Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (98)

Search Parameters:
Keywords = umbilical cord (UC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 732 KiB  
Article
Umbilical Cord Tensile Strength Under Varying Strain Rates
by Maria Antonietta Castaldi, Pietro Villa, Alfredo Castaldi and Salvatore Giovanni Castaldi
Bioengineering 2025, 12(8), 789; https://doi.org/10.3390/bioengineering12080789 - 22 Jul 2025
Viewed by 248
Abstract
The tensile strength of the umbilical cord (UC) is influenced by its composition—including collagen, elastin, and hyaluronan—contributing to its unique biomechanical properties. This experimental in vitro study aimed to evaluate the UC’s mechanical behavior under varying strain rates and to characterize its viscoelastic [...] Read more.
The tensile strength of the umbilical cord (UC) is influenced by its composition—including collagen, elastin, and hyaluronan—contributing to its unique biomechanical properties. This experimental in vitro study aimed to evaluate the UC’s mechanical behavior under varying strain rates and to characterize its viscoelastic response. Twenty-nine UC specimens, each 40 mm in length, were subjected to uniaxial tensile testing and randomly assigned to three traction speed groups: Group A (n = 10) at 8 mm/min, Group B (n = 7) at 12 mm/min, and Group C (n = 12) at 16 mm/min. Four different parameters were analyzed: the ultimate tensile strength and its corresponding elongation, the elastic modulus defined as the slope of the linear initial portion of the stress–strain plot, and the elongation at the end of the test (at break). While elongation and elongation at break did not differ significantly between groups (one-way ANOVA), Group C showed a significantly higher ultimate tensile strength (p = 0.047). A linear relationship was observed between test speed and stiffness (elastic modulus), with the following regression equation: y = 0.3078e4.425x. These findings confirm that the UC exhibits nonlinear viscoelastic properties and strain-rate-dependent stiffening, resembling non-Newtonian behavior. This novel insight may have clinical relevance during operative deliveries, where traction speed is often overlooked but may play a role in preserving cord integrity and improving neonatal outcomes. Full article
(This article belongs to the Section Biosignal Processing)
Show Figures

Figure 1

14 pages, 1327 KiB  
Article
Exploration of Cytokines That Impact the Therapeutic Efficacy of Mesenchymal Stem Cells in Alzheimer’s Disease
by Herui Wang, Chonglin Zhong, Yi Mi, Guo Li, Chenliang Zhang, Yaoyao Chen, Xin Li, Yongjun Liu and Guangyang Liu
Bioengineering 2025, 12(6), 646; https://doi.org/10.3390/bioengineering12060646 - 12 Jun 2025
Viewed by 535
Abstract
Current therapies for Alzheimer’s disease (AD) includes acetylcholinesterase inhibitors, NMDA receptor antagonists, and amyloid beta (Aβ)/Tau-targeting drugs. While these drugs improve cognitive decline and target the pathological mechanisms, their outcomes still are still in debate. Mesenchymal stem cells (MSCs) offer a regenerative approach [...] Read more.
Current therapies for Alzheimer’s disease (AD) includes acetylcholinesterase inhibitors, NMDA receptor antagonists, and amyloid beta (Aβ)/Tau-targeting drugs. While these drugs improve cognitive decline and target the pathological mechanisms, their outcomes still are still in debate. Mesenchymal stem cells (MSCs) offer a regenerative approach by modulating neuroinflammation and promoting neuroprotection. Although the paracrine of MSCs is efficient in various AD preclinical studies and the exosomes of MSCs have entered clinical trials, the key cytokines driving the efficacy remain unclear. Here, we evaluated human umbilical cord-derived MSCs (hUC-MSCs) and employed gene-silenced MSCs (siHGF-MSCs, siTNFR1-MSCs, siBDNF-MSCs) in APP/PS1 AD mice to investigate specific mechanisms. hUC-MSCs significantly reduced Aβ/Tau pathology and neuroinflammation, with cytokine-specific contributions: silencing HGF predominantly reduced Aβ/Tau clearance, although silencing TNFR1 or BDNF showed modest effects; silencing TNFR1 or BDNF more prominently weakened anti-neuroinflammation, while silencing HGF exerted a weaker influence. All three cytokines partially contributed to oxidative stress reduction and cognitive improvements. Our study highlights MSC-driven AD alleviation as a multifactorial strategy and reveals specific cytokines alleviating different aspects of AD pathology. Full article
(This article belongs to the Special Issue Nerve Regeneration)
Show Figures

