Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (157)

Search Parameters:
Keywords = ultraviolet C emission

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2902 KiB  
Article
Synergistic Integration of MXene Photothermal Conversion and TiO2 Radiative Cooling in Bifunctional PLA Fabrics for Adaptive Personal Thermal Management
by Tianci Han and Yunjie Yin
Solids 2025, 6(3), 37; https://doi.org/10.3390/solids6030037 - 12 Jul 2025
Viewed by 306
Abstract
Polylactic acid (PLA) fabrics exhibit significant sunlight reflectivity and high emissivity within the atmospheric window, making them suitable as the foundational material for this study. This research involves the modification of one side of the fabric with hydrophilic agents and titanium dioxide (TiO [...] Read more.
Polylactic acid (PLA) fabrics exhibit significant sunlight reflectivity and high emissivity within the atmospheric window, making them suitable as the foundational material for this study. This research involves the modification of one side of the fabric with hydrophilic agents and titanium dioxide (TiO2), while the opposite side is treated with MXene and subsequently coated with polydimethylsiloxane (PDMS) to inhibit oxidation of the MXene. Through these surface modifications, a thermal management fabric based on PLA was successfully developed, capable of passively regulating temperature in response to environmental conditions and user requirements. The study discusses the optimal concentrations of TiO2 and MXene for the fabric, and characterizes and evaluates the functional surface of the PLA. Surface morphology analyses and tests indicate that the resulting functional PLA fabrics possess excellent ultraviolet (UV) resistance, favorable air permeability, high sunlight reflectivity on the TiO2-treated side, and superior photothermal conversion capabilities on the MXene-treated side. Furthermore, photothermal effect tests conducted under a light intensity of 1000 W/m2 reveal that the MXene-treated fabric exhibits a heating effect of approximately 25 °C, while the TiO2-treated side demonstrates a cooling effect exceeding 5 °C. This study developed PLA functional fabrics with heating and cooling capabilities. Full article
Show Figures

Graphical abstract

19 pages, 1546 KiB  
Article
Inactivation of Bioaerosol Particles in a Single-Pass Multi-Stage Non-Thermal Plasma and Ionization Air Cleaner
by Justinas Masionis, Darius Čiužas, Edvinas Krugly, Martynas Tichonovas, Tadas Prasauskas and Dainius Martuzevičius
Plasma 2025, 8(2), 22; https://doi.org/10.3390/plasma8020022 - 31 May 2025
Viewed by 1063
Abstract
Bioaerosol particles contribute to the reduced indoor air quality and cause various health issues, thus their concentration must be managed. Air cleaning is one of the most viable technological options for reducing quantities of indoor air contaminants. This study assesses the effectiveness of [...] Read more.
Bioaerosol particles contribute to the reduced indoor air quality and cause various health issues, thus their concentration must be managed. Air cleaning is one of the most viable technological options for reducing quantities of indoor air contaminants. This study assesses the effectiveness of a prototype multi-stage air cleaner in reducing bioaerosol particle viability and concentrations. The single-pass type unit consisted of non-thermal plasma (NTP), ultraviolet-C (UV-C) irradiation, bipolar ionization (BI), and electrostatic precipitation (ESP) stages. The device was tested under controlled laboratory conditions using Escherichia coli (Gram-negative) and Lactobacillus casei (Gram-positive) bacteria aerosol at varying airflow rates (50–600 m3/h). The device achieved over 99% inactivation efficiency for both bacterial strains at the lowest airflow rate (50 m3/h). Efficiency declined with increasing airflow rates but remained above 94% at the highest flow rate (600 m3/h). Among the individual stages, NTP demonstrated the highest standalone inactivation efficiency, followed by UV-C and BI. The ESP stage effectively captured inactivated bioaerosol particles, preventing re-emission, while an integrated ozone decomposition unit maintained ozone concentrations below safety thresholds. These findings show the potential of multi-stage air cleaning technology for reducing bioaerosol contamination in indoor environments, with applications in healthcare, public spaces, and residential settings. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2025)
Show Figures

