Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = ultrasound assisted osmotic dehydration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3650 KiB  
Article
Ultrasound-Assisted Osmotic Dehydration of Apples in Xylitol Solution: Effects on Kinetics, Physicochemical Properties and Antioxidant Activity
by Angelika Wojtyś, Sławomir Pietrzyk, Karolina Grzesińska and Robert Witkowicz
Molecules 2025, 30(11), 2304; https://doi.org/10.3390/molecules30112304 - 24 May 2025
Viewed by 566
Abstract
In the present study, the effects of varying ultrasound treatment durations (5, 15, 30, and 45 min) applied prior to osmotic dehydration in xylitol solutions on apple tissues were investigated. The efficiency of the osmotic dehydration process was assessed by analyzing its kinetic [...] Read more.
In the present study, the effects of varying ultrasound treatment durations (5, 15, 30, and 45 min) applied prior to osmotic dehydration in xylitol solutions on apple tissues were investigated. The efficiency of the osmotic dehydration process was assessed by analyzing its kinetic parameters. In selected samples of osmotically dehydrated fruits, physicochemical properties were evaluated, including dry matter content, total acidity, pH, sugar profile, color attributes, total phenolic content, antioxidant activity (measured by DPPH and ABTS assays), and vitamin C content. Additionally, principal component analysis (PCA) was conducted to explore the relationships among the measured variables and to identify underlying patterns within the dataset. Osmotic dehydration in xylitol significantly modified the physicochemical and antioxidant properties of apples, promoting substantial water loss and partial replacement of natural sugars with xylitol. The results showed that ultrasound pretreatment markedly influenced these effects, with treatment duration playing a critical role. Shorter ultrasound applications (15–30 min) enhanced xylitol uptake while better preserving antioxidant activity and color, whereas longer ultrasound treatments (45 min) achieved greater mass transfer but led to higher losses of bioactive compounds compared to untreated samples. Full article
(This article belongs to the Section Food Chemistry)
Show Figures

Figure 1

14 pages, 1834 KiB  
Article
Comparison of Vacuum and Atmospheric Deep-Fat Frying of Osmo-Dehydrated Goldenberries
by Christiam Guevara-Betancourth, Oscar Arango, Zully J. Suárez-Montenegro, Diego F. Tirado and Oswaldo Osorio
Processes 2025, 13(1), 50; https://doi.org/10.3390/pr13010050 - 29 Dec 2024
Viewed by 852
Abstract
Colombian goldenberries that do not reach sufficient quality for export are exposed to waste, so the search for processes that provide added value while guaranteeing the conservation of this fruit is paramount. Thus, snacks by vacuum frying from goldenberries (Physalis peruviana L.) [...] Read more.
Colombian goldenberries that do not reach sufficient quality for export are exposed to waste, so the search for processes that provide added value while guaranteeing the conservation of this fruit is paramount. Thus, snacks by vacuum frying from goldenberries (Physalis peruviana L.) with low export quality were made. Goldenberry slices previously subjected to ultrasound-assisted osmotic dehydration were used for this purpose. Response surface methodology with different levels of temperature (110 °C and 130 °C), vacuum pressure (0.3 bar and 0.5 bar), and time (2 min and 6 min) was used to optimize the process. At optimal vacuum frying conditions (i.e., 108 °C, 0.5 bar, and 5.5 min), snacks with lower (p ≤ 0.05) oil content were produced, compared to atmospheric frying chips. The optimized snacks had 9% oil, 7% moisture, ΔE of 13 (with respect to fresh fruit), aw of 0.3, and hardness of 14 N. The kinetics and modeling of moisture loss and oil uptake were performed under optimal conditions, obtaining the best fit with the Page (R2 = 99%) and the first-order (R2 = 96%) models, respectively. There was a clear correlation between oil uptake and moisture loss, as the highest oil retention in the product took place when the product had lost the greatest amount of water; therefore, the low initial moisture in the product due to pretreatment resulted in lower oil uptake in it. The obtained goldenberry snack showed adequate physicochemical properties, and the pretreatment yielded a product with much healthier characteristics (i.e., lower oil content, and therefore, a lower caloric intake); so, the proposed process could represent an alternative to the processing of low-export quality Colombian goldenberries. Full article
Show Figures