Graphical abstract

23 pages, 4615 KiB  
Article
Mitochondrial Antiviral Signaling Protein Activation by Retinoic Acid-Inducible Gene I Agonist Triggers Potent Antiviral Defense in Umbilical Cord Mesenchymal Stromal Cells Without Compromising Mitochondrial Function
by Sebastián Castillo-Galán, Felipe Grünenwald, Yessia Hidalgo, J César Cárdenas, Maria Ignacia Cadiz, Francisca Alcayaga-Miranda, Maroun Khoury and Jimena Cuenca
Int. J. Mol. Sci. 2025, 26(10), 4686; https://doi.org/10.3390/ijms26104686 - 14 May 2025
Viewed by 752
Abstract
Mesenchymal stromal cells (MSCs) represent a promising therapeutic approach in viral infection management. However, their interaction with viruses remains poorly understood. MSCs can support antiviral immune responses and act as viral reservoirs, potentially compromising their therapeutic potential. Innate immune system recognition of viral [...] Read more.
Mesenchymal stromal cells (MSCs) represent a promising therapeutic approach in viral infection management. However, their interaction with viruses remains poorly understood. MSCs can support antiviral immune responses and act as viral reservoirs, potentially compromising their therapeutic potential. Innate immune system recognition of viral pathogens involves pattern recognition receptors (PRRs), including RIG-I-like receptors (RLRs), which activate mitochondrial antiviral signaling protein (MAVS). MAVS triggers antiviral pathways like IRF3 and NF-κB, leading to interferon (IFN) production and pro-inflammatory responses. This study explores the antiviral response in umbilical cord-derived MSCs (UC-MSCs) through targeted stimulation with influenza A virus-derived 5′triphosphate-RNA (3p-hpRNA), a RIG-I agonist. By investigating MAVS activation, we provide mechanistic insights into the immune response at the molecular level. Our findings reveal that 3p-hpRNA stimulation triggers immune activation of the IRF3 and NF-κB pathways through MAVS. Subsequently, this leads to the induction of type I and III IFNs, IFN-stimulated genes (ISGs), and pro-inflammatory cytokines. Critically, this immune activation occurs without compromising mitochondrial integrity. UC-MSCs retain their capacity for mitochondrial transfer to recipient cells. These results highlight the adaptability of UC-MSCs, offering a nuanced understanding of immune responses balancing activation with metabolic integrity. Finally, our research provides mechanistic evidence for MSC-based interventions against viral infections. Full article
Show Figures

Figure 1

18 pages, 3245 KiB  
Article
Electrical Phenotyping of Aged Human Mesenchymal Stem Cells Using Dielectrophoresis
by Lexi L. C. Simpkins, Tunglin Tsai, Emmanuel Egun and Tayloria N. G. Adams
Micromachines 2025, 16(4), 435; https://doi.org/10.3390/mi16040435 - 3 Apr 2025
Cited by 1 | Viewed by 624
Abstract
Human mesenchymal stem cells (hMSCs) are widely used in regenerative medicine, but large-scale in vitro expansion alters their function, impacting proliferation and differentiation potential. Currently, a predictive marker to assess these changes is lacking. Here, we used dielectrophoresis (DEP) to characterize the electrical [...] Read more.
Human mesenchymal stem cells (hMSCs) are widely used in regenerative medicine, but large-scale in vitro expansion alters their function, impacting proliferation and differentiation potential. Currently, a predictive marker to assess these changes is lacking. Here, we used dielectrophoresis (DEP) to characterize the electrical phenotype of hMSCs derived from bone marrow (BM), adipose tissue (AT), and umbilical cord (UC) as they aged in vitro from passage 4 (P4) to passage 9 (P9). The electrical phenotype was defined by the DEP spectra, membrane capacitance, and cytoplasm conductivity. Cell morphology and size, growth characteristics, adipogenic differentiation potential, and osteogenic differentiation potential were assessed alongside label-free biomarker membrane capacitance and cytoplasm conductivity. Differentiation was confirmed by histological staining and RT-qPCR. All hMSCs exhibited typical morphology, though cell size varied, with UC-hMSCs displaying the largest variability across all size metrics. Growth analysis revealed that UC-hMSCs proliferated the fastest. The electrical phenotype varied with cell source and in vitro age, with high passage hMSCs showing noticeable shifts in DEP spectra, membrane capacitance, and cytoplasm conductivity. Correlation analysis revealed that population doubling level (PDL) correlated with membrane capacitance and cytoplasm conductivity, indicating PDL as a more precise marker of in vitro aging than passage number. Additionally, we demonstrate that membrane capacitance correlates with the osteogenic marker COL1A1 and that cytoplasm conductivity correlates with the adipogenic markers ADIPOQ and FABP4, suggesting that DEP-derived electrical properties serve as label-free biomarkers of differentiation potential. While DEP has previously been applied to BM-hMSCs and AT-hMSCs, and more recently to UC-hMSCs, few studies have provided a direct comparison across all three sources or tracked changes across continuous expansion. These findings underscore the utility of DEP as a label-free approach for assessing hMSC aging and function, offering practical applications for optimizing stem cell expansion and stem cell banking in clinical settings. Full article
(This article belongs to the Special Issue Micro/Nanotechnology for Cell Manipulation, Detection and Analysis)
Show Figures

