Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = ultrafast intramolecular energy-transfer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 6705 KiB  
Article
Interplay between Theory and Photophysical Characterization in Symmetric α-Substituted Thienyl BODIPY Molecule
by Tersilla Virgili, Lucia Ganzer, Benedetta Maria Squeo, Arrigo Calzolari and Mariacecilia Pasini
Molecules 2024, 29(11), 2625; https://doi.org/10.3390/molecules29112625 - 3 Jun 2024
Viewed by 1548
Abstract
4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-based molecules have emerged as interesting materials for optoelectronic applications due to the possibility to easily fine-tune their photophysical and optical properties, dominated by two main absorption bands in the visible range. However, no studies have been reported on the nature of [...] Read more.
4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-based molecules have emerged as interesting materials for optoelectronic applications due to the possibility to easily fine-tune their photophysical and optical properties, dominated by two main absorption bands in the visible range. However, no studies have been reported on the nature of these spectral features. By means of ultrafast spectroscopy, we detect intramolecular energy transfer in a spin-coated film of di-thieno-phenyl BODIPY (DTPBDP) dispersed in a polystyrene matrix after pumping the high-energy absorption band. The same effect is not present upon pumping the lowest-energy band, which instead allows the achievement of efficient amplified spontaneous emission. Density functional calculations indicate the different nature of the two main absorption bands, explaining their different photophysical behavior. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Graphical abstract

20 pages, 5511 KiB  
Article
Excited-State Dynamics of All the Mono-cis and the Major Di-cis Isomers of β-Apo-8′-Carotenal as Revealed by Femtosecond Time-Resolved Transient Absorption Spectroscopy
by Kota Horiuchi, Chiasa Uragami, Ruohan Tao, Daisuke Kosumi, Richard J. Cogdell and Hideki Hashimoto
Molecules 2023, 28(11), 4424; https://doi.org/10.3390/molecules28114424 - 29 May 2023
Cited by 6 | Viewed by 3057
Abstract
Cis isomers of carotenoids play important roles in light harvesting and photoprotection in photosynthetic bacteria, such as the reaction center in purple bacteria and the photosynthetic apparatus in cyanobacteria. Carotenoids containing carbonyl groups are involved in efficient energy transfer to chlorophyll in light-harvesting [...] Read more.
Cis isomers of carotenoids play important roles in light harvesting and photoprotection in photosynthetic bacteria, such as the reaction center in purple bacteria and the photosynthetic apparatus in cyanobacteria. Carotenoids containing carbonyl groups are involved in efficient energy transfer to chlorophyll in light-harvesting complexes, and their intramolecular charge–transfer (ICT) excited states are known to be important for this process. Previous studies, using ultrafast laser spectroscopy, have focused on the central-cis isomer of carbonyl-containing carotenoids, revealing that the ICT excited state is stabilized in polar environments. However, the relationship between the cis isomer structure and the ICT excited state has remained unresolved. In this study, we performed steady-state absorption and femtosecond time-resolved absorption spectroscopy on nine geometric isomers (7-cis, 9-cis, 13-cis, 15-cis, 13′-cis, 9,13′-cis, 9,13-cis, 13,13′-cis, and all-trans) of β-apo-8′-carotenal, whose structures are well-defined, and discovered correlations between the decay rate constant of the S1 excited state and the S0−S1 energy gap, as well as between the position of the cis-bend and the degree of stabilization of the ICT excited state. Our results demonstrate that the ICT excited state is stabilized in polar environments in cis isomers of carbonyl-containing carotenoids and suggest that the position of the cis-bend plays an important role in the stabilization of the excited state. Full article
Show Figures

