Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = unilateral labyrinthectomy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2789 KiB  
Article
The Effects of Unilateral Labyrinthectomy on Monoamine Neurotransmitters in the Medial Vestibular Nucleus of Rats
by Jun Wang, E Tian, Yuejin Zhang, Zhaoqi Guo, Jingyu Chen, Weijia Kong, Yisheng Lu and Sulin Zhang
Biomolecules 2023, 13(11), 1637; https://doi.org/10.3390/biom13111637 - 10 Nov 2023
Cited by 6 | Viewed by 1947
Abstract
Background: This study aimed to investigate the effects of unilateral labyrinthectomy (UL) on monoamine neurotransmitters in the medial vestibular nucleus (MVN) of rats. Methods: Adult Sprague–Dawley rats were utilized for the vestibular impaired animal model through UL. The success of the model establishment [...] Read more.
Background: This study aimed to investigate the effects of unilateral labyrinthectomy (UL) on monoamine neurotransmitters in the medial vestibular nucleus (MVN) of rats. Methods: Adult Sprague–Dawley rats were utilized for the vestibular impaired animal model through UL. The success of the model establishment and the recovery process were evaluated using vestibular behavioral tests, including spontaneous nystagmus, postural asymmetry, and balance beam test. Additionally, the expression levels of c-Fos protein in the MVN were assessed by immunofluorescence. Furthermore, changes in the expression levels of monoamine neurotransmitters, including 5-hydroxytryptamine (5-HT), norepinephrine (NE), dopamine (DA), and histamine in the MVN, were analyzed using high-performance liquid chromatography (HPLC) at different time points after UL (4 h, 8 h, 1 day, 2 days, 4 days, and 7 days). Results: Compared to the sham control group, the UL group exhibited the most pronounced vestibular impairment symptoms at 4 h post-UL, which significantly decreased at 4 days and almost fully recovered by 7 days. Immunofluorescence results showed a notable upregulation of c-Fos expression in the MVN subsequent to the UL-4 h, serving as a reliable indicator of heightened neuronal activity. In comparison with the sham group, HPLC analysis showed that the levels of 5-HT and NE in the ipsilesional MVN of the UL group were significantly elevated within 4 days after UL, and peaked on 1 day and 2 days, respectively. DA showed an increasing trend at different time points up to 7 days post-UL, while histamine levels significantly increased only at 1 day post-UL. Conclusions: UL-induced dynamic changes in monoamine neurotransmitters during the early compensation period in the rat MVN may be associated with the regulation of the central vestibular compensation mechanism by the MVN. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms in Vestibular Disorders)
Show Figures

Figure 1

12 pages, 2982 KiB  
Article
Differential Modulation of Cerebellar Flocculus Unipolar Brush Cells during Vestibular Compensation
by Dan Liu, Jun Wang, Liuqing Zhou, E Tian, Jingyu Chen, Weijia Kong, Yisheng Lu and Sulin Zhang
Biomedicines 2023, 11(5), 1298; https://doi.org/10.3390/biomedicines11051298 - 27 Apr 2023
Cited by 6 | Viewed by 2194
Abstract
Vestibular compensation is a natural behavioral recovery process following unilateral vestibular injury. Understanding the mechanism can considerably enhance vestibular disorder therapy and advance the adult central nervous system functional plasticity study after injury. The cerebellum, particularly the flocculonodular lobe, tightly modulates the vestibular [...] Read more.
Vestibular compensation is a natural behavioral recovery process following unilateral vestibular injury. Understanding the mechanism can considerably enhance vestibular disorder therapy and advance the adult central nervous system functional plasticity study after injury. The cerebellum, particularly the flocculonodular lobe, tightly modulates the vestibular nucleus, the center for vestibular compensation; however, it is still unclear if the flocculus on both sides is involved in vestibular compensation. Here we report that the unipolar brush cells (UBCs) in the flocculus are modulated by unilateral labyrinthectomy (UL). UBCs are excitatory interneurons targeting granule cells to provide feedforward innervation to the Purkinje cells, the primary output neurons in the cerebellum. According to the upregulated or downregulated response to the mossy fiber glutamatergic input, UBC can be classified into ON and OFF forms of UBCs. Furthermore, we discovered that the expression of marker genes of ON and OFF UBCs, mGluR1α and calretinin, was increased and decreased, respectively, only in ipsilateral flocculus 4–8 h after UL. According to further immunostaining studies, the number of ON and OFF UBCs was not altered during UL, demonstrating that the shift in marker gene expression level in the flocculus was not caused by the transformation of cell types between UBCs and non-UBCs. These findings imply the importance of ipsilateral flocculus UBCs in the acute response of UL, and ON and OFF UBCs may be involved in vestibular compensation in opposite directions. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

