Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,501)

Search Parameters:
Keywords = type of emission

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
7 pages, 9232 KB  
Data Descriptor
Groundwater Table Depth Monitoring Dataset (2023–2025) from an Extracted Kaigu Peatland Section in Central Latvia
by Normunds Stivrins, Jānis Bikše, Sabina Alta and Inga Grinfelde
Data 2025, 10(11), 176; https://doi.org/10.3390/data10110176 (registering DOI) - 1 Nov 2025
Abstract
Extracted peatlands experience strong hydrological fluctuations due to drainage, vegetation succession, and climatic variability, yet long-term, high-frequency groundwater data remain scarce in Northern Europe. Our dataset presents two years (June 2023–May 2025) of 30-min groundwater table depth (WTD) measurements from six wells installed [...] Read more.
Extracted peatlands experience strong hydrological fluctuations due to drainage, vegetation succession, and climatic variability, yet long-term, high-frequency groundwater data remain scarce in Northern Europe. Our dataset presents two years (June 2023–May 2025) of 30-min groundwater table depth (WTD) measurements from six wells installed across contrasting Greenhouse Gass Emission Site Types (GEST 5, 6, 15, 20) in the Kaigu peatlands, central Latvia. Each well was equipped with an automatic pressure transducer (TD-Diver, van Essen Instruments) recording absolute pressure (m H2O). The dataset also includes metadata on coordinates, installation elevation, well construction, and manual control measurements. All values are unprocessed, i.e., they represent original logger outputs without atmospheric or elevation correction, enabling users to apply their own calibration or referencing methods. This is the first openly available high-frequency extracted peatland groundwater pressure dataset from the Baltic region and provides a foundation for hydrological modelling and rewetting designs. Full article
20 pages, 3412 KB  
Article
Development of a Mineral Binder for Wood Wool Acoustic Panels with a Reduced Carbon Footprint
by Aleksandrs Korjakins, Genadijs Sahmenko, Ina Pundiene, Jolanta Pranckevicienė and Vjaceslavs Lapkovskis
Materials 2025, 18(21), 4999; https://doi.org/10.3390/ma18214999 (registering DOI) - 1 Nov 2025
Abstract
The construction industry’s reliance on Portland cement (PC) significantly contributes to global CO2 emissions, driving the search for sustainable binder alternatives. This study develops and evaluates novel mineral binder systems for wood wool acoustic panels with a reduced carbon footprint. Alternative binders, [...] Read more.
The construction industry’s reliance on Portland cement (PC) significantly contributes to global CO2 emissions, driving the search for sustainable binder alternatives. This study develops and evaluates novel mineral binder systems for wood wool acoustic panels with a reduced carbon footprint. Alternative binders, including calcium aluminate cement (CAC), magnesium oxychloride cement (MOC), and gypsum–cement–pozzolan (GCP) hybrids, were combined with additives such as metakaolin and liquid glass. Mechanical testing demonstrated that 20–30% metakaolin and liquid glass composites achieved flexural strengths of up to 2.65 MPa and densities above 490 kg/m3. The GCP system showed synergistic improvements in flexural and compressive strengths by nearly 50%, along with enhanced dimensional stability and water resistance. Life cycle assessment indicated substantial CO2 emission increases, particularly for the MOC and CAC formulations, compared to conventional Portland cement-based panels. The carbon footprint of the binder system consisting of GCP is approximately 5.644 kg of CO2 equivalent per functional unit compared to magnesium chloride binder systems, which reach up to 10.84 kg CO2 eq., and white Portland cement systems, which are around 6.19 kg CO2 eq. The three-component GCP binder system offers the best balance of mechanical performance and minimised environmental impact. Key raw material contributors to the ecological load are cement (various types), MgO, MgCl2, and metakaolin, highlighting the importance of optimising binder formulations to reduce carbon emissions. The GCP system, in particular, demonstrates unprecedented synergistic improvements in flexural and compressive strengths, dimensional stability, and water resistance while minimising CO2 emissions. Current work sets a new benchmark for sustainable building materials by offering an eco-innovative pathway towards low-carbon, high-performance wood wool acoustic panels, aligning with global decarbonisation goals. Full article
Show Figures