Figure 1

20 pages, 13182 KiB  
Article
Body Stalk Anomalies in Pigs: Current Trends and Future Directions in Classification
by Nieves Martín-Alguacil, José Miguel Cozar and Luis J. Avedillo
Animals 2025, 15(3), 460; https://doi.org/10.3390/ani15030460 - 6 Feb 2025
Cited by 2 | Viewed by 1194
Abstract
Body stalk anomaly (BSA) is a complex congenital condition characterized by defects in the body wall, skeletal abnormalities, and an absent or abnormal umbilical cord (UC). A classification system for BSA, based on wall and skeletal abnormalities, is proposed and includes eight types [...] Read more.
Body stalk anomaly (BSA) is a complex congenital condition characterized by defects in the body wall, skeletal abnormalities, and an absent or abnormal umbilical cord (UC). A classification system for BSA, based on wall and skeletal abnormalities, is proposed and includes eight types observed in porcine models. These classifications consider combinations of thoracoabdominoschisis, abdominoschisis, anal atresia, genitourinary anomalies, and skeletal defects, including extreme retroflexion, scoliosis, vertebral agenesis, hemivertebrae, and thoracic or limb anomalies. While previous studies often treat limb-body wall complex (LBWC) as a separate condition, this study includes cases with co-occurring limb and spinal defects in a new classification, spinal-limb-body wall complex (SPLBWC). Additional skeletal classifications—spine-body wall complex (SPBWC), sternal-body wall complex (STBWC), and sternal-spinal-body wall complex (SSBWC)—are introduced to account for variations in structural anomalies. Nonstructural skeletal anomalies such as deformities, amputations, and arthrogryposis are excluded from the structural classifications. This comprehensive system, based on existing human and porcine models, provides a framework for the systematic categorization of BSA variations. Such an approach supports accurate diagnosis, enhances understanding of developmental defects, and improves clinical management and research outcomes in both veterinary and human medicine. Full article
(This article belongs to the Special Issue Recent Progress in Complex Congenital Defects in Animals)
Show Figures

Figure 1

23 pages, 8162 KiB  
Article
The Role of Umbilical Cord Mesenchymal Stem Cell-Derived Extracellular Vesicles in Modulating Dermal Fibroblast Activity: A Pathway to Enhanced Tissue Regeneration
by Muttiah Barathan, Kow Jack Ham, Hui Yin Wong and Jia Xian Law
Biology 2025, 14(2), 150; https://doi.org/10.3390/biology14020150 - 1 Feb 2025
Viewed by 1974
Abstract
Extracellular vesicles (EVs) secreted by umbilical cord-derived mesenchymal stem cells (UC-MSCs) hold significant promise as therapeutic agents in regenerative medicine. This study investigates the effects of UC-MSC-derived EVs on dermal fibroblast function, and their potential in wound healing applications. EVs were characterized by [...] Read more.
Extracellular vesicles (EVs) secreted by umbilical cord-derived mesenchymal stem cells (UC-MSCs) hold significant promise as therapeutic agents in regenerative medicine. This study investigates the effects of UC-MSC-derived EVs on dermal fibroblast function, and their potential in wound healing applications. EVs were characterized by nanoparticle tracking analysis and transmission electron microscopy, revealing a mean size of 118.6 nm, consistent with exosomal properties. Dermal fibroblasts were treated with varying concentrations of EVs (25–100 µg/mL), and their impacts on cellular metabolism, mitochondrial activity, reactive oxygen species (ROS) production, wound closure, inflammatory cytokine secretion, growth factor production, and extracellular matrix (ECM) gene expression were evaluated. At lower concentrations (25–50 µg/mL), EVs significantly enhanced fibroblast metabolic and mitochondrial activity. However, higher concentrations (≥75 µg/mL) increased ROS levels, suggesting potential hormetic effects. EVs also modulated inflammation by reducing pro-inflammatory cytokines (IL-6, TNF-α) while promoting pro-regenerative cytokines (IL-33, TGF-β). Treatment with 50 µg/mL of EVs optimally stimulated wound closure and growth factor secretion (VEGF, BDNF, KGF, IGF), and upregulated ECM-related gene expression (type I and III collagen, fibronectin). These findings demonstrate that UC-MSC-derived EVs exert multifaceted effects on dermal fibroblast function, including enhanced cellular energetics, stimulation of cell migration, regulation of inflammation, promotion of growth factor production, and increased ECM synthesis. This study highlights the potential of EVs as a novel therapeutic strategy for wound healing and tissue regeneration, emphasizing the importance of optimizing EV concentration for maximal therapeutic efficacy. Full article
(This article belongs to the Section Cell Biology)
Show Figures