Graphical abstract

15 pages, 5164 KiB  
Article
Preparation, Thermal, and Optical Properties of D-A-Type Molecules Based on 1,3,5-Triazine for Violet-Blue Fluorescent Materials
by Lu Wang, Enwang Du, Zhi Liu and Zhiqiang Liu
Materials 2025, 18(9), 2043; https://doi.org/10.3390/ma18092043 - 29 Apr 2025
Viewed by 440
Abstract
Organic violet-blue fluorescent materials have garnered significant interest for a broad spectrum of applications. A series of triazine-based molecules, that is, 2,4,6-tri(9H-carbazol-9-yl)-1,3,5-triazine (TCZT), 2,4,6-tri(1H-indol-1-yl)-1,3,5-triazine (TIDT), and 2,4,6-tris(3,6-di-tert-butyl-9H-carbazol-9-yl)-1,3,5-triazine (TDBCZT), exhibiting violet-blue emission were synthesized via a catalyst-free aromatic nucleophilic substitution reaction. These compounds possess [...] Read more.
Organic violet-blue fluorescent materials have garnered significant interest for a broad spectrum of applications. A series of triazine-based molecules, that is, 2,4,6-tri(9H-carbazol-9-yl)-1,3,5-triazine (TCZT), 2,4,6-tri(1H-indol-1-yl)-1,3,5-triazine (TIDT), and 2,4,6-tris(3,6-di-tert-butyl-9H-carbazol-9-yl)-1,3,5-triazine (TDBCZT), exhibiting violet-blue emission were synthesized via a catalyst-free aromatic nucleophilic substitution reaction. These compounds possess a non-planar and twisted structure with favorable charge-transfer characteristics, demonstrating excellent thermal stability (decomposition temperatures of 370 °C, 384 °C, and 230 °C, respectively). Cyclic voltammetry analysis, combined with time-dependent density functional theory (TD-DFT) calculations at the B3LYP/6-31G(d) level, offered detailed insights into their electronic structures and electrochemical properties. Optical properties were systematically characterized using Ultraviolet–visible (UV–Vis) absorption and photoluminescence (PL) spectroscopy. The compounds exhibited violet-blue luminescence with emission peaks located at 397 nm, 383 nm, and 402 nm in toluene, respectively. In their respective films, the compounds exhibited varying degrees of spectral shifts, with emission peaks at 408 nm, 381 nm, and 369 nm. Moreover, the CIE (Commission Internationale de l’Éclairage) coordinates of TIDT in toluene were (0.155, 0.067), indicative of excellent violet purity. These compounds demonstrated significant two-photon absorption (TPA) properties, with cross-sections of 4.6 GM, 15.3 GM, and 7.4 GM, respectively. Notably, they exhibited large molar absorptivities and substantial photoluminescence quantum yields (PLQYs), suggesting their potential for practical applications as violet-blue fluorescent materials. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

12 pages, 4303 KiB  
Communication
The Synthesis and Property Study of NH-Ac-Anchored Multilayer 3D Polymers
by My Phan, Hao Liu, Lina M. Delgado, Hammed Olawale Faleke, Sai Zhang, Anthony F. Cozzolino, Dimitri Pappas and Guigen Li
Molecules 2025, 30(9), 1981; https://doi.org/10.3390/molecules30091981 - 29 Apr 2025
Viewed by 468
Abstract
This study reports the synthesis, characterization, and property analysis of four novel multilayer 3D polymers (1A to 1D) with 1,3-phenyl bridge architectures spanning 248 to 320 layers. High-molecular-weight polymers were successfully synthesized via catalytic Suzuki–Miyaura cross-coupling over a four-day reaction period. [...] Read more.
This study reports the synthesis, characterization, and property analysis of four novel multilayer 3D polymers (1A to 1D) with 1,3-phenyl bridge architectures spanning 248 to 320 layers. High-molecular-weight polymers were successfully synthesized via catalytic Suzuki–Miyaura cross-coupling over a four-day reaction period. Structures, thermal, and optical properties were examined using multiple analytical techniques. Fourier transform-infrared (FT-IR) spectroscopy was used to study the hydrogen bonding within the polymer system, suggesting the formation of the polymer through the Suzuki–Miyaura coupling reaction. Ultraviolet–visible (UV-vis) spectroscopy indicated strong electronic delocalization, with maximum absorbance peaks between 257 and 280 nm. Thermal characterization, using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), was used to investigate the thermal stability. TGA results showed that all four polymers retained more than 20% of their initial mass at 1000 °C, indicating good thermal stability across the series. DSC analysis revealed that polymer 1A exhibited a glass transition temperature (Tg) of 167 °C, indicating the presence of a network formed by aromatic conjugation and hydrogen bonding. Furthermore, the subtle Tg step observed for 1A suggests a degree of crystallinity within the polymer matrix, which was further supported by X-ray diffraction (XRD) analysis. Aggregation-induced emission (AIE) experiments provided further insights into intermolecular packing, and scanning electron microscopy (SEM) contributed to a better understanding of the morphology of the obtained polymers. These results highlight the potential of these polymers as thermally stable and conductive materials for biomedical and industrial applications. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