Figure 1

28 pages, 2158 KB  
Article
Port Microgrid Capacity Planning Under Tightening Carbon Constraints: A Bi-Level Cost Optimization Framework
by Junyang Ma and Yin Zhang
Electronics 2025, 14(21), 4307; https://doi.org/10.3390/electronics14214307 (registering DOI) - 31 Oct 2025
Abstract
Under the tightening carbon reduction policies, port microgrids face the challenge of optimizing the installed capacity of multiple power generation types to reduce operating costs and increase renewable energy penetration. We develop a bi-level cost-optimization framework in which the upper level decides long-term [...] Read more.
Under the tightening carbon reduction policies, port microgrids face the challenge of optimizing the installed capacity of multiple power generation types to reduce operating costs and increase renewable energy penetration. We develop a bi-level cost-optimization framework in which the upper level decides long-term capacities (PV, wind, gas turbine, bio-fuel unit, and battery energy storage), and the lower level dispatches a multi-energy port microgrid (electricity–heat–cold) on an hourly basis with frequency regulation services. To ensure rigor and reproducibility, we (i) move the methodology upfront and formalize all constraints, (ii) provide a dedicated data–preprocessing pipeline for multi-region 50/60 Hz frequency time series, and (iii) map a policy intensity index to a carbon price and/or an annual cap used in the objective/constraints. The bi-level MILP is solved by a column-and-constraint generation algorithm with optimality gap control. We report quantitative metrics—annualized total cost, CO2 emissions (t), renewable shares (%), and regulation cycles—across scenarios. Results show consistent cost–carbon trade-offs and robust capacity shifts toward storage and biofuel as policy tightens. All inputs and scripts are organized for exact replication. Full article
36 pages, 2184 KB  
Review
Probing Supernova Diversity Through High-Cadence Optical Observations
by Kuntal Misra, Bhavya Ailawadhi, Raya Dastidar, Monalisa Dubey, Naveen Dukiya, Anjasha Gangopadhyay, Divyanshu Janghel, Kumar Pranshu and Mridweeka Singh
Universe 2025, 11(11), 361; https://doi.org/10.3390/universe11110361 (registering DOI) - 31 Oct 2025
Abstract
Supernovae (SNe) are among the most energetic and transient events in the universe, offering crucial insights into stellar evolution, nucleosynthesis, and cosmic expansion. Optical observations have historically played a central role in the discovery, classification, and physical interpretation of SNe. In this review, [...] Read more.
Supernovae (SNe) are among the most energetic and transient events in the universe, offering crucial insights into stellar evolution, nucleosynthesis, and cosmic expansion. Optical observations have historically played a central role in the discovery, classification, and physical interpretation of SNe. In this review, we summarize recent progress in the optical study of SNe, with a focus on advancements in time-domain surveys and photometric and spectroscopic follow-up strategies. High-cadence optical monitoring is pivotal in capturing the diverse behaviors of SNe, from early-time emission to late-phase decline. Leveraging data from ARIES telescopes and national/international collaborations, we systematically investigate various SN types, including Type Iax, IIP/L, IIb, IIn/Ibn and Ib/c events. Our analysis includes light curve evolution and spectral diagnostics, providing insights into early emission signatures (e.g., shock breakout), progenitor systems, explosion mechanisms, and circumstellar medium (CSM) interactions. Through detailed case studies, we demonstrate the importance of both early-time and nebular-phase observations in constraining progenitor and CSM properties. This comprehensive approach underscores the importance of coordinated global efforts in time-domain astronomy to deepen our understanding of SN diversity. We conclude by discussing the challenges and opportunities for future optical studies in the era of wide-field observatories such as the Vera C. Rubin Observatory (hereafter Rubin), with an emphasis on detection strategies, automation, and rapid-response capabilities. Full article
(This article belongs to the Special Issue A Multiwavelength View of Supernovae)
26 pages, 1079 KB  
Article
Energy Management of Hybrid Energy System Considering a Demand-Side Management Strategy and Hydrogen Storage System
by Nadia Gouda and Hamed Aly