11 pages, 1201 KiB  
Article
Effect of Dexamethasone Combination with Gentamicin in Chemical Labyrinthectomy on Hearing Preservation and Vertigo Control in Patients with Unilateral Meniere’s Disease: A Randomized Controlled Clinical Trial
by Seong-Hoon Bae, Jeon-Mi Lee, Hyun-Jin Lee, Gina Na and Sung-Huhn Kim
J. Clin. Med. 2021, 10(23), 5581; https://doi.org/10.3390/jcm10235581 - 27 Nov 2021
Cited by 10 | Viewed by 3566
Abstract
Chemical labyrinthectomy using gentamicin is a popular method for treating intractable vertigo attacks in Meniere’s disease. However, the risk of hearing loss remains a major concern for clinicians. We investigated the effect of simultaneous dexamethasone and gentamicin application on hearing preservation and vertigo [...] Read more.
Chemical labyrinthectomy using gentamicin is a popular method for treating intractable vertigo attacks in Meniere’s disease. However, the risk of hearing loss remains a major concern for clinicians. We investigated the effect of simultaneous dexamethasone and gentamicin application on hearing preservation and vertigo control in patients with intractable unilateral Meniere’s disease. A single-institutional, prospective, single-blinded, randomized clinical trial was conducted. Gentamicin-soaked Gelfoam® was directly applied on the oval window following middle ear exploration. On the round window, dexamethasone-soaked Gelfoam® was applied in the gentamicin with dexamethasone group (GD group, n = 18), and saline-soaked Gelfoam® was applied in the gentamicin with sham reagent group (GO group, n = 19). The hearing change 8 weeks after the procedure and vertigo control 2–12 months after the procedure were investigated. The high-frequency hearing threshold was significantly increased in the GO group (p = 0.005 and 0.012 for 4 and 8 kHz, respectively), but not in the GD group. The short-term (2–6 months) vertigo control was more successful in the GD group (57.89% vs. 94.44%, p = 0.019), but long-term control (6–12 months) was insignificant. In conclusion, the combined application of gentamicin and dexamethasone in chemical labyrinthectomy is an effective method for protecting high-frequency hearing and vertigo control. Full article
(This article belongs to the Special Issue Recent Advances in Diagnosis and Treatment of Vestibular Disorders)
Show Figures

Figure 1

12 pages, 2056 KiB  
Article
Neural Interruption by Unilateral Labyrinthectomy Biases the Directional Preference of Otolith-Related Vestibular Neurons
by Nguyen Nguyen, Kyu-Sung Kim and Gyutae Kim
Brain Sci. 2021, 11(8), 987; https://doi.org/10.3390/brainsci11080987 - 26 Jul 2021
Viewed by 2218
Abstract
Background: The directional preference of otolith-related vestibular neurons elucidates the neuroanatomical link of labyrinths, but few direct experimental data have been provided. Methods: The directional preference of otolith-related vestibular neurons was measured in the vestibular nucleus using chemically induced unilateral labyrinthectomy (UL). For [...] Read more.
Background: The directional preference of otolith-related vestibular neurons elucidates the neuroanatomical link of labyrinths, but few direct experimental data have been provided. Methods: The directional preference of otolith-related vestibular neurons was measured in the vestibular nucleus using chemically induced unilateral labyrinthectomy (UL). For the model evaluation, static and dynamic behavioral tests as well as a histological test were performed. Extracellular neural activity was recorded for the neuronal responses to the horizontal head rotation and the linear head translation. Results: Seventy-seven neuronal activities were recorded, and the total population was divided into three groups: left UL (20), sham (35), and right UL (22). Based on directional preference, two sub-groups were again classified as contra- and ipsi-preferred neurons. There was no significance in the number of those sub-groups (contra-, 15/35, 43%; ipsi-, 20/35, 57%) in the sham (p = 0.155). However, more ipsi-preferred neurons (19/22, 86%) were observed after right UL (p = 6.056 × 10−5), while left UL caused more contra-preferred neurons (13/20, 65%) (p = 0.058). In particular, the convergent neurons mainly led this biased difference (ipsi-, 100% after right UL and contra-, 89% after left UL) (p < 0.002). Conclusions: The directional preference of the neurons depended on the side of the lesion, and its dominance was mainly led by the convergent neurons. Full article
Show Figures