16 pages, 7952 KiB  
Article
Influence of Aging Conditions on the Dynamic Stiffness of EPDM and EVA Rail Pads
by Isaac Rivas, Jose A. Sainz-Aja, Diego Ferreño, Isidro Carrascal, Jose Casado and Soraya Diego
Appl. Sci. 2025, 15(8), 4394; https://doi.org/10.3390/app15084394 - 16 Apr 2025
Cited by 1 | Viewed by 545
Abstract
The railway sector plays a crucial role in sustainable transportation by reducing greenhouse gas emissions while supporting an increasing volume of freight and passenger transport. Rail pads, essential components in railway infrastructure, mitigate vibrations and distribute loads; however, their long-term performance is influenced [...] Read more.
The railway sector plays a crucial role in sustainable transportation by reducing greenhouse gas emissions while supporting an increasing volume of freight and passenger transport. Rail pads, essential components in railway infrastructure, mitigate vibrations and distribute loads; however, their long-term performance is influenced by environmental and mechanical degradation, affecting track durability and maintenance costs. Despite their significance, the degradation mechanisms impacting the dynamic stiffness of EPDM (Ethylene Propylene Diene Monomer) and EVA (Ethylene Vinyl Acetate) rail pads remain insufficiently characterized. This study examines the effects of mechanical and chemical aging on the stiffness of these materials through 864 dynamic stiffness tests, analyzing three types of rail pads under mechanical cycling (up to 2,000,000 cycles), UV (ultraviolet light) exposure (100–500 h), and hydrocarbon exposure (100–500 h). Mechanical aging increases stiffness across all pads, with Pad C (EVA) exhibiting the most pronounced increase (27%). The effects of UV exposure vary by material, leading to a stiffness reduction of up to 11.5% in Pad B (EPDM), whereas Pad C (EVA) experiences a 9.5% increase under prolonged exposure. Hydrocarbon exposure also presents material-dependent behavior, with Pad A (EPDM) experiencing an 11.5% stiffness reduction at low exposure but partial recovery at higher exposure, while Pad C (EVA) shows a 5% increase in stiffness under prolonged exposure. These findings offer valuable insights into the aging mechanisms of rail pads and underscore the importance of considering degradation effects in track maintenance strategies. Full article
(This article belongs to the Special Issue Vehicle-Track Interaction and Railway Dynamics)
Show Figures