Energies 2025, 18(21), 5759; https://doi.org/10.3390/en18215759 (registering DOI) - 31 Oct 2025
Abstract
A hybrid energy system (HES) integrates various energy resources to attain synchronized energy output. However, HES faces significant challenges due to rising energy consumption, the expenses of using multiple sources, increased emissions due to non-renewable energy resources, etc. This study aims to develop [...] Read more.
A hybrid energy system (HES) integrates various energy resources to attain synchronized energy output. However, HES faces significant challenges due to rising energy consumption, the expenses of using multiple sources, increased emissions due to non-renewable energy resources, etc. This study aims to develop an energy management strategy for distribution grids (DGs) by incorporating a hydrogen storage system (HSS) and demand-side management strategy (DSM), through the design of a multi-objective optimization technique. The primary focus is on optimizing operational costs and reducing pollution. These are approached as minimization problems, while also addressing the challenge of achieving a high penetration of renewable energy resources, framed as a maximization problem. The third objective function is introduced through the implementation of the demand-side management strategy, aiming to minimize the energy gap between initial demand and consumption. This DSM strategy is designed around consumers with three types of loads: sheddable loads, non-sheddable loads, and shiftable loads. To establish a bidirectional communication link between the grid and consumers by utilizing a distribution grid operator (DGO). Additionally, the uncertain behavior of wind, solar, and demand is modeled using probability distribution functions: Weibull for wind, PDF beta for solar, and Gaussian PDF for demand. To tackle this tri-objective optimization problem, this work proposes a hybrid approach that combines well-known techniques, namely, the non-dominated sorting genetic algorithm II and multi-objective particle swarm optimization (Hybrid-NSGA-II-MOPSO). Simulation results demonstrate the effectiveness of the proposed model in optimizing the tri-objective problem while considering various constraints. Full article
16 pages, 8297 KB  
Article
The Influence of Furfuryl Resin Type—Classical and Designed for Sand 3D Printing—On Cast Iron Casting Microstructure and Surface Roughness
by Katarzyna Major-Gabryś, Dawid Halejcio, Andrzej Fijołek, Jan Marosz and Marcin Górny
Polymers 2025, 17(21), 2920; https://doi.org/10.3390/polym17212920 (registering DOI) - 31 Oct 2025
Abstract
Resin-based binders are one of the main materials used in foundry molding and core sands. Self-curing sand with furfuryl resin is one of the most popular technologies in the production of molds and cores for complex, critical castings made of iron and non-ferrous [...] Read more.
Resin-based binders are one of the main materials used in foundry molding and core sands. Self-curing sand with furfuryl resin is one of the most popular technologies in the production of molds and cores for complex, critical castings made of iron and non-ferrous alloys. It has dominated small-batch production and the production of large-sized castings. This work is part of the research on new molding sands for mold additive manufacturing (3D printing). Three-dimensional printing technology in the production of sand-casting molds and cores is finding increasing industrial application in the production of castings from non-ferrous metal alloys. The aim of the research presented in this paper was to determine the influence of furfuryl resin type (classical and designed for 3D printing of sand molds) on cast iron casting properties. The pouring parameters were elaborated on the basis of the MAGMA software. Microscopic observations of castings, produced in classical and 3D-printed molds, were conducted, as well as an assessment of the roughness of the samples. The gas emissions from molding sands with both types of furfuryl resin were tested and analyzed in the context of the roughness of the castings obtained. It was proven that molding sand with furfuryl resin designed for 3D printing was characterized by lower gas emissions, which, in the case of molding sands with organic binders, is beneficial from an environmental point of view. Full article
(This article belongs to the Special Issue Progress in 3D Printing of Polymeric Materials)
Show Figures