Figure 1

19 pages, 1478 KiB  
Review
The Differentiation and Regeneration Potential of ABCB5+ Mesenchymal Stem Cells: A Review and Clinical Perspectives
by Zheng He, Vytaute Starkuviene and Michael Keese
J. Clin. Med. 2025, 14(3), 660; https://doi.org/10.3390/jcm14030660 - 21 Jan 2025
Viewed by 1289
Abstract
Mesenchymal stem cells (MSCs) are a family of multipotent stem cells that show self-renewal under proliferation, multilineage differentiation, immunomodulation, and trophic function. Thus, these cells, such as adipose tissue-derived mesenchymal stem cells (ADSCs), bone marrow-derived MSCs (BM-MSCs), and umbilical cord-derived mesenchymal stem cells [...] Read more.
Mesenchymal stem cells (MSCs) are a family of multipotent stem cells that show self-renewal under proliferation, multilineage differentiation, immunomodulation, and trophic function. Thus, these cells, such as adipose tissue-derived mesenchymal stem cells (ADSCs), bone marrow-derived MSCs (BM-MSCs), and umbilical cord-derived mesenchymal stem cells (UC-MSCs), carry great promise for novel clinical treatment options. However, the challenges associated with the isolation of MSCs and the instability of their in vitro expansion remain significant barriers to their clinical application. The plasma membrane-spanning P-glycoprotein ATP-binding cassette subfamily B member 5 positive MSCs (ABCB5+ MSCs) derived from human skin specimens offer a distinctive advantage over other MSCs. They can be easily extracted from the dermis and expanded. In culture, ABCB5+ MSCs demonstrate robust innate homeostasis and a classic trilineage differentiation. Additionally, their ability to modulate the recipients’ immune system highlights their potential for allogeneic applications in regenerative medicine. In this review, we primarily discuss the differentiation potential of ABCB5+ MSCs and their perspectives in regenerative medicine. Full article
Show Figures

Figure 1

15 pages, 3574 KiB  
Article
Calcium Chloride vs. Mechanical Preparation of Fibrinogen-Depleted Human Platelet Lysate: Implications for Umbilical Cord Mesenchymal Stem Cell Culture
by Yen Theng Lim, Muttiah Barathan, Yu Ling Tan, Yi Ting Lee and Jia Xian Law
Life 2025, 15(1), 12; https://doi.org/10.3390/life15010012 - 27 Dec 2024
Cited by 1 | Viewed by 1433
Abstract
Fetal bovine serum (FBS) has long been the standard supplement in cell culture media, providing essential growth factors and proteins that support cell growth and differentiation. However, ethical concerns and rising costs associated with FBS have driven researchers to explore alternatives, particularly human [...] Read more.
Fetal bovine serum (FBS) has long been the standard supplement in cell culture media, providing essential growth factors and proteins that support cell growth and differentiation. However, ethical concerns and rising costs associated with FBS have driven researchers to explore alternatives, particularly human platelet lysate (HPL). Among these alternatives, fibrinogen-depleted HPL (FD-HPL) has gained attention due to its reduced thrombogenicity, which minimizes the risk of clot formation in cell cultures and enhances the safety of therapeutic applications. This study investigates two preparation methods for FD-HPL from human platelet concentrates: the calcium chloride method and a mechanical approach. The concentrations of critical growth factors, including vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), insulin-like growth factor (IGF), and keratinocyte growth factor (KGF), were evaluated for both methods. Additionally, the impact of FD-HPL on the proliferation and morphology of umbilical cord-derived mesenchymal stem cells (UC-MSCs) was assessed. The findings revealed that the calcium chloride method produced significantly higher concentrations of all measured growth factors compared to the mechanical method. Moreover, UC-MSCs cultured in calcium chloride-prepared FD-HPL exhibited enhanced cellular characteristics, including increased cell size, elongation, and improved overall morphology compared to those cultured in mechanically processed FD-HPL. These results indicate that the preparation method significantly influences the biological properties of HPL and the effectiveness of UC-MSC culture. The calcium chloride method emerges as a superior technique for producing FD-HPL, offering a promising alternative to FBS in regenerative medicine applications. This study underscores the importance of preparation methods in optimizing HPL for cell culture and therapeutic uses. Full article
(This article belongs to the Special Issue Feature Paper in Physiology and Pathology: 2nd Edition)
Show Figures