Figure 1

35 pages, 3912 KiB  
Review
Pr3+ Visible to Ultraviolet Upconversion for Antimicrobial Applications
by Miroslav D. Dramićanin, Mikhail G. Brik, Željka Antić, Radu Bănică, Cristina Mosoarca, Tatjana Dramićanin, Zoran Ristić, George Daniel Dima, Tom Förster and Markus Suta
Nanomaterials 2025, 15(7), 562; https://doi.org/10.3390/nano15070562 - 6 Apr 2025
Cited by 5 | Viewed by 1367
Abstract
This paper addresses the upconversion of blue light to ultraviolet-C (UVC) with Pr3+-activated materials for antibacterial applications of UVC. It discusses the processes through which UV radiation provides biocidal effects on microorganisms, along with the most popular UVC sources employed in [...] Read more.
This paper addresses the upconversion of blue light to ultraviolet-C (UVC) with Pr3+-activated materials for antibacterial applications of UVC. It discusses the processes through which UV radiation provides biocidal effects on microorganisms, along with the most popular UVC sources employed in these processes. We describe the electronic and optical properties of the Pr3+ ion, emphasizing the conditions the host material must meet to obtain broad and intense emission in the UVC from parity-allowed transitions from the 4f5d levels and provide a list of materials that fulfill these conditions. This paper also delineates lanthanide-based upconversion, focusing on Pr3+ blue to UVC upconversion via the 3P0 and 1D2 intermediate states, and suggests routes for improving the quantum efficiency of the process. We review literature related to the use of upconversion materials in antimicrobial photodynamic treatments and for the blue to UVC upconversion germicidal effects. Further, we propose the spectral overlap between the UVC emission of Pr3+ materials and the germicidal effectiveness curve as a criterion for assessing the potential of these materials in antimicrobial applications. Finally, this paper briefly assesses the toxicity of materials commonly used in the preparation of upconversion materials. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Graphical abstract

14 pages, 3070 KiB  
Article
Zero-Dimensional Organic Amine-Copper Bromide Hybrid Crystal with Highly Efficient Yellow Emission
by Yanxi Chen, Ye Tian, Tao Huang, Shangfei Yao, Hui Peng and Bingsuo Zou
Crystals 2025, 15(4), 312; https://doi.org/10.3390/cryst15040312 - 27 Mar 2025
Viewed by 505
Abstract
Recently, Cu(I)-based metal halides have attracted tremendous attention owing to their remarkable photophysical properties. However, most of them can only be excited by near ultraviolet (UV) light at a wavelength (generally less than 350 nm) with a wide bandgap, which undoubtedly limits their [...] Read more.
Recently, Cu(I)-based metal halides have attracted tremendous attention owing to their remarkable photophysical properties. However, most of them can only be excited by near ultraviolet (UV) light at a wavelength (generally less than 350 nm) with a wide bandgap, which undoubtedly limits their application in solid-state lighting due to the low excitation efficiency at about 400 nm in devices. Here, we report a new zero-dimensional organic cuprous bromide of (C13H30N)2Cu5Br7 single crystals, which can be excited by visible light (390–400 nm) and give a bright yellow and broad self-trapped exciton emission band with the photoluminescence quantum yield (PLQY) of 92.3% at room temperature. The experimental and theoretical results show that the existence of Cu-Br-Cu metal bonds in a Cu5Br7 cluster package produces three components of self-trapped excitons (STE) that emit at room temperature but merge into one at 80 K. This occurs because of the anomalously enhanced electron–phonon coupling and electron–electron coupling in the coupled clusters in this system. These effects cause the excitation near visible light and emission broader at higher temperature. Additionally, their remarkable anti-water emission stability was demonstrated even after soaking in water for 6 h. Finally, a highly efficient white-light-emitting diode (WLED) based on (C13H30N)2Cu5Br7 was fabricated. Full article
(This article belongs to the Special Issue Synthesis, Structure and Application of Metal Halides)
Show Figures