Graphical abstract

33 pages, 1062 KB  
Review
A Multi-Level Perspective on Transition to Renewable Energy in the Indonesian Transport Sector
by Ferry Fathoni, Jon C. Lovett and Muhammad Mufti Rifansha
Energies 2025, 18(21), 5723; https://doi.org/10.3390/en18215723 - 30 Oct 2025
Viewed by 111
Abstract
A transition from fossil fuels to renewable energy is underway to achieve net-zero emissions. The institutional arrangements in Indonesia’s energy transportation sector are crucial for various stakeholders involved in the energy transition. This study combines historical institutionalism with a multi-level perspective to analyze [...] Read more.
A transition from fossil fuels to renewable energy is underway to achieve net-zero emissions. The institutional arrangements in Indonesia’s energy transportation sector are crucial for various stakeholders involved in the energy transition. This study combines historical institutionalism with a multi-level perspective to analyze how policy formulation, critical junctures, and path dependence shape institutional changes toward sustainable mobility. The evolution of institutional arrangements can be categorized into three phases: the establishment of fuel-oil-based infrastructure and dependency (1970–2003); the diversification of cleaner fuels through compressed natural gas and biofuels (2004–2014); and the development of affordable and clean energy, focusing on biofuels and electrification (2015 to present). In parallel, a quantitative total cost of ownership analysis of vehicles using different fuel types demonstrates how institutional reforms, fiscal incentives, and regulatory support reshape the economic feasibility of low-carbon technologies. Landscape pressures—such as global decarbonization, fuel import dependence, and energy security challenges—interact with niche innovations, including biofuels, electric vehicles, and hybrid systems, to drive systemic transformation. The findings indicate that institutional changes, supported by quantitative economic evidence and technology diffusion, play a pivotal role in realigning Indonesia’s transport energy regime toward a more resilient, inclusive, and sustainable transition. Full article
(This article belongs to the Special Issue Renewable Energy Sources towards a Zero-Emission Economy)
Show Figures

Figure 1

13 pages, 1202 KB  
Article
A Century of Studies of the Object with the B[e] Phenomenon HD 50138
by Holly Buroughs, Anatoly S. Miroshnichenko, Steve Danford, Alicia N. Aarnio, Sergei V. Zharikov, Hans Van Winckel, Nadine Manset, Ashish Raj, Stephen Drew Chojnowski, Gregor Rauw and Azamat A. Khokhlov
Galaxies 2025, 13(6), 122; https://doi.org/10.3390/galaxies13060122 - 30 Oct 2025
Viewed by 124
Abstract
HD 50138 is a 6.6 mag emission-line B–type star, whose nature is still controversial. It has been thought to be a pre-main-sequence Herbig Be star and an evolved object with the B[e] phenomenon, possibly a mass-transferring binary system. However, it has mostly been [...] Read more.
HD 50138 is a 6.6 mag emission-line B–type star, whose nature is still controversial. It has been thought to be a pre-main-sequence Herbig Be star and an evolved object with the B[e] phenomenon, possibly a mass-transferring binary system. However, it has mostly been studied on short timescales. We collected ∼1000 medium- and high-resolution spectra and available optical photometric data, which cover a time frame from 1981 to 2025, and extended the study from emission lines to a range of absorption lines. A few episodes of dramatic emission-line strength variations were uncovered as well as fast variations of the absorption line widths on timescales of several days. We also found a few previously unreported fadings of the star’s optical brightness seemingly associated with the Hα line profile changes. At the same time, it is still unclear whether the object is a single star or a binary system, as no regular variations of its observed parameters have been detected. Full article
Show Figures

Figure 1

25 pages, 984 KB  
Article
New Quality Productive Forces, Technological Innovations, and the Carbon Emission Intensity of the Manufacturing Industry: Empirical Evidence from Chinese Provincial Panel Data
by Jingui Li, Lin Yuan, Mengjun Dai and Hailan Chen
Sustainability 2025, 17(21), 9641; https://doi.org/10.3390/su17219641 - 30 Oct 2025
Viewed by 190
Abstract
Carbon emissions from the manufacturing sector have long been a critical environmental concern. New quality productive forces (NEP), which integrate advanced technologies and innovative practices to enhance production efficiency while reducing environmental impact, provide robust support for the green and sustainable [...] Read more.
Carbon emissions from the manufacturing sector have long been a critical environmental concern. New quality productive forces (NEP), which integrate advanced technologies and innovative practices to enhance production efficiency while reducing environmental impact, provide robust support for the green and sustainable development of manufacturing. However, previous studies have not established empirical evidence linking NEP to manufacturing carbon emission intensity (CEI), nor have they identified the underlying transmission channels. This study makes a methodological innovation by explicitly differentiating technological innovation into disruptive and progressive categories to examine their distinct mediating roles. Using panel data from 30 Chinese provinces from 2012 to 2021, we investigate the direct, heterogeneous, and spatial effects of NEP on CEI, along with the mediating effects of different innovation types. The results demonstrate that NEP significantly reduces CEI, and this finding remains robust after addressing endogeneity concerns and conducting comprehensive robustness checks. Mechanism analysis reveals that NEP achieves emission reduction primarily through promoting disruptive innovation—fundamental shifts in operational paradigms that substantially reduce environmental footprints. Heterogeneity analysis indicates the strongest emission reduction effect in central China. Based on these findings, we propose targeted policy recommendations: cultivating NEP as a fundamental driver, accelerating green technology industrialization, establishing a three-dimensional policy framework integrating innovation incentives, market regulation, and supervisory safeguards, and implementing regionally differentiated strategies. These approaches provide actionable pathways for achieving China’s dual-carbon goals and promoting sustainable manufacturing development. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