Figure 1

29 pages, 7072 KiB  
Article
Photogrammetry of Ultrafast Excited-State Intramolecular Proton Transfer Pathways in the Fungal Pigment Draconin Red
by Janak Solaris, Taylor D. Krueger, Cheng Chen and Chong Fang
Molecules 2023, 28(8), 3506; https://doi.org/10.3390/molecules28083506 - 16 Apr 2023
Cited by 2 | Viewed by 2690
Abstract
Proton transfer processes of organic molecules are key to charge transport and photoprotection in biological systems. Among them, excited-state intramolecular proton transfer (ESIPT) reactions are characterized by quick and efficient charge transfer within a molecule, resulting in ultrafast proton motions. The ESIPT-facilitated interconversion [...] Read more.
Proton transfer processes of organic molecules are key to charge transport and photoprotection in biological systems. Among them, excited-state intramolecular proton transfer (ESIPT) reactions are characterized by quick and efficient charge transfer within a molecule, resulting in ultrafast proton motions. The ESIPT-facilitated interconversion between two tautomers (PS and PA) comprising the tree fungal pigment Draconin Red in solution was investigated using a combination of targeted femtosecond transient absorption (fs-TA) and excited-state femtosecond stimulated Raman spectroscopy (ES-FSRS) measurements. Transient intensity (population and polarizability) and frequency (structural and cooling) dynamics of –COH rocking and –C=C, –C=O stretching modes following directed stimulation of each tautomer elucidate the excitation-dependent relaxation pathways, particularly the bidirectional ESIPT progression out of the Franck–Condon region to the lower-lying excited state, of the intrinsically heterogeneous chromophore in dichloromethane solvent. A characteristic overall excited-state PS-to-PA transition on the picosecond timescale leads to a unique “W”-shaped excited-state Raman intensity pattern due to dynamic resonance enhancement with the Raman pump–probe pulse pair. The ability to utilize quantum mechanics calculations in conjunction with steady-state electronic absorption and emission spectra to induce disparate excited-state populations in an inhomogeneous mixture of similar tautomers has broad implications for the modeling of potential energy surfaces and delineation of reaction mechanisms in naturally occurring chromophores. Such fundamental insights afforded by in-depth analysis of ultrafast spectroscopic datasets are also beneficial for future development of sustainable materials and optoelectronics. Full article
(This article belongs to the Special Issue Dynamics of Chemical and Biological Systems)
Show Figures

Figure 1

14 pages, 831 KiB  
Article
Semiclassical Theory of Multistage Nonequilibrium Electron Transfer in Macromolecular Compounds in Polar Media with Several Relaxation Timescales
by Serguei V. Feskov
Int. J. Mol. Sci. 2022, 23(24), 15793; https://doi.org/10.3390/ijms232415793 - 13 Dec 2022
Cited by 2 | Viewed by 1580
Abstract
Many specific features of ultrafast electron transfer (ET) reactions in macromolecular compounds can be attributed to nonequilibrium configurations of intramolecular vibrational degrees of freedom and the environment. In photoinduced ET, nonequilibrium nuclear configurations are often produced at the stage of optical excitation, but [...] Read more.
Many specific features of ultrafast electron transfer (ET) reactions in macromolecular compounds can be attributed to nonequilibrium configurations of intramolecular vibrational degrees of freedom and the environment. In photoinduced ET, nonequilibrium nuclear configurations are often produced at the stage of optical excitation, but they can also be the result of electron tunneling itself, i.e., fast redistribution of charges within the macromolecule. A consistent theoretical description of ultrafast ET requires an explicit consideration of the nuclear subsystem, including its evolution between electron jumps. In this paper, the effect of the multi-timescale nuclear reorganization on ET transitions in macromolecular compounds is studied, and a general theory of ultrafast ET in non-Debye polar environments with a multi-component relaxation function is developed. Particular attention is paid to designing the multidimensional space of nonequilibrium nuclear configurations, as well as constructing the diabatic free energy surfaces for the ET states. The reorganization energies of individual ET transitions, the equilibrium energies of ET states, and the relaxation properties of the environment are used as input data for the theory. The effect of the system-environment interaction on the ET kinetics is discussed, and mechanisms for enhancing the efficiency of charge separation in macromolecular compounds are analyzed. Full article
(This article belongs to the Collection State-of-the-Art Macromolecules in Russia)
Show Figures

Figure 1

22 pages, 2060 KiB  
Article
Polarity-Dependent Twisted Intramolecular Charge Transfer in Diethylamino Coumarin Revealed by Ultrafast Spectroscopy
by Jiawei Liu, Cheng Chen and Chong Fang
Chemosensors 2022, 10(10), 411; https://doi.org/10.3390/chemosensors10100411 - 11 Oct 2022
Cited by 16 | Viewed by 4073
Abstract
Twisting intramolecular charge transfer (TICT) is a common nonradiative relaxation pathway for a molecule with a flexible substituent, effectively reducing the fluorescence quantum yield (FQY) by swift twisting motions. In this work, we investigate coumarin 481 (C481) that contains a diethylamino group in [...] Read more.
Twisting intramolecular charge transfer (TICT) is a common nonradiative relaxation pathway for a molecule with a flexible substituent, effectively reducing the fluorescence quantum yield (FQY) by swift twisting motions. In this work, we investigate coumarin 481 (C481) that contains a diethylamino group in solution by femtosecond transient absorption (fs-TA), femtosecond stimulated Raman spectroscopy (FSRS), and theoretical calculations, aided by coumarin 153 with conformational locking of the alkyl arms as a control sample. In different solvents with decreasing polarity, the transition energy barrier between the fluorescent state and TICT state increases, leading to an increase of the FQY. Correlating the fluorescence decay time constant with solvent polarity and viscosity parameters, the multivariable linear regression analysis indicates that the chromophore’s nonradiative relaxation pathway is affected by both hydrogen (H)-bond donating and accepting capabilities as well as dipolarity of the solvent. Results from the ground- and excited-state FSRS shed important light on structural dynamics of C481 undergoing prompt light-induced intramolecular charge transfer from the diethylamino group toward –C=O and –CF3 groups, while the excited-state C=O stretch marker band tracks initial solvation and vibrational cooling dynamics in aprotic and protic solvents (regardless of polarity) as well as H-bonding dynamics in the fluorescent state for C481 in high-polarity protic solvents like methanol. The uncovered mechanistic insights into the molecular origin for the fluorogenicity of C481 as an environment-polarity sensor substantiate the generality of ultrafast TICT state formation of flexible molecules in solution, and the site-dependent substituent(s) as an effective route to modulate the fluorescence properties for such compact, engineerable, and versatile chemosensors. Full article
(This article belongs to the Special Issue Optical Chemical Sensors and Spectroscopy)
Show Figures

