Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (558)

Search Parameters:
Keywords = tube in tube heat exchangers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3137 KiB  
Article
The Heat Transfer Coefficient During Pool Boiling of Refrigerants in a Compact Heat Exchanger
by Marcin Kruzel, Tadeusz Bohdal, Krzysztof Dutkowski, Krzysztof J. Wołosz and Grzegorz Robakowski
Energies 2025, 18(15), 4030; https://doi.org/10.3390/en18154030 - 29 Jul 2025
Viewed by 223
Abstract
The results of experimental data on the heat transfer coefficient during the boiling of pro-ecological refrigerants in a compact tube-shell heat exchanger are presented. The boiling process occurred in the micro-space of the exchanger shell on the surface of horizontal tubes, which were [...] Read more.
The results of experimental data on the heat transfer coefficient during the boiling of pro-ecological refrigerants in a compact tube-shell heat exchanger are presented. The boiling process occurred in the micro-space of the exchanger shell on the surface of horizontal tubes, which were heated from the inside with warm water. The flow of the refrigerant was gravity-based. The heat exchanger was practically flooded with liquid refrigerant at a saturation temperature (ts), which flowed out after evaporation in a gaseous form. The tests were conducted for four refrigerants: R1234ze, R1234yf, R134a (a high-pressure refrigerant), and HFE7100 (a low-pressure refrigerant). Thermal characteristics describing the heat transfer process throughout the entire compact heat exchanger, specifically for the boiling process itself, were developed. It was found that in the case of micro-space boiling, there is an exponential dependence of the heat transfer coefficient on the heat flux density on the heated surface. Experimental data were compared to experimental and empirical data presented in other studies. Our own empirical models were proposed to determine the heat transfer coefficient for boiling in a mini-space for individual refrigerants. The proposed calculation models were also generalized for various refrigerants by introducing the value of reduced pressure into the calculation relationship. The developed relationship enables the determination of heat transfer coefficient values during boiling in a micro-space on the surface of horizontal tubes for various refrigerants with an accuracy of ±25%. Full article
Show Figures

Figure 1

19 pages, 2560 KiB  
Article
Numerical Simulation Study of Heat Transfer Fluid Boiling Effects on Phase Change Material in Latent Heat Thermal Energy Storage Units
by Minghao Yu, Xun Zheng, Jing Liu, Dong Niu, Huaqiang Liu and Hongtao Gao
Energies 2025, 18(14), 3836; https://doi.org/10.3390/en18143836 - 18 Jul 2025
Viewed by 231
Abstract
The innovation in thermal storage systems for solar thermal power generation is crucial for achieving efficient utilization of new energy sources. Molten salt has been extensively studied as a phase change material (PCM) for latent heat thermal energy storage systems. In this study, [...] Read more.
The innovation in thermal storage systems for solar thermal power generation is crucial for achieving efficient utilization of new energy sources. Molten salt has been extensively studied as a phase change material (PCM) for latent heat thermal energy storage systems. In this study, a two-dimensional model of a vertical shell-and-tube heat exchanger is developed, utilizing water-steam as the heat transfer fluid (HTF) and phase change material for heat transfer analysis. Through numerical simulations, we explore the interplay between PCM solidification and HTF boiling. The transient results show that tube length affects water boiling duration and PCM solidification thickness. Higher heat transfer fluid flow rates lower solidified PCM temperatures, while lower heat transfer fluid inlet temperatures delay boiling and shorten durations, forming thicker PCM solidification layers. Adding fins to the tube wall boosts heat transfer efficiency by increasing contact area with the phase change material. This extension of boiling time facilitates greater PCM solidification, although it may not always optimize the alignment of bundles within the thermal energy storage system. Full article
(This article belongs to the Special Issue New Advances in Heat Transfer, Energy Conversion and Storage)
Show Figures