13 pages, 1771 KB  
Article
Tuning Excited-State Properties in Pyrrolo[3,2-b]pyrrole-Based Donor–Acceptor Emitters via Molecular Conformation and Conjugation Control
by Taotao Gan, Jie Su, Feiyang Li, Qiuxia Li and Chao Shi
Molecules 2025, 30(21), 4228; https://doi.org/10.3390/molecules30214228 - 29 Oct 2025
Viewed by 197
Abstract
Nitrogen-fused conjugated heterocycles have attracted growing interest owing to their tunable electronic properties and potential in organic optoelectronics. In this study, two centrosymmetric donor–acceptor-type emitters PP-6F and PPA-3F were designed by incorporating trifluorophenyl and anthracene acceptor units into a pyrrolo[3,2-b]pyrrole (PP) [...] Read more.
Nitrogen-fused conjugated heterocycles have attracted growing interest owing to their tunable electronic properties and potential in organic optoelectronics. In this study, two centrosymmetric donor–acceptor-type emitters PP-6F and PPA-3F were designed by incorporating trifluorophenyl and anthracene acceptor units into a pyrrolo[3,2-b]pyrrole (PP) framework. The experimental and theoretical results reveal that subtle modulations in molecular conformation and π-conjugation pathways strongly affect the excited-state characteristics. PP-6F, featuring a nearly coplanar donor–acceptor configuration, exhibits efficient π-electron delocalization and a dominant local excitation (LE) emission with a large oscillator strength. In contrast, the bulky anthracene in PPA-3F increases the donor–acceptor dihedral angle, reduces conjugation coupling, and promotes orbital separation, leading to a hybrid intramolecular charge transfer and local excitation (ICT/LE) excited state. The rigid anthracene framework suppresses structural reorganization and nonradiative decay, allowing PPA-3F to retain a relatively high oscillator strength despite its charge-transfer nature. This work demonstrates that fine-tuning donor–acceptor dihedral angles and conjugation continuity within PP-based systems is an effective strategy for balancing LE and ICT emissions and developing high-efficiency nitrogen-fused organic emitters and scintillators. Full article
Show Figures

Graphical abstract

17 pages, 2812 KB  
Article
Green Manufacturing of Rutile (TiO2) Welding Electrodes with Blast Furnace Slag
by Mustafa Kaptanoglu
Inorganics 2025, 13(11), 361; https://doi.org/10.3390/inorganics13110361 - 29 Oct 2025
Viewed by 195
Abstract
This study develops a sustainable welding approach by incorporating 35–50% blast furnace slag (BFS), a byproduct of the steel industry, into rutile-type electrode coatings. To fabricate the electrodes, BFS was dry-mixed with fluxes, followed by the addition of potassium silicate binder to create [...] Read more.
This study develops a sustainable welding approach by incorporating 35–50% blast furnace slag (BFS), a byproduct of the steel industry, into rutile-type electrode coatings. To fabricate the electrodes, BFS was dry-mixed with fluxes, followed by the addition of potassium silicate binder to create a paste. This mixture was then pressed onto 3.25 mm core wires at 150 bar and heat-treated at 150 °C for two hours. Weld quality and performance were evaluated through visual inspections, microstructure and XRD analyses, hardness, tensile, and impact tests. Visual inspections confirmed weld quality comparable to commercial standards, with stable arc and minimal spatter. Microstructure analysis revealed a ferrite-dominated weld metal with TiO2 and FeTiO3 phases in the slag layer, enhancing strength and toughness. Electrodes with 35–40% BFS achieved yield strength of 477–482 MPa, tensile strength of 570–573 MPa, and impact energy of 58–59 J at 0 °C, complying with ISO 2560:2020. BFS integration reduced CO2 emissions by 0.28–0.4 kg per kg of coating and diverted 200–600 kg of slag per ton of steel from landfills. Coating and raw material costs decreased by 33–48% and 15–25%, respectively, aligning with the EU Green Deal’s circular economy goals and enhancing weld quality and sustainability. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Figure 1