Graphical abstract

11 pages, 3991 KiB  
Article
Ultrafast Electron/Energy Transfer and Intersystem Crossing Mechanisms in BODIPY-Porphyrin Compounds
by Yusuf Tutel, Gökhan Sevinç, Betül Küçüköz, Elif Akhuseyin Yildiz, Ahmet Karatay, Fatih Mehmet Dumanoğulları, Halil Yılmaz, Mustafa Hayvali and Ayhan Elmali
Processes 2021, 9(2), 312; https://doi.org/10.3390/pr9020312 - 8 Feb 2021
Cited by 3 | Viewed by 2934
Abstract
Meso-substituted borondipyrromethene (BODIPY)-porphyrin compounds that include free base porphyrin with two different numbers of BODIPY groups (BDP-TTP and 3BDP-TTP) were designed and synthesized to analyze intramolecular energy transfer mechanisms of meso-substituted BODIPY-porphyrin dyads and the effect of the different numbers of BODIPY groups [...] Read more.
Meso-substituted borondipyrromethene (BODIPY)-porphyrin compounds that include free base porphyrin with two different numbers of BODIPY groups (BDP-TTP and 3BDP-TTP) were designed and synthesized to analyze intramolecular energy transfer mechanisms of meso-substituted BODIPY-porphyrin dyads and the effect of the different numbers of BODIPY groups connected to free-base porphyrin on the energy transfer mechanism. Absorption spectra of BODIPY-porphyrin conjugates showed wide absorption features in the visible region, and that is highly valuable to increase light-harvesting efficiency. Fluorescence spectra of the studied compounds proved that BODIPY emission intensity decreased upon the photoexcitation of the BODIPY core, due to the energy transfer from BODIPY unit to porphyrin. In addition, ultrafast pump-probe spectroscopy measurements indicated that the energy transfer of the 3BDP-TTP compound (about 3 ps) is faster than the BDP-TTP compound (about 22 ps). Since the BODIPY core directly binds to the porphyrin unit, rapid energy transfer was seen for both compounds. Thus, the energy transfer rate increased with an increasing number of BODIPY moiety connected to free-base porphyrin. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

15 pages, 2299 KiB  
Article
Twisted Intramolecular Charge Transfer State of a “Push-Pull” Emitter
by Sebok Lee, Myungsam Jen and Yoonsoo Pang
Int. J. Mol. Sci. 2020, 21(21), 7999; https://doi.org/10.3390/ijms21217999 - 27 Oct 2020
Cited by 12 | Viewed by 5151
Abstract
The excited state Raman spectra of 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM) in the locally-excited (LE) and the intramolecular charge transfer (ICT) states have been separately measured by time-resolved stimulated Raman spectroscopy. In a polar dimethylsulfoxide solution, the ultrafast ICT of DCM with [...] Read more.
The excited state Raman spectra of 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM) in the locally-excited (LE) and the intramolecular charge transfer (ICT) states have been separately measured by time-resolved stimulated Raman spectroscopy. In a polar dimethylsulfoxide solution, the ultrafast ICT of DCM with a time constant of 1.0 ps was observed in addition to the vibrational relaxation in the ICT state of 4–7 ps. On the other hand, the energy of the ICT state of DCM becomes higher than that of the LE state in a less polar chloroform solution, where the initially-photoexcited ICT state with the LE state shows the ultrafast internal conversion to the LE state with a time constant of 300 fs. The excited-state Raman spectra of the LE and ICT state of DCM showed several major vibrational modes of DCM in the LE and ICT conformer states coexisting in the excited state. Comparing to the time-dependent density functional theory simulations and the experimental results of similar push-pull type molecules, a twisted geometry of the dimethylamino group is suggested for the structure of DCM in the S1/ICT state. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Graphical abstract