Figure 1

8 pages, 1171 KiB  
Article
Effects of Betahistine on the Development of Vestibular Compensation after Unilateral Labyrinthectomy in Rats
by Junya Fukuda, Kazunori Matsuda, Go Sato, Tadashi Kitahara, Momoyo Matsuoka, Takahiro Azuma, Yoshiaki Kitamura, Koichi Tomita and Noriaki Takeda
Brain Sci. 2021, 11(3), 360; https://doi.org/10.3390/brainsci11030360 - 11 Mar 2021
Cited by 12 | Viewed by 3449
Abstract
Background: Vestibular compensation (VC) after unilateral labyrinthectomy (UL) consists of the initial and late processes. These processes can be evaluated based on the decline in the frequency of spontaneous nystagmus (SN) and the number of MK801-induced Fos-positive neurons in the contralateral medial vestibular [...] Read more.
Background: Vestibular compensation (VC) after unilateral labyrinthectomy (UL) consists of the initial and late processes. These processes can be evaluated based on the decline in the frequency of spontaneous nystagmus (SN) and the number of MK801-induced Fos-positive neurons in the contralateral medial vestibular nucleus (contra-MVe) in rats. Histamine H3 receptors (H3R) are reported to be involved in the development of VC. Objective: We examined the effects of betahistine, an H3R antagonist, on the initial and late processes of VC in UL rats. Methods: Betahistine dihydrochloride was continuously administered to the UL rats at doses of 100 and 200 mg/kg/day using an osmotic minipump. MK801 (1.0 mg/kg) was intraperitoneally administered on days 7, 10, 12, and 14 after UL, while Fos-positive neurons were immunohistochemically stained in the contra-MVe. Results: The SN disappeared after 42 h, and continuous infusion of betahistine did not change the decline in the frequency of SN. The number of MK801-induced Fos-positive neurons in contra-MVe significantly decreased on days 7, 10, and 12 after UL in a dose-dependent manner in the betahistine-treated rats, more so than in the saline-treated rats. Conclusion: These findings suggest that betahistine facilitated the late, but not the initial, process of VC in UL rats. Full article
(This article belongs to the Section Molecular and Cellular Neuroscience)
Show Figures

Figure 1

19 pages, 1222 KiB  
Article
The Changes in mGluR2 and mGluR7 Expression in Rat Medial Vestibular Nucleus and Flocculus Following Unilateral Labyrinthectomy
by Wen Zhou, Liu-Qing Zhou, Su-Lin Zhang, Bo Liu, Yang-Ming Leng, Ren-Hong Zhou and Wei-Jia Kong
Int. J. Mol. Sci. 2013, 14(11), 22857-22875; https://doi.org/10.3390/ijms141122857 - 20 Nov 2013
Cited by 7 | Viewed by 6703
Abstract
It is known that the medial vestibular nucleus (MVN) and the cerebellar flocculus are the key areas, which contribute to the behavioral recovery (“vestibular compensation”) after unilateral labyrinthectomy (UL). In these areas, how the genetic activities of the metabotropic glutamate receptors mGluR2 and [...] Read more.
It is known that the medial vestibular nucleus (MVN) and the cerebellar flocculus are the key areas, which contribute to the behavioral recovery (“vestibular compensation”) after unilateral labyrinthectomy (UL). In these areas, how the genetic activities of the metabotropic glutamate receptors mGluR2 and mGluR7 performance after UL is unknown. With the means of quantitative real-time PCR, Western blotting, and immunohistochemistry, we analyzed the expression of mGluR2 and mGluR7 in the bilateral MVN and the flocculus of rats in different stages after UL (the 1st, 3rd, and 7th day). Our results show that in the MVN, the mRNA, and protein expressions of mGluR7 were ipsilaterally decreased at the 1st day following UL. However, in the MVN, no change was observed in the mRNA and protein expressions of mGluR2. On the other hand, the mRNA and protein expression of mGluR2 were enhanced in the ipsilateral flocculus at the 1st day following UL, while in the flocculus no change was shown in mGluR7 mRNA and protein expressions. Our results suggest that mGluR2 and mGluR7 may contribute to the early rebalancing of spontaneous resting activity in the MVN. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

Back to TopTop