Figure 1

16 pages, 4062 KiB  
Article
Numerical Modeling of Charging and Discharging of Shell-and-Tube PCM Thermal Energy Storage Unit
by Maciej Fabrykiewicz, Krzysztof Tesch and Janusz T. Cieśliński
Energies 2025, 18(14), 3804; https://doi.org/10.3390/en18143804 - 17 Jul 2025
Viewed by 208
Abstract
This paper presents the results of a numerical study on transient temperature distributions and phase fractions in a thermal energy storage unit containing phase change material (PCM). The latent heat storage unit (LHSU) is a compact shell-and-tube exchanger featuring seven tubes arranged in [...] Read more.
This paper presents the results of a numerical study on transient temperature distributions and phase fractions in a thermal energy storage unit containing phase change material (PCM). The latent heat storage unit (LHSU) is a compact shell-and-tube exchanger featuring seven tubes arranged in a staggered layout. Three organic phase change materials are investigated: paraffin LTP 56, fatty acid RT54HC, and fatty acid P1801. OpenFOAM software is utilized to solve the governing equations using the Boussinesq approximation. The discretization of the equations is performed with second-order accuracy in both space and time. The three-dimensional (3D) computational domain corresponds to the inner diameter of the LHSU. Calculations are conducted assuming constant thermal properties of the fluids. The experimental and numerical results indicate that for paraffin LTP56, the charging time is approximately 8% longer than the discharging time. In contrast, the discharging times for fatty acids RT54HC and P1801 exceed their charging times, with time delays of about 14% and 49% for RT54HC and 25% and 30% for P1801, according to experimental and numerical calculations, respectively. Full article
(This article belongs to the Special Issue Advancements in Energy Storage Technologies)
Show Figures

Figure 1

49 pages, 5383 KiB  
Article
Chaotic Mountain Gazelle Optimizer Improved by Multiple Oppositional-Based Learning Variants for Theoretical Thermal Design Optimization of Heat Exchangers Using Nanofluids
by Oguz Emrah Turgut, Mustafa Asker, Hayrullah Bilgeran Yesiloz, Hadi Genceli and Mohammad AL-Rawi
Biomimetics 2025, 10(7), 454; https://doi.org/10.3390/biomimetics10070454 - 10 Jul 2025
Viewed by 317
Abstract
This theoretical research study proposes a novel hybrid algorithm that integrates an improved quasi-dynamical oppositional learning mutation scheme into the Mountain Gazelle Optimization method, augmented with chaotic sequences, for the thermal and economical design of a shell-and-tube heat exchanger operating with nanofluids. The [...] Read more.
This theoretical research study proposes a novel hybrid algorithm that integrates an improved quasi-dynamical oppositional learning mutation scheme into the Mountain Gazelle Optimization method, augmented with chaotic sequences, for the thermal and economical design of a shell-and-tube heat exchanger operating with nanofluids. The Mountain Gazelle Optimizer is a recently developed metaheuristic algorithm that simulates the foraging behaviors of Mountain Gazelles. However, it suffers from premature convergence due to an imbalance between its exploration and exploitation mechanisms. A two-step improvement procedure is implemented to enhance the overall search efficiency of the original algorithm. The first step concerns substituting uniformly random numbers with chaotic numbers to refine the solution quality to better standards. The second step is to develop a novel manipulation equation that integrates different variants of quasi-dynamic oppositional learning search schemes, guided by a novel intelligently devised adaptive switch mechanism. The efficiency of the proposed algorithm is evaluated using the challenging benchmark functions from various CEC competitions. Finally, the thermo-economic design of a shell-and-tube heat exchanger operated with different nanoparticles is solved by the proposed improved metaheuristic algorithm to obtain the optimal design configuration. The predictive results indicate that using water + SiO2 instead of ordinary water as the refrigerant on the tube side of the heat exchanger reduces the total cost by 16.3%, offering the most cost-effective design among the configurations compared. These findings align with the demonstration of how biologically inspired metaheuristic algorithms can be successfully applied to engineering design. Full article
Show Figures