20 pages, 3001 KiB  
Review
Synergistic Approach of Ultrafast Spectroscopy and Molecular Simulations in the Characterization of Intramolecular Charge Transfer in Push-Pull Molecules
by Barbara Patrizi, Concetta Cozza, Adriana Pietropaolo, Paolo Foggi and Mario Siciliani de Cumis
Molecules 2020, 25(2), 430; https://doi.org/10.3390/molecules25020430 - 20 Jan 2020
Cited by 32 | Viewed by 8930
Abstract
The comprehensive characterization of Intramolecular Charge Transfer (ICT) stemming in push-pull molecules with a delocalized π-system of electrons is noteworthy for a bespoke design of organic materials, spanning widespread applications from photovoltaics to nanomedicine imaging devices. Photo-induced ICT is characterized by structural reorganizations, [...] Read more.
The comprehensive characterization of Intramolecular Charge Transfer (ICT) stemming in push-pull molecules with a delocalized π-system of electrons is noteworthy for a bespoke design of organic materials, spanning widespread applications from photovoltaics to nanomedicine imaging devices. Photo-induced ICT is characterized by structural reorganizations, which allows the molecule to adapt to the new electronic density distribution. Herein, we discuss recent photophysical advances combined with recent progresses in the computational chemistry of photoactive molecular ensembles. We focus the discussion on femtosecond Transient Absorption Spectroscopy (TAS) enabling us to follow the transition from a Locally Excited (LE) state to the ICT and to understand how the environment polarity influences radiative and non-radiative decay mechanisms. In many cases, the charge transfer transition is accompanied by structural rearrangements, such as the twisting or molecule planarization. The possibility of an accurate prediction of the charge-transfer occurring in complex molecules and molecular materials represents an enormous advantage in guiding new molecular and materials design. We briefly report on recent advances in ultrafast multidimensional spectroscopy, in particular, Two-Dimensional Electronic Spectroscopy (2DES), in unraveling the ICT nature of push-pull molecular systems. A theoretical description at the atomistic level of photo-induced molecular transitions can predict with reasonable accuracy the properties of photoactive molecules. In this framework, the review includes a discussion on the advances from simulation and modeling, which have provided, over the years, significant information on photoexcitation, emission, charge-transport, and decay pathways. Density Functional Theory (DFT) coupled with the Time-Dependent (TD) framework can describe electronic properties and dynamics for a limited system size. More recently, Machine Learning (ML) or deep learning approaches, as well as free-energy simulations containing excited state potentials, can speed up the calculations with transferable accuracy to more complex molecules with extended system size. A perspective on combining ultrafast spectroscopy with molecular simulations is foreseen for optimizing the design of photoactive compounds with tunable properties. Full article
(This article belongs to the Special Issue Computational Spectroscopy 2020)
Show Figures

Graphical abstract

20 pages, 867 KiB  
Article
Synthesis of Photoresponsive Dual NIR Two-Photon Absorptive [60]Fullerene Triads and Tetrads
by Seaho Jeon, Min Wang, Loon-Seng Tan, Thomas Cooper, Michael R. Hamblin and Long Y. Chiang
Molecules 2013, 18(8), 9603-9622; https://doi.org/10.3390/molecules18089603 - 12 Aug 2013
Cited by 4 | Viewed by 6751
Abstract
Broadband nonlinear optical (NLO) organic nanostructures exhibiting both ultrafast photoresponse and a large cross-section of two-photon absorption throughout a wide NIR spectrum may make them suitable for use as nonlinear biophotonic materials. We report here the synthesis and characterization of two C60 [...] Read more.
Broadband nonlinear optical (NLO) organic nanostructures exhibiting both ultrafast photoresponse and a large cross-section of two-photon absorption throughout a wide NIR spectrum may make them suitable for use as nonlinear biophotonic materials. We report here the synthesis and characterization of two C60-(antenna)x analogous compounds as branched triad C60(>DPAF-C18)(>CPAF-C2M) and tetrad C60(>DPAF-C18)(>CPAF-C2M)2 nanostructures. These compounds showed approximately equal extinction coefficients of optical absorption over 400–550 nm that corresponds to near-IR two-photon based excitation wavelengths at 780–1,100 nm. Accordingly, they may be utilized as potential precursor candidates to the active-core structures of photosensitizing nanodrugs for 2γ-PDT in the biological optical window of 800–1,050 nm. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

Back to TopTop