24 pages, 4939 KB  
Article
Engineering Rare Earth-Assisted Cobalt Oxide Gels Toward Superior Energy Storage in Asymmetric Supercapacitors
by Pritam J. Morankar, Rutuja U. Amate, Aviraj M. Teli, Aditya A. Patil, Sonali A. Beknalkar and Chan-Wook Jeon
Gels 2025, 11(11), 867; https://doi.org/10.3390/gels11110867 - 29 Oct 2025
Viewed by 182
Abstract
The rational design of transition metal oxides with tailored electronic structures and defect chemistries is critical for advancing high-performance supercapacitors. Herein, we report the engineering of cobalt oxide (Co3O4) gels through controlled sol–gel synthesis and rare earth (RE) incorporation [...] Read more.
The rational design of transition metal oxides with tailored electronic structures and defect chemistries is critical for advancing high-performance supercapacitors. Herein, we report the engineering of cobalt oxide (Co3O4) gels through controlled sol–gel synthesis and rare earth (RE) incorporation using neodymium (Nd), gadolinium (Gd), and dual neodymium/gadolinium (Nd/Gd) doping. X-ray diffraction (XRD) confirmed the preservation of the cubic spinel structure with systematic peak shifts and broadening, evidencing lattice strain, oxygen vacancy generation, and defect enrichment. Field-emission scanning electron microscopy (FE-SEM) analyses revealed distinct morphological evolution from compact nanoparticle assemblies in pristine Co3O4 to highly porous, interconnected frameworks in Nd/Gd–Co3O4 (Nd/Gd-Co). X-ray photoelectron spectroscopy (XPS) verified the stable incorporation of RE ions, accompanied by electronic interaction with the Co–O matrix and enhanced oxygen defect states. Electrochemical measurements demonstrated that the Nd/Gd–Co electrode achieved a remarkable areal capacitance of 25 F/cm2 at 8 mA/cm2, superior ionic diffusion coefficients, and the lowest equivalent series resistance (0.26 Ω) among all samples. Long-term cycling confirmed 84.35% capacitance retention with 94.46% coulombic efficiency after 12,000 cycles. Furthermore, the asymmetric pouch-type supercapacitor (APSD) constructed with Nd/Gd–Co as the positive electrode and activated carbon as the negative electrode delivered a wide operational window of 1.5 V, an areal capacitance of 140 mF/cm2, an energy density of 0.044 mWh/cm2, and 89.44% retention after 7000 cycles. These findings establish Nd/Gd-Co gels as robust and scalable electrode materials and demonstrate that RE co-doping is an effective strategy for bridging high energy density with long-term electrochemical stability in asymmetric supercapacitors. Full article
(This article belongs to the Special Issue Gel-Based Materials for Energy Storage)
Show Figures

Figure 1

18 pages, 1684 KB  
Article
Workplace Exposure to Dust Emissions in Additive Manufacturing with an FFF Method
by Adam Hamrol and Filip Osiński
Processes 2025, 13(11), 3470; https://doi.org/10.3390/pr13113470 - 29 Oct 2025
Viewed by 245
Abstract
This article presents the results of research on dust emissions generated by the additive manufacturing process (3D printing) using an FFF method and its impact on the human work environment. The study utilized filaments from three manufacturers in three color variants: neutral, yellow, [...] Read more.
This article presents the results of research on dust emissions generated by the additive manufacturing process (3D printing) using an FFF method and its impact on the human work environment. The study utilized filaments from three manufacturers in three color variants: neutral, yellow, and black, all made from polylactic acid (PLA), one of the most commonly used polymers in FFF processes. The findings indicated that dust emission levels vary significantly depending on the selection of printing process parameters and the type of filament used. Among the process parameters, the extruder temperature and nozzle diameter have the greatest influence on emission levels. It was shown that at high temperatures and with a small nozzle diameter, the emission level can exceed values hazardous to human health within a short printing time. The maximum recorded Dust Emission Intensity Index (DEII) reached 1058 µg/h when printing with black PLA filament under high-temperature conditions (225 °C, 0.4 mm nozzle). Under these parameters, the predicted dust concentration in a 29 m3 room without ventilation exceeded the WHO limit of 50 µg/m3 for PM10 after approximately 98 min of continuous operation. These results indicate that even desktop-scale FFF printing can pose a measurable risk to indoor air quality when unfavorable process settings are applied. Full article
Show Figures