Graphical abstract

27 pages, 3398 KiB  
Review
A Comprehensive Review on Studies of Flow Characteristics in Horizontal Tube Falling Film Heat Exchangers
by Zhenchuan Wang and Meijun Li
Energies 2025, 18(13), 3587; https://doi.org/10.3390/en18133587 - 7 Jul 2025
Viewed by 379
Abstract
The horizontal tube falling film heat exchangers (HTFFHEs), which exhibit remarkable advantages such as high efficiency in heat and mass transfer, low resistance, and a relatively simple structural configuration, have found extensive applications. Complex flow phenomena and the coupled processes of heat and [...] Read more.
The horizontal tube falling film heat exchangers (HTFFHEs), which exhibit remarkable advantages such as high efficiency in heat and mass transfer, low resistance, and a relatively simple structural configuration, have found extensive applications. Complex flow phenomena and the coupled processes of heat and mass transfer take place within it. Given that the heat and mass transfer predominantly occur at the gas-liquid interface, the flow characteristics therein emerge as a significant factor governing the performance of heat and mass transfer. This article elaborates on the progress of experimental and simulation research approaches with respect to flow characteristics. It systematically reviews the influence patterns of various operating parameters, namely parameters of gas, solution and internal medium, as well as structural parameters like tube diameter and tube spacing, on the flow characteristics, such as the flow regime between tubes, liquid film thickness, and wettability. This review serves to furnish theoretical underpinnings for optimizing the heat and mass transfer performance of the horizontal tube falling film heat exchanger. It is further indicated that the multi-dimensional flow characteristics and their quantitative characterizations under the impacts of different airflow features will constitute the focal research directions for horizontal tube falling film heat exchangers in the foreseeable future. Full article
Show Figures

Figure 1

45 pages, 1606 KiB  
Review
A Comprehensive Review of Geothermal Heat Pump Systems
by Khaled Salhein, Sabriya Alghennai Salheen, Ahmed M. Annekaa, Mansour Hawsawi, Edrees Yahya Alhawsawi, C. J. Kobus and Mohamed Zohdy
Processes 2025, 13(7), 2142; https://doi.org/10.3390/pr13072142 - 5 Jul 2025
Viewed by 480
Abstract
Geothermal heat pump systems (GHPSs) offer a sustainable and energy-efficient solution for heating and cooling buildings. Ground heat exchanger (GHE) design and configuration significantly impact on the overall performance and installation expenses of geothermal heat pump systems. This paper presents a comprehensive analysis [...] Read more.
Geothermal heat pump systems (GHPSs) offer a sustainable and energy-efficient solution for heating and cooling buildings. Ground heat exchanger (GHE) design and configuration significantly impact on the overall performance and installation expenses of geothermal heat pump systems. This paper presents a comprehensive analysis of GHPSs, focusing on their advantages, disadvantages, key components, types, and particularly the various closed-loop GHE configurations. Detailed comparisons highlight how different designs affect thermal performance and installation costs. The findings reveal that helical GHEs offer superior thermal efficiency with reduced drilling requirements and cost savings, while coaxial GHEs, especially those using steel tubes, enhance heat transfer and enable shorter boreholes. Cost-effective options like W-type GHEs provide performance comparable to more complex systems. Additionally, triple U-tube and spiral configurations balance high efficiency with economic feasibility. The single and double U-tube remain the most common borehole geometry, though coaxial designs present distinct advantages in targeted scenarios. These insights support the optimization of vertical GHEs, advancing system performance, cost-effectiveness, and long-term sustainability in GHPS applications. Full article
(This article belongs to the Special Issue Application of Refrigeration and Heat Pump Technology)
Show Figures

Graphical abstract

19 pages, 4002 KiB  
Article
Experimental Testing of New Concrete-Based, Medium-Temperature Thermal Energy Storage Charged by Both a Thermal and Electrical Power Source
by Raffaele Liberatore, Daniele Nicolini, Michela Lanchi and Adio Miliozzi
Energies 2025, 18(13), 3511; https://doi.org/10.3390/en18133511 - 3 Jul 2025
Viewed by 484
Abstract
This study aims to explore a new concept for a Power to Heat (P2H) device and demonstrate its effectiveness compared to a thermal heating method. The proposed concept is a medium-temperature system where electro-thermal conversion occurs via the Joule effect in a metallic [...] Read more.
This study aims to explore a new concept for a Power to Heat (P2H) device and demonstrate its effectiveness compared to a thermal heating method. The proposed concept is a medium-temperature system where electro-thermal conversion occurs via the Joule effect in a metallic tube (resistive element). This tube also serves as a heat exchange surface between the heat transfer fluid and the thermal storage medium. The heat storage material here proposed consists of base concrete formulated on purpose to ensure its operation at high temperatures, good performance and prolongated thermal stability. The addition of 10%wt phase change material (i.e., solar salts) stabilized in shape through a diatomite porous matrix allows the energy density stored in the medium itself to increase (hybrid sensible/latent system). Testing of the heat storage module has been conducted within a temperature range of 220–280 °C. An experimental comparison of charging times has demonstrated that electric heating exhibits faster dynamics compared to thermal heating. In both electrical and thermal heating methods, the concrete module has achieved 86% of its theoretical storage capacity, limited by thermal losses. In conclusion, this study successfully demonstrates the viability and efficiency of the proposed hybrid sensible/latent P2H system, highlighting the faster charging dynamics of direct electrical heating compared to conventional thermal methods, while achieving a comparable storage capacity despite thermal losses. Full article
(This article belongs to the Special Issue Stationary Energy Storage Systems for Renewable Energies)
Show Figures