Figure 1

18 pages, 12861 KiB  
Article
Synergistic Approach of High-Precision 3D Printing and Low Cell Adhesion for Enhanced Self-Assembled Spheroid Formation
by Chunxiang Lu, Aoxiang Jin, Chuang Gao, Hao Qiao, Huazhen Liu, Yi Zhang, Wenbin Sun, Shih-Mo Yang and Yuanyuan Liu
Biosensors 2025, 15(1), 7; https://doi.org/10.3390/bios15010007 - 26 Dec 2024
Cited by 1 | Viewed by 1491
Abstract
Spheroids, as three-dimensional (3D) cell aggregates, can be prepared using various methods, including hanging drops, microwells, microfluidics, magnetic manipulation, and bioreactors. However, current spheroid manufacturing techniques face challenges such as complex workflows, the need for specialized personnel, and poor batch reproducibility. In this [...] Read more.
Spheroids, as three-dimensional (3D) cell aggregates, can be prepared using various methods, including hanging drops, microwells, microfluidics, magnetic manipulation, and bioreactors. However, current spheroid manufacturing techniques face challenges such as complex workflows, the need for specialized personnel, and poor batch reproducibility. In this study, we designed a support-free, 3D-printed microwell chip and developed a compatible low-cell-adhesion process. Through simulation and experimental validation, we rapidly optimized microwell size and the coating process. We successfully formed three types of spheroids—human immortalized epidermal cells (HaCaTs), umbilical cord mesenchymal stem cells (UC-MSCs), and human osteosarcoma cells (MG63s)—on the chip. Fluorescent viability staining confirmed the biocompatibility and reliability of the chip. Finally, drug response experiments were conducted using the chip. Compared to traditional methods, our proposed strategy enables high-throughput production of size-controlled spheroids with excellent shape retention, while enhanced gas exchange during culture improves differentiation marker expression. This platform provides an efficient and cost-effective solution for biosensing applications, such as drug screening, disease modeling, and personalized therapy monitoring. Furthermore, the chip shows significant potential for real-time in vitro monitoring of cellular viability, reaction kinetics, and drug sensitivity, offering valuable advancements in biosensor technology for life sciences and medical applications. Full article
(This article belongs to the Section Nano- and Micro-Technologies in Biosensors)
Show Figures

