology to identify optimal spatial configurations of RECs, based on proximity criteria and maximization of energy self-sufficiency. This result is achieved through the mapping of the demand, expressive of the energy consumption of residential buildings; the suitable areas for installing photovoltaic panels on the roofs of existing buildings; the supply; the supply–demand balance, from which it is possible to identify Positive Energy Districts (PEDs) and Negative Energy Districts (NEDs). Through an iterative process, the optimal configuration is then sought, aggregating only PEDs and NEDs that meet the chosen criteria. This method is applied to the case study of the Avellino Province in the Campania Region (Italy). The maps obtained allow local authorities to inform citizens about the areas where it is convenient to aggregate with their neighbors in a REC to have benefits in terms of energy self-sufficiency, savings on bills or incentives at the local level, including those deriving from urban plans. The latter can encourage private initiative in order to speed up the RECs’ deployment. The presented model is being implemented in the framework of an ongoing research and development project, titled Renewable Energy Communities Monitoring, Optimization, and Planning (RECMOP). Full article
(This article belongs to the Special Issue Urban Vulnerability and Resilience)
Show Figures

Figure 1

25 pages, 21107 KiB  
Article
CFD Aerodynamic Analysis of Tandem Tilt-Wing UAVs in Cruise Flight and Tilt Transition Flight
by Bin Xiang, Guoquan Tao, Long Jin, Jizheng Zhang and Jialin Chen
Drones 2025, 9(8), 522; https://doi.org/10.3390/drones9080522 - 24 Jul 2025
Viewed by 215
Abstract
The tandem tilt-wing UAV features an advanced aerodynamic layout design and is regarded as a solution for small-scale urban air mobility. However, the tandem wing configuration exhibits complex aerodynamic interactions between the front and rear wings during cruise flight and the wing tilt [...] Read more.
The tandem tilt-wing UAV features an advanced aerodynamic layout design and is regarded as a solution for small-scale urban air mobility. However, the tandem wing configuration exhibits complex aerodynamic interactions between the front and rear wings during cruise flight and the wing tilt transition process. The objective of this paper is to investigate the aerodynamic coupling characteristics between the front and rear wings of the tandem tilt-wing UAV under level flight and tilt transition conditions while also assessing the influence of the propellers on the aircraft’s aerodynamic performance. Through CFD numerical analysis, the aerodynamic characteristics of various aircraft components are examined at different angles of attack and wing tilt angles, and the underlying reasons for the observed differences and variations are explored. The results indicate that, during level flight, the aerodynamic interference between the wings is primarily dominated by the detrimental influence of the front wing on the rear wing. During the tilt transition process, mutual interactions between the front and rear wings occur as wing tilt angle changes, leading to more drastic variations in lift coefficients and increased control difficulty. However, the propeller’s effect contributes to smoother changes in lift and drag, thereby enhancing aircraft stability. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

Back to TopTop