Figure 1

17 pages, 3949 KiB  
Article
Enhanced Long-Term In-Sensing Memory in ZnO Nanoparticle-Based Optoelectronic Synaptic Devices Through Thermal Treatment
by Dabin Jeon, Seung Hun Lee and Sung-Nam Lee
Materials 2025, 18(6), 1321; https://doi.org/10.3390/ma18061321 - 17 Mar 2025
Cited by 2 | Viewed by 663
Abstract
Two-terminal optoelectronic synaptic devices based on ZnO nanoparticles (NPs) were fabricated to investigate the effects of thermal annealing control (200 °C–500 °C) in nitrogen and oxygen atmospheres on surface morphology, optical response, and synaptic functionality. Atomic force microscopy (AFM) analysis revealed improved grain [...] Read more.
Two-terminal optoelectronic synaptic devices based on ZnO nanoparticles (NPs) were fabricated to investigate the effects of thermal annealing control (200 °C–500 °C) in nitrogen and oxygen atmospheres on surface morphology, optical response, and synaptic functionality. Atomic force microscopy (AFM) analysis revealed improved grain growth and reduced surface roughness. At the same time, UV–visible spectroscopy and photoluminescence confirmed a blue shift in the absorption edge and enhanced near-band-edge emission, particularly in nitrogen-annealed devices due to increased oxygen vacancies. X-ray photoelectron spectroscopy (XPS) analysis of the O 1s spectra confirmed that oxygen vacancies were more pronounced in nitrogen-annealed devices than in oxygen-annealed ones at 500 °C. Optical resistive switching was observed, where 365 nm ultraviolet (UV) irradiation induced a transition from a high-resistance state (HRS) to a low-resistance state (LRS), attributed to electron–hole pair generation and oxygen desorption. The electrical reset process, achieved by applying −1.0 V to −5.0 V, restored the initial HRS, demonstrating stable switching behavior. Nitrogen-annealed devices with higher oxygen vacancies exhibited superior synaptic performance, including higher excitatory postsynaptic currents, stronger paired-pulse facilitation, and extended persistent photoconductivity (PPC) duration, enabling long-term memory retention. By systematically varying UV exposure time, intensity, pulse number, and frequency, ZnO NPs-based devices demonstrated the transition from short-term to long-term memory, mimicking biological synaptic behavior. Learning and forgetting simulations showed faster learning and slower decay in nitrogen-annealed devices, emphasizing their potential for next-generation neuromorphic computing and energy-efficient artificial synapses. Full article
Show Figures

Figure 1

18 pages, 4325 KiB  
Article
Experimental Study on the Photothermal Properties of Thermochromic Glass
by Mingyi Gao, Dewei Qian, Lihua Zhao and Rong Jin
Buildings 2025, 15(2), 233; https://doi.org/10.3390/buildings15020233 - 15 Jan 2025
Viewed by 1015
Abstract
Reducing energy consumption in buildings is critical to reducing CO2 emissions and mitigating global warming. Studies have shown that heating and cooling loads account for more than 40% of building energy consumption, and thermochromic glass (TCG) with dynamically adjustable solar transmittance is [...] Read more.
Reducing energy consumption in buildings is critical to reducing CO2 emissions and mitigating global warming. Studies have shown that heating and cooling loads account for more than 40% of building energy consumption, and thermochromic glass (TCG) with dynamically adjustable solar transmittance is an excellent way to reduce this load. Although a large number of studies have tested the spectral parameters of TCG in totally transparent and totally turbid states, the impact of dynamic changes in optical properties on the simulation accuracy of building energy consumption has been neglected. In this study, a method is proposed for a hydrogel-type TCG to dynamically test its spectral parameters based on spectrophotometry. The method uses a spectrophotometer and a PID heater to achieve the dynamic optical parameter testing of TCGs at different temperatures. In this paper, the transmission and reflection spectra of the two TCGs at 20~25 °C, 30~35 °C, 40 °C, 45 °C, 50 °C, and 55 °C were obtained, and the regression segmentation functions of visible transmittance and solar transmittance were established. The R2 of the function model is 0.99. In addition, the test results show that the thermochromic glass selected in this paper can selectively transmit different wavelengths of light, and its transmission mainly occurs in the visible and near-infrared wavelengths from 320 to 1420 nm, while the transmission rate of other wavelengths is very low. As the temperature increases, the visible, solar, and ultraviolet transmittances decrease at a similar rate. In addition, the higher the temperature acting on the thermochromic (TC) layer, the greater its haze. Full article
Show Figures