Graphical abstract

17 pages, 3618 KiB  
Article
Umbilical Cord Mesenchymal Stem Cell Secretome: A Potential Regulator of B Cells in Systemic Lupus Erythematosus
by Adelina Yordanova, Mariana Ivanova, Kalina Tumangelova-Yuzeir, Alexander Angelov, Stanimir Kyurkchiev, Kalina Belemezova, Ekaterina Kurteva, Dobroslav Kyurkchiev and Ekaterina Ivanova-Todorova
Int. J. Mol. Sci. 2024, 25(23), 12515; https://doi.org/10.3390/ijms252312515 - 21 Nov 2024
Cited by 1 | Viewed by 1902
Abstract
Autoimmune diseases represent a severe personal and healthcare problem that seeks novel therapeutic solutions. Mesenchymal stem cells (MSCs) are multipotent cells with interesting cell biology and promising therapeutic potential. The immunoregulatory effects of secretory factors produced by umbilical cord mesenchymal stem cells (UC-MSCs) [...] Read more.
Autoimmune diseases represent a severe personal and healthcare problem that seeks novel therapeutic solutions. Mesenchymal stem cells (MSCs) are multipotent cells with interesting cell biology and promising therapeutic potential. The immunoregulatory effects of secretory factors produced by umbilical cord mesenchymal stem cells (UC-MSCs) were assessed on B lymphocytes from 17 patients with systemic lupus erythematosus (SLE), as defined by the 2019 European Alliance of Associations for Rheumatology (EULAR)/American College of Rheumatology (ACR) classification criteria for SLE, and 10 healthy volunteers (HVs). Peripheral blood mononuclear cells (PBMCs) from patients and HVs were cultured in a UC-MSC-conditioned medium (UC-MSCcm) and a control medium. Flow cytometry was used to detect the surface expression of CD80, CD86, BR3, CD40, PD-1, and HLA-DR on CD19+ B cells and assess the percentage of B cells in early and late apoptosis. An enzyme-linked immunosorbent assay (ELISA) quantified the production of BAFF, IDO, and PGE2 in PBMCs and UC-MSCs. Under UC-MSCcm influence, the percentage and mean fluorescence intensity (MFI) of CD19+BR3+ cells were reduced in both SLE patients and HVs. Regarding the effects of the MSC secretome on B cells in lupus patients, we observed a decrease in CD40 MFI and a reduced percentage of CD19+PD-1+ and CD19+HLA-DR+ cells. In contrast, in the B cells of healthy participants, we found an increased percentage of CD19+CD80+ cells and decreased CD80 MFI, along with a decrease in CD40 MFI and the percentage of CD19+PD-1+ cells. The UC-MSCcm had a minimal effect on B-cell apoptosis. The incubation of patients’ PBMCs with the UC-MSCcm increased PGE2 levels compared to the control medium. This study provides new insights into the impact of the MSC secretome on the key molecules involved in B-cell activation and antigen presentation and survival, potentially guiding the development of future SLE treatments. Full article
Show Figures

Figure 1

22 pages, 5741 KiB  
Article
The Therapeutic Potential of Exosomes vs. Matrix-Bound Nanovesicles from Human Umbilical Cord Mesenchymal Stromal Cells in Osteoarthritis Treatment
by Timofey O. Klyucherev, Maria A. Peshkova, Daria P. Revokatova, Natalia B. Serejnikova, Nafisa M. Fayzullina, Alexey L. Fayzullin, Boris P. Ershov, Yana I. Khristidis, Irina I. Vlasova, Nastasia V. Kosheleva, Andrey A. Svistunov and Peter S. Timashev
Int. J. Mol. Sci. 2024, 25(21), 11564; https://doi.org/10.3390/ijms252111564 - 28 Oct 2024
Cited by 3 | Viewed by 3906
Abstract
Osteoarthritis (OA) is a degenerative joint disease with limited therapeutic options, where inflammation plays a critical role in disease progression. Extracellular vesicles (EV) derived from mesenchymal stromal cells (MSC) have shown potential as a therapeutic approach for OA by modulating inflammation and alleviating [...] Read more.
Osteoarthritis (OA) is a degenerative joint disease with limited therapeutic options, where inflammation plays a critical role in disease progression. Extracellular vesicles (EV) derived from mesenchymal stromal cells (MSC) have shown potential as a therapeutic approach for OA by modulating inflammation and alleviating degenerative processes in the joint. This study evaluated the therapeutic effects for the treatment of OA of two types of EV—exosomes and matrix-bound nanovesicles (MBV)—both derived from the human umbilical cord MSC (UC-MSC) via differential ultracentrifugation. Different phenotypes of human monocyte-derived macrophages (MDM) were used to study the anti-inflammatory properties of EV in vitro, and the medial meniscectomy-induced rat model of knee osteoarthritis (MMx) was used in vivo. The study found that both EV reduced pro-inflammatory cytokines IL-6 and TNF-α in MDM. However, exosomes showed superior results, preserving the extracellular matrix (ECM) of hyaline cartilage, and reducing synovitis more effectively than MBVs. Additionally, exosomes downregulated inflammatory markers (TNF-α, iNOS) and increased Arg-1 expression in macrophages and synovial fibroblasts, indicating a stronger anti-inflammatory effect. These results suggest UC-MSC exosomes as a promising therapeutic option for OA, with the potential for modulating inflammation and promoting joint tissue regeneration. Full article
Show Figures