Figure 1

15 pages, 770 KiB  
Article
Modifications on the Processing Parameters of Traditional Pineapple Slices by Stabilized Sound Pressure of Multiple Frequency Ultrasonic-Assisted Osmotic Dehydration
by Yu-Wen Lin, Yueh-An Yao, Da-Wei Huang, Chung-Jen Chen and Ping-Hsiu Huang
Processes 2024, 12(6), 1109; https://doi.org/10.3390/pr12061109 - 28 May 2024
Cited by 6 | Viewed by 1373
Abstract
This study investigated the practical feasibility of synergistically and optimally applying ultrasound-assisted osmotic dehydration (UAOD) practices for the pineapple slice picking process (in sugar osmotic solution), with potential implications for improving current practices. This study was carried out to evaluate the effects of [...] Read more.
This study investigated the practical feasibility of synergistically and optimally applying ultrasound-assisted osmotic dehydration (UAOD) practices for the pineapple slice picking process (in sugar osmotic solution), with potential implications for improving current practices. This study was carried out to evaluate the effects of different treatment conditions of single (40 and 80 kHz)/multiple (40/80 kHz) frequencies, output powers (300, 450, and 600 W), and treatment time (5–40 min) at 30, 45, and 60 °Brix applied, respectively, on the pineapple slices picking process. The sound pressure of the UA was also measured to confirm that it provided the corresponding effect stably under different conditions. The ideal UAOD operating condition for pineapple slices is a 45 °Brix sugar osmotic solution, with frequency multiplexing at 40/80 kHz and an output power of 450 W for 25 min, which yields the optimal solids gain (SG) rate of 7.58%. The above results of this study indicated that UAOD could improve the accelerated quality transfer of pineapple slices and enhance the final product quality, thereby increasing the efficiency of the dehydration process and saving processing costs and time. Full article
(This article belongs to the Special Issue Drying Kinetics and Quality Control in Food Processing, 2nd Edition)
Show Figures

Figure 1

22 pages, 3477 KiB  
Review
Current Applications of Ultrasound in Fruit and Vegetables Osmotic Dehydration Processes
by Małgorzata Nowacka, Magdalena Dadan and Urszula Tylewicz
Appl. Sci. 2021, 11(3), 1269; https://doi.org/10.3390/app11031269 - 30 Jan 2021
Cited by 48 | Viewed by 10684
Abstract
Ultrasound (US) is a promising technology, which can be used to improve the efficacy of the processes in food technology and the quality of final product. US technique is used, e.g., to support mass and heat transfer processes, such as osmotic dehydration, drying [...] Read more.
Ultrasound (US) is a promising technology, which can be used to improve the efficacy of the processes in food technology and the quality of final product. US technique is used, e.g., to support mass and heat transfer processes, such as osmotic dehydration, drying and freezing, as well as extraction, crystallization, emulsification, filtration, etc. Osmotic dehydration (OD) is a well-known process applied in food processing; however, improvements are required due to the long duration of the process. Therefore, many recent studies focus on the development of OD combined with sonication as a pretreatment method and support during the OD process. The article describes the mechanism of the OD process as well as those of US and changes in microstructure caused by sonication. Furthermore, it focuses on current applications of US in fruits and vegetables OD processes, comparison of ultrasound-assisted osmotic dehydration to sonication treatment and synergic effect of US and other innovative technics/treatments in OD (such as innovative osmotic solutions, blanching, pulsed electric field, reduced pressure and edible coatings). Additionally, the physical and functional properties of tissue subjected to ultrasound pretreatment before OD as well as ultrasound-assisted osmotic dehydration are described. Full article
(This article belongs to the Special Issue Drying Technologies in Food Processing)
Show Figures

Figure 1

19 pages, 1256 KiB  
Article
Ultrasound-Assisted Osmotic Dehydration of Apples in Polyols and Dihydroxyacetone (DHA) Solutions
by Joanna Cichowska, Dorota Witrowa-Rajchert, Lidia Stasiak-Różańska and Adam Figiel
Molecules 2019, 24(19), 3429; https://doi.org/10.3390/molecules24193429 - 21 Sep 2019
Cited by 18 | Viewed by 3532
Abstract
The aim of this work was to analyse the effect of ultrasound-assisted osmotic dehydration of apples v. Elise on mass transfer parameters, water activity, and colour changes. Ultrasound treatment was performed at a frequency of 21 kHz with a temperature of 40 °C [...] Read more.
The aim of this work was to analyse the effect of ultrasound-assisted osmotic dehydration of apples v. Elise on mass transfer parameters, water activity, and colour changes. Ultrasound treatment was performed at a frequency of 21 kHz with a temperature of 40 °C for 30–180 min using four osmotic solutions: 30% concentrated syrups of erythritol, xylitol, maltitol, and dihydroxyacetone (DHA). The efficiency of the used solutes from the polyol groups was compared to reference dehydration in 50% concentrated sucrose solution. Peleg’s model was used to fit experimental data. Erythritol, xylitol, and DHA solutions showed similar efficiency to sucrose and good water removal properties in compared values of true water loss. The application of ultrasound by two methods was in most cases unnoticeable and weaker than was expected. On the other hand, sonication by the continuous method allowed for a significant reduction in water activity in apple tissue in all tested solutions. Full article
(This article belongs to the Special Issue Physicochemical Properties of Food)
Show Figures

Figure 1

Back to TopTop