Figure 1

12 pages, 2061 KiB  
Article
A Tube Furnace Design for the Oxygen Annealing of a REBCO Superconducting Joint
by Zili Zhang, Chuangan Liu, Yang Gao, Hongli Suo, Lei Wang, Shunzhong Chen, Jianhua Liu and Qiuliang Wang
Materials 2025, 18(13), 3053; https://doi.org/10.3390/ma18133053 - 27 Jun 2025
Viewed by 334
Abstract
In this study, we investigated how to design a tube furnace for the oxygen annealing of a REBa2Cu3O7−x (REBCO, where RE = rare earth) superconducting joint. We confirmed the annealing temperature threshold of REBCO tape Ic degradation, [...] Read more.
In this study, we investigated how to design a tube furnace for the oxygen annealing of a REBa2Cu3O7−x (REBCO, where RE = rare earth) superconducting joint. We confirmed the annealing temperature threshold of REBCO tape Ic degradation, which was 175C. A heat exchange model that included REBCO tape and a tube furnace was established by using this temperature as the boundary condition. At the same time, the temperature distribution of the REBCO tape in a commercial tube furnace was measured for the calibration of the heat exchange model. The feasibility and accuracy of the model were confirmed by comparing the real measurements and the simulation results. We then optimized the furnace design based on the model according to two criteria: a 20 mm length of REBCO tape should be kept at high temperatures for the oxygen annealing of REBCO joints and the length of tape at temperatures over the Ic degradation temperature should be as short as possible. The results of this furnace design investigation could help fabricate shorter REBCO superconducting joints, making the magnet more compact and decreasing the length of the Cu stabilizer layer to be removed. Full article
Show Figures

Figure 1

20 pages, 845 KiB  
Article
Designing a Waste Heat Recovery Heat Exchanger for Polymer Electrolyte Membrane Fuel Cell Operation in Medium-Altitude Unmanned Aerial Vehicles
by Juwon Jang, Jaehyung Choi, Seung-Jun Choi and Seung-Gon Kim
Energies 2025, 18(13), 3262; https://doi.org/10.3390/en18133262 - 22 Jun 2025
Viewed by 349
Abstract
Polymer electrolyte membrane fuel cells (PEMFCs) are emerging as the next-generation powertrain for unmanned aerial vehicles (UAVs) due to their high energy density and long operating duration. PEMFCs are subject to icing and performance degradation problems at sub-zero temperatures, especially at high altitudes. [...] Read more.
Polymer electrolyte membrane fuel cells (PEMFCs) are emerging as the next-generation powertrain for unmanned aerial vehicles (UAVs) due to their high energy density and long operating duration. PEMFCs are subject to icing and performance degradation problems at sub-zero temperatures, especially at high altitudes. Therefore, an effective preheating system is required to ensure stable PEMFC operation in high-altitude environments. This study aimed to mathematically model a shell-and-tube heat exchanger that utilizes waste heat recovery to prevent internal and external PEMFC damage in cold, high-altitude conditions. The waste heat from the PEMFC is estimated based on the thrust of the MQ-9 Reaper, and the proposed heat exchanger must be capable of heating air to −5 °C. As the heat exchanger utilizes only waste heat, the primary energy consumption arises from the coolant pumping process. Calculation results indicated that the proposed heat exchanger design improved the overall system efficiency by up to 15.7%, demonstrating its effectiveness in utilizing waste heat under aviation conditions. Full article
Show Figures