Figure 1

14 pages, 5498 KB  
Article
A Broad Photon Energy Range Multi-Strip Imaging Array Based upon Single Crystal Diamond Schottky Photodiode
by Claudio Verona, Maurizio Angelone, Marco Marinelli and Gianluca Verona-Rinati
Instruments 2025, 9(4), 26; https://doi.org/10.3390/instruments9040026 - 28 Oct 2025
Viewed by 166
Abstract
A multi-strip detector made of synthetic single crystal diamond (SCD), based on a p-type/intrinsic diamond/Schottky metal transverse configuration and operating at zero bias voltage, was developed for imaging from extreme UV (EUV) to soft X-rays. The photodetector was patterned with 32 strips made [...] Read more.
A multi-strip detector made of synthetic single crystal diamond (SCD), based on a p-type/intrinsic diamond/Schottky metal transverse configuration and operating at zero bias voltage, was developed for imaging from extreme UV (EUV) to soft X-rays. The photodetector was patterned with 32 strips made of boron-doped diamond directly deposited, by means of the CVD technique and the standard lithographic technique, on top of the HPHT diamond growth substrate. The width of each strip and the gap between two adjacent strips were 100 μm and 20 μm, respectively. The strips were embedded in intrinsic SCD of an active area of 3.2 × 2.5 mm2, also deposited using the CVD technique in a separate growing machine. In the present structure, the prototype photodetector is suitable for 1D imaging. However, all the dimensions above can be varied depending on the applications. The use of p-type diamond strips represents an attempt to mitigate the photoelectron emission from metal contacts, a non-negligible problem under EUV irradiation. The detector was tested with UV radiation and soft X-rays. To test the photodetector as an imaging device, a headboard (XDAS-DH) and a signal processing board (XDAS-SP) were used as front-end electronics. A standard XDAS software was used to acquire the experimental data. The results of the tests and the detector’s construction process are presented and discussed in the paper. Full article
Show Figures

Figure 1

25 pages, 2585 KB  
Article
Degradation Processes of Transmission–Hydraulic Fluid During an Operational Trial
by Zdenko Tkáč, Ján Kosiba, Daniel Skladaný, Martin Nagy, Juraj Jablonický, Juraj Tulík, Gabriela Čurgaliová and Samuel Danis
Lubricants 2025, 13(11), 477; https://doi.org/10.3390/lubricants13110477 - 28 Oct 2025
Viewed by 147
Abstract
An operational test and degradation analysis of a hydraulic fluid based on synthetic esters was performed in three types of work machines. To enhance its performance, ZDDP anti-wear agents were added. Hydraulic fluids are susceptible to degradation by oxidation; therefore, to ensure the [...] Read more.
An operational test and degradation analysis of a hydraulic fluid based on synthetic esters was performed in three types of work machines. To enhance its performance, ZDDP anti-wear agents were added. Hydraulic fluids are susceptible to degradation by oxidation; therefore, to ensure the long service life of the equipment, it is essential to monitor their current condition through laboratory analyses during machine operation. Emission spectrometry was used to determine the presence of contaminants and the concentration of additive substances in the oil. Pollution was assessed by cleanliness code analysis according to ISO 4406-2021, alongside Total Acid Number (TAN) analysis and LNF analysis of wear and contamination in lubricants. The combination of cleanliness code analysis and LNF analysis of particle type and origin allows for monitoring not only the count but also the origin of contaminating metallic particles, which increases the probability of correct diagnostics and successful detection and resolution of wear problems. All three machines were still operational at the end of the test interval, meaning the tested hydraulic fluid is a suitable alternative to mineral variants. However, in all three pieces of equipment, it is necessary to replace the hydraulic fluid and flush the system before further operation. Furthermore, we recommend replacing the filter elements and inspecting the internal spaces of rotating parts with an increased potential for wear. From the oil’s perspective, it is advisable to add more anti-wear additives (ZDDP), which are depleted the fastest. Full article
Show Figures

Figure 1

Back to TopTop