Figure 1

10 pages, 433 KiB  
Article
Evaluating Synergistic Effects of Hyaluronic Acid, Human Umbilical Cord-Derived Mesenchymal Stem Cells, and Growth Hormones in Knee Osteoarthritis: A Multi-Arm Randomized Trial
by Ismail Hadisoebroto Dilogo, Anissa Feby Canintika, Bernadus Riyan Hartanto, Jacub Pandelaki and Irsa Gagah Himantoko
Biomedicines 2024, 12(10), 2332; https://doi.org/10.3390/biomedicines12102332 - 14 Oct 2024
Viewed by 2060
Abstract
Background: Knee osteoarthritis (OA) significantly affects quality of life and imposes economic burdens due to its prevalence and the disability it causes. The efficacy of current treatments is limited to alleviating the symptoms, and they cannot be used for regenerative purposes. This study [...] Read more.
Background: Knee osteoarthritis (OA) significantly affects quality of life and imposes economic burdens due to its prevalence and the disability it causes. The efficacy of current treatments is limited to alleviating the symptoms, and they cannot be used for regenerative purposes. This study aims to evaluate the efficacy and safety of combining hyaluronic acid (HA), human umbilical cord-derived mesenchymal stem cells (hUC-MSCs), and synthetic human growth hormone (somatotropin) in the treatment of knee OA, assessing pain relief, functional improvement, and cartilage regeneration. Methods: A four-arm, double-blind randomized trial was conducted with 51 knees from 28 subjects aged ≥50 with primary knee OA. The treatments involved were HA alone, HA with hUC-MSCs, HA with somatotropin, and a combination of all three. Efficacy was measured through the International Knee Documentation Committee (IKDC) score, Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and visual analog score (VAS), and MRI T2 mapping of cartilage was conducted on pre-implantation at the 6th and 12th month. Results: All treatment arms showed improvements in the VAS and WOMAC scores over 12 months, suggesting some pain relief and functional improvement. However, MRI T2 mapping showed no significant cartilage regeneration across the groups. Conclusions: While the combined use of HA, hUC-MSCs, and somatotropin improved symptoms of knee OA, it did not enhance cartilage regeneration significantly. This study highlights the potential of these combinations for symptom management but underscores the need for further research to optimize these therapies for regenerative outcomes. Full article
(This article belongs to the Special Issue Osteoarthritis: Molecular Pathways and Novel Therapeutic Strategies)
Show Figures

Figure 1

13 pages, 2642 KiB  
Study Protocol
Evaluation of Safety and Efficacy of Cell Therapy Based on Osteoblasts Derived from Umbilical Cord Mesenchymal Stem Cells for Osteonecrosis of the Femoral Head: Study Protocol for a Single-Center, Open-Label, Phase I Clinical Trial
by Seung-Hoon Baek, Bum-Jin Shim, Heejae Won, Sunray Lee, Yeon Kyung Lee, Hyun Sook Park and Shin-Yoon Kim
Pharmaceuticals 2024, 17(10), 1366; https://doi.org/10.3390/ph17101366 - 13 Oct 2024
Cited by 1 | Viewed by 2008
Abstract
Although mesenchymal stem cells (MSCs) insertion has gained recent attention as a joint-preserving procedure, no study has conducted direct intralesional implantation of human umbilical cord-derived MSCs (hUCMSCs) in patients with ONFH. This is a protocol for a phase 1 clinical trial designed to [...] Read more.
Although mesenchymal stem cells (MSCs) insertion has gained recent attention as a joint-preserving procedure, no study has conducted direct intralesional implantation of human umbilical cord-derived MSCs (hUCMSCs) in patients with ONFH. This is a protocol for a phase 1 clinical trial designed to assess the safety and exploratory efficacy of human umbilical cord-derived osteoblasts (hUC-Os), osteogenic differentiation-induced cells from hUCMSCs, in patients with early-stage ONFH. Nine patients with Association Research Circulation Osseous (ARCO) stage 1 or 2 will be assigned to a low-dose (1 × 107 hUC-O cells, n = 3), medium-dose (2 × 107 cells, n = 3), and high-dose group (4 × 107 cells, n = 3) in the order of their arrival at the facility, and, depending on the occurrence of dose-limiting toxicity, up to 18 patients can be enrolled by applying the 3 + 3 escalation method. We will perform hUC-O (CF-M801) transplantation combined with core decompression and follow-up for 12 weeks according to the study protocol. Safety will be determined through adverse event assessment, laboratory tests including a panel reactive antibody test, vital sign assessment, physical examination, and electrocardiogram. Efficacy will be explored through the change in pain visual analog scale, Harris hip score, Western Ontario and McMaster Universities Osteoarthritis Index, ARCO stage, and also size and location of necrotic lesion according to Japanese Investigation Committee classification before and after the procedure. Joint preservation is important, particularly in younger, active patients with ONFH. Confirmation of the safety and efficacy of hUC-Os will lead to a further strategy to preserve joints for those suffering from ONFH and improve our current knowledge of cell therapy. Full article
(This article belongs to the Special Issue New Advances in Mesenchymal Stromal Cells as Therapeutic Tools)
Show Figures