Figure 1

12 pages, 1882 KiB  
Article
Effects of Excimer Fluorescent UV Lamps on Mold and Fruit Quality in Strawberries
by Yujiro Takano, Ryuta Ninohei, Ayano Koike, Izumi Serizawa and Yuya Mochizuki
AgriEngineering 2024, 6(4), 4889-4900; https://doi.org/10.3390/agriengineering6040278 - 16 Dec 2024
Viewed by 1345
Abstract
Excimer fluorescent ultraviolet (UV) lamps (UV–228) function as mercury–free sources that use excimer emissions as excitation light sources. First, we evaluated the effects of UV–228–based irradiation (λmax = 228 nm) on the viability of fungi, using Penicillium digitatum, and compared these [...] Read more.
Excimer fluorescent ultraviolet (UV) lamps (UV–228) function as mercury–free sources that use excimer emissions as excitation light sources. First, we evaluated the effects of UV–228–based irradiation (λmax = 228 nm) on the viability of fungi, using Penicillium digitatum, and compared these effects with those of other light sources, such as OEL–222 (λmax = 222 nm) and GL–6 (λmax = 254 nm), to evaluate the effectiveness of the excimer fluorescent lamp. Next, we investigated the effects of UV–228–based irradiation on strawberry storage. Although UV–228 affected weight loss, Brix, ascorbic acid, polyphenol, and DPPH, the effects of UV irradiation for 5 min on strawberry fruit quality were minimal; i.e., only weight loss and ascorbic acid content were higher than those in the non–irradiated treatment. We found that 5 min of UV–C irradiation using UV–228 prevented mold emergence for up to 11 days of storage in strawberries These results indicate that UV–228 contributes to long–term strawberry storage. Full article
(This article belongs to the Special Issue Recent Trends and Advances in Agricultural Engineering)
Show Figures

Figure 1

15 pages, 3921 KiB  
Article
The Effect of H+ Fluence Irradiation on the Optical, Structural, and Morphological Properties of ZnO Thin Films
by Alejandra López-Suárez, Yaser D. Cruz-Delgado, Dwight R. Acosta, Juan López-Patiño and Beatriz E. Fuentes
Materials 2024, 17(24), 6095; https://doi.org/10.3390/ma17246095 - 13 Dec 2024
Viewed by 818
Abstract
Polycrystalline zinc oxide (ZnO) thin films were deposited on soda-lime glass substrates using the chemical spray pyrolysis method at 450 °C. The samples were irradiated with 8 keV H+ ions at three different fluences using a Colutron ion gun. The effects of [...] Read more.
Polycrystalline zinc oxide (ZnO) thin films were deposited on soda-lime glass substrates using the chemical spray pyrolysis method at 450 °C. The samples were irradiated with 8 keV H+ ions at three different fluences using a Colutron ion gun. The effects of the irradiation on the structural, morphological, and optical properties were studied with different techniques, including Rutherford Backscattering Spectrometry (RBS), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Ultraviolet and Visible Spectroscopy (UV–Vis). The results show that ion irradiation enhances crystallinity, narrowing the optical band gap. The changes in transmittance are related to defect formation within the material, which acts as light absorption and re-emission centers. A shifting of the film’s preferred growth orientation to the c-axis and changing the grain morphology and size distribution was detected. We observed an increase in the lattice parameters observed after irradiation, suggesting an expansion of the crystalline structure due to ions incorporation and defects within the ZnO crystal lattice. The morphological study shows an increase in the average size of the large particles after irradiation. This change is attributed to the emergence of defects and nucleation centers during irradiation. The average size of small particles remained relatively constant after irradiation, suggesting that small particles are more stable and less susceptible to external influences, resulting in fewer changes due to irradiation. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