Figure 1

16 pages, 2299 KiB  
Article
Umbilical Cord Mesenchymal Stem Cell-Derived Extracellular Vesicles as Natural Nanocarriers in the Treatment of Nephrotoxic Injury In Vitro
by Márcia Bastos Convento, Andreia Silva de Oliveira, Mirian Aparecida Boim and Fernanda Teixeira Borges
Cells 2024, 13(19), 1658; https://doi.org/10.3390/cells13191658 - 7 Oct 2024
Cited by 1 | Viewed by 3552
Abstract
Umbilical cord mesenchymal stem cell-derived extracellular vesicles (UC-EVs) are valuable in nanomedicine as natural nanocarriers, carrying information molecules from their parent cells and fusing with targeted cells. miRNA-126, specific to endothelial cells and derived from these vesicles, supports vascular integrity and angiogenesis and [...] Read more.
Umbilical cord mesenchymal stem cell-derived extracellular vesicles (UC-EVs) are valuable in nanomedicine as natural nanocarriers, carrying information molecules from their parent cells and fusing with targeted cells. miRNA-126, specific to endothelial cells and derived from these vesicles, supports vascular integrity and angiogenesis and has protective effects in kidney diseases. Objective: This study investigates the delivery of miRNA-126 and anti-miRNA-126 via UC-EVs as natural nanocarriers for treating nephrotoxic injury in vitro. Method: The umbilical cord-derived mesenchymal stem cell and UC-EVs were characterized according to specific guidelines. Rat kidney proximal tubular epithelial cells (tubular cells) were exposed to nephrotoxic injury through of gentamicin and simultaneously treated with UC-EVs carrying miRNA-126 or anti-miRNA-126. Specific molecules that manage cell cycle progression, proliferation cell assays, and newly synthesized DNA and DNA damage markers were evaluated. Results: We observed significant increases in the expression of cell cycle markers, including PCNA, p53, and p21, indicating a positive cell cycle regulation with newly synthesized DNA via BrDU. The treatments reduced the expression of DNA damage marker, such as H2Ax, suggesting a lower rate of cellular damage. Conclusions: The UC-EVs, acting as natural nanocarriers of miRNA-126 and anti-miRNA-126, offer nephroprotective effects in vitro. Additionally, other components in UC-EVs, such as proteins, lipids, and various RNAs, might also contribute to these effects. Full article
(This article belongs to the Section Stem Cells)
Show Figures

Figure 1

16 pages, 28105 KiB  
Article
Mesenchymal Stromal/Stem Cells Isolated by Explant Culture Method from Wharton’s Jelly and Subamnion Possess Similar Biological Characteristics
by Snejana Kestendjieva, Mihail Chervenkov, Tsvetelina Oreshkova, Milena Mourdjeva and Elena Stoyanova
Appl. Sci. 2024, 14(17), 8036; https://doi.org/10.3390/app14178036 - 8 Sep 2024
Cited by 1 | Viewed by 4613
Abstract
Human umbilical cord (UC) is an attractive source of mesenchymal stromal/stem cells (MSCs) for tissue engineering and regenerative medicine due to its easy availability, non-invasive procedure of collection, and no ethical concerns. The aim of this study was to isolate MSCs from the [...] Read more.
Human umbilical cord (UC) is an attractive source of mesenchymal stromal/stem cells (MSCs) for tissue engineering and regenerative medicine due to its easy availability, non-invasive procedure of collection, and no ethical concerns. The aim of this study was to isolate MSCs from the Wharton’s jelly (WJ) and subamnion (SA) from the same umbilical cord by an optimized explant method, and to compare the morphology, proliferation, and stemness properties of the MSCs from both sources. Cells from the WJ and SA of six umbilical cords were characterized by flow cytometry, differentiation capacity and proliferation assays, immunofluorescence staining, and RT-PCR. The optimized explant method was successfully used to isolate WJ-MSCs and SA-MSCs. The MSCs from both sources showed similar patterns of growth kinetics, adipogenic and osteogenic potential, and the expression of pluripotency markers (OCT4, SOX2, NANOG, and SSEA-4). The current findings support the usage of the optimized explant method to generate a relatively homogenous population of MSCs from Wharton’s jelly and subamnion, which can facilitate the reproducibility of the results from experimental and practical applications of the obtained cells. Full article
(This article belongs to the Special Issue Cell Biology: Latest Advances and Prospects)
Show Figures

Figure 1

Back to TopTop