11 pages, 2954 KiB  
Article
Electron-Beam-Evaporated Nickel Oxide Thin Films for Application as a Hole Transport Layer in Photovoltaics
by Mohammad Istiaque Hossain and Brahim Aissa
Processes 2024, 12(12), 2809; https://doi.org/10.3390/pr12122809 - 8 Dec 2024
Cited by 3 | Viewed by 1357
Abstract
We present the growth of nickel oxide (NiO) thin films as a hole transport material in photovoltaic devices using the e-beam evaporation technique. The metal oxide layers were reactively deposited at a substrate temperature of 200 °C using an electron beam evaporator under [...] Read more.
We present the growth of nickel oxide (NiO) thin films as a hole transport material in photovoltaic devices using the e-beam evaporation technique. The metal oxide layers were reactively deposited at a substrate temperature of 200 °C using an electron beam evaporator under an oxygen atmosphere. The oxide films reactively grown through electron-beam evaporation were optimized for carrier transport layers. Optical and structural characterizations were performed using ultraviolet–visible (UV–Vis) spectrometry, X-ray diffraction, contact angle measurements, scanning electron microscopy, and Hall effect measurements. The study of these films confirmed that the NiO layer is a suitable candidate for use as a hole transport layer based on Hall effect measurements. A morphological study using field-emission scanning electron microscopy confirmed the growth of compact, uniform, and defect-free metal oxide layers. Contact angle measurements revealed that the films possessed semi-hydrophilic properties, contributing to improved stability by repelling water from their surfaces. The stoichiometry of the films was influenced by the oxygen pressure during deposition, which affected both their morphological and optical features. The NiO films exhibited a transmittance exceeding 80% in the visible spectrum. These findings highlight the potential applications of such nickel oxide films as hole transport material layers. Full article
(This article belongs to the Special Issue Deposition Process, Characterization and Performance of Thin Films)
Show Figures

Figure 1

11 pages, 6132 KiB  
Article
Preparation and Characterization of SiO2-PMMA and TiO2-SiO2-PMMA Composite Thick Films for Radiative Cooling Application
by Dwi Fortuna Anjusa Putra, Uzma Qazi, Pin-Hsuan Chen and Shao-Ju Shih
J. Compos. Sci. 2024, 8(11), 453; https://doi.org/10.3390/jcs8110453 - 1 Nov 2024
Cited by 5 | Viewed by 2298
Abstract
Radiative cooling, an emerging technology that reflects sunlight and emits radiation into outer space, has gained much attention due to its energy-efficient nature and broad applicability in buildings, photovoltaic cells, and vehicles. This study focused on fabricating SiO2-polymethyl methacrylate (PMMA) and [...] Read more.
Radiative cooling, an emerging technology that reflects sunlight and emits radiation into outer space, has gained much attention due to its energy-efficient nature and broad applicability in buildings, photovoltaic cells, and vehicles. This study focused on fabricating SiO2-polymethyl methacrylate (PMMA) and TiO2-SiO2-PMMA thick films via the blade-coating method. The investigation aimed to improve cooling performance by adding TiO2 particles to increase the coverage area and utilize the TiO2 reflectance ability. The characterizations of the emissivity/absorptivity, solar reflectance, and microstructure of the thick films were conducted by using ultraviolet–visible/near-infrared (UV-Vis/NIR) diffuse reflection spectroscopy and scanning electron microscopy, respectively. Experimental results revealed that the maximum temperature drops of approximately 9.4 and 9.8 °C were achieved during the daytime period for SiO2-PMMA and TiO2-SiO2-PMMA thick films. The total solar radiation reflectivity increased from 71.7 to 75.6% for SiO2-PMMA radiative cooling thick films after adding TiO2. These findings underscored the potential of TiO2-SiO2-PMMA thick films in advancing radiative cooling technology and cooling capabilities across various applications. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2024)
Show Figures

Graphical abstract

18 pages, 4255 KiB  
Article
Emission Ellipsometry Study in Polymeric Interfaces Based on Poly(3-Hexylthiophene), [6,6]-Phenyl-C61-Butyric Acid Methyl Ester, and Reduced Graphene Oxide
by Ana Clarissa Henrique Kolbow, Everton Crestani Rambo, Maria Ruth Neponucena dos Santos, Paulo Ernesto Marchezi, Ana Flávia Nogueira, Alexandre Marletta, Romildo Jerônimo Ramos and Eralci Moreira Therézio
C 2024, 10(3), 83; https://doi.org/10.3390/c10030083 - 11 Sep 2024
Cited by 2 | Viewed by 1663
Abstract
We analyzed the interaction of three materials, reduced graphene oxide (RGO), [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), and poly(3-hexylthiphene) (P3HT), as well as the dependence of its photophysical properties within the temperature range of 90 to 300 K. The nanocomposite of the [...] Read more.
We analyzed the interaction of three materials, reduced graphene oxide (RGO), [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), and poly(3-hexylthiphene) (P3HT), as well as the dependence of its photophysical properties within the temperature range of 90 to 300 K. The nanocomposite of the films was analyzed by optical absorption ultraviolet–visible (UV-Vis) and photoluminescence (PL) and emission ellipsometry (EE) as a function of sample temperature. The surface morphology was studied by atomic force microscopy (AFM). We noted that onset levels (Eonset) of the nanocomposite of P3HT and RGO are smaller than the others. The PL spectra showed the presence of anomalies in the emission intensities in the nanocomposite of P3HT and PCBM. It was also possible to determine the electron–phonon coupling by calculating the Huang–Rhys parameters and the temperature dependence of samples. Through EE, it was possible to analyze the degree of polarization and the anisotropy. We observed a high degree of polarized emission of the P3HT films, which varies subtly according to the temperature. For nanocomposites with RGO, the polarization degree in the emission decreases, and the roughness on the surface increases. As a result, the RGO improves the energy transfer between adjacent polymer chains at the cost of greater surface roughness. Then, the greater energy transfer may favor applications of this type of nanocomposite in organic photovoltaic cells (OPVCs) with enhancement in energy conversion efficiency. Full article
Show Figures

Graphical abstract

21 pages, 8190 KiB  
Article
Effect of Melamine Formaldehyde Resin Encapsulated UV Acrylic Resin Primer Microcapsules on the Properties of UV Primer Coating
by Yuming Zou, Yongxin Xia and Xiaoxing Yan
Polymers 2024, 16(16), 2308; https://doi.org/10.3390/polym16162308 - 15 Aug 2024
Cited by 9 | Viewed by 1558
Abstract
Ultra-Violet (UV) coatings are widely adaptable of substrates and produce low emissions of volatile organic compounds. UV coatings can extend service life by adding self-healing microcapsules that restore integrity after sustaining damage. In this study, UV coating was used as a core material; [...] Read more.
Ultra-Violet (UV) coatings are widely adaptable of substrates and produce low emissions of volatile organic compounds. UV coatings can extend service life by adding self-healing microcapsules that restore integrity after sustaining damage. In this study, UV coating was used as a core material; microcapsules were produced and added to the UV coating to enhance its self-healing property, providing a good protection for both the UV coating and the substrate. UV primer microcapsules were prepared with UV primer as the core material and melamine formaldehyde resin as the wall material. The UV primer containing more than 98.0% solids content was mainly composed of epoxy acrylic resin, polyester acrylic resin, trihydroxy methacrylate, trimethyl methacrylate, and photo initiator. The preparation process of the UV primer microcapsules was optimized. Further, the UV coating was prepared with better UV primer microcapsules, and the effects of the UV primer microcapsules alongside the comprehensive properties of the coating were studied. The best preparation process for the UV primer microcapsules was as follows: the wall-core mass ratio was 1:0.50, Triton X-100 and Span-20 as emulsifiers with an HLB value of 10.04, the microcapsule reaction temperature was 70 °C, and the reaction time of the was 3.0 h. When the quantity of the UV primer microcapsules increased in the coating, color difference ΔE of the coating increased, gloss decreased, transmittance decreased, elongation at break increased and then decreased, roughness increased, and self-healing rate first increased and then decreased. When the addition of the UV primer microcapsules reached 2.0%, the color difference ΔE of the coating was 1.71, the gloss was 106.63 GU, the transmittance was 78.80%, the elongation at break was 3.62%, the roughness was 0.204 μm, and the self-healing rate was 28.56%, which were the best comprehensive properties of the UV primer. To improve the comprehensive properties of the UV coatings, the UV coatings were modified by a microcapsule technology, which gave the UV coatings a better self-healing property. The application range of microcapsules for the UV coatings was broadened. Based on the previous research of microcapsules in UV coatings, the results further refined the study of the effects of adding self-healing microcapsules to UV coatings using the UV coating itself as the core material. Full article
(This article belongs to the Special Issue Recent Advances in Polymer Composites for Functional Applications)
Show Figures

Figure 1

Back to TopTop