Figure 1

37 pages, 9432 KiB  
Review
High-Temperature Molten Salt Heat Exchanger Technology: Research Advances, Challenges, and Future Perspectives
by Chunyang Zheng, Keyong Cheng and Dongjiang Han
Energies 2025, 18(12), 3195; https://doi.org/10.3390/en18123195 - 18 Jun 2025
Viewed by 730
Abstract
Molten salt heat exchangers are pivotal components in advanced energy systems, where their high-temperature stability and efficient heat transfer performance are critical for system reliability. This paper provides a comprehensive review of recent advancements in molten salt heat exchanger technology, focusing on their [...] Read more.
Molten salt heat exchangers are pivotal components in advanced energy systems, where their high-temperature stability and efficient heat transfer performance are critical for system reliability. This paper provides a comprehensive review of recent advancements in molten salt heat exchanger technology, focusing on their application in nuclear energy, concentrated solar power, and thermal energy storage systems. Key design considerations, including thermophysical properties of molten salts and operational conditions, are analyzed to highlight performance optimization strategies. The review traces the evolution from traditional shell-and-tube heat exchangers to compact designs like printed circuit heat exchangers, emphasizing improvements in heat transfer efficiency and power density. Challenges such as material corrosion, manufacturing complexities, and flow dynamics are critically examined. Furthermore, future research directions are proposed, including the development of high-performance materials, advanced manufacturing techniques, and optimized geometries. This review aims to consolidate dispersed research findings, address technological bottlenecks, and provide a roadmap for the continued development of molten salt heat exchangers in high-temperature energy systems. Full article
(This article belongs to the Collection Advances in Heat Transfer Enhancement)
Show Figures

Figure 1

22 pages, 7258 KiB  
Article
The Heat Exchange Coefficient of the Cooling Tube Under the Influence of the Tube Material and Cooling Water Parameters
by Hong Zhang, Qiuliang Long, Fengqi Guo, Zhaolong Shen, Xu Chen, Ran Yu and Yonggang Wang
Buildings 2025, 15(12), 2014; https://doi.org/10.3390/buildings15122014 - 11 Jun 2025
Viewed by 388
Abstract
The traditional finite element method deals with the temperature field around the cooling tube due to the computational efficiency problems caused by grid division and the uncertainty of the convective heat transfer coefficient, resulting in inaccurate calculation results around the cooling tube. We [...] Read more.
The traditional finite element method deals with the temperature field around the cooling tube due to the computational efficiency problems caused by grid division and the uncertainty of the convective heat transfer coefficient, resulting in inaccurate calculation results around the cooling tube. We conducted experiments to study the thermal stress and temperature gradient caused by various factors such as different materials of cooling pipes, pipe diameters, cooling water temperatures, and flow rates. The results showed that aluminum alloy pipes had the highest cooling efficiency but also produced a large temperature gradient. Pipe diameter had the most significant impact on cooling efficiency. Additionally, it is recommended that the cooling water flow velocity is not less than 0.6 m/s to achieve the best efficiency for the cooling pipe of any pipe diameter. The influence range of the cooling pipe on concrete could vary with pipe material, flow rate, and ambient factors. Our experimental results were compared with other heat transfer formulas (the Dittus–Boelter formula and the Yang Joo-Kyoung formula). According to the measured results, the formula is modified). The modified formula can estimate the heat transfer coefficient more accurately according to the flow rate and pipeline characteristics. Finally, the applicability of the formula is further verified by comparing the concrete on the bottom plate of a dam. The proposed heat transfer prediction model can estimate the heat transfer coefficient according to the flow rate and pipeline characteristics, The accuracy of the convection coefficient under different working conditions is improved by 10–25%. It is convenient to predict concrete temperature in practical engineering. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

10 pages, 3553 KiB  
Proceeding Paper
Simulation of Staged Combustion Function in Double P-Type Radiant Tubes
by Chien-Chou Lin, Tsai-Jung Chen, Wei-Lin Cheng and Chien-Hsiung Tsai
Eng. Proc. 2025, 92(1), 94; https://doi.org/10.3390/engproc2025092094 - 9 Jun 2025
Viewed by 249
Abstract
Radiant tubes are essential in industrial furnaces, with thermal efficiency often improved by extending the tube length which reduces durability and complicates production. Integrating finned-tube heat exchangers enhances durability without lengthening tubes but increases NOx emissions. Using staged combustion with four nozzle [...] Read more.
Radiant tubes are essential in industrial furnaces, with thermal efficiency often improved by extending the tube length which reduces durability and complicates production. Integrating finned-tube heat exchangers enhances durability without lengthening tubes but increases NOx emissions. Using staged combustion with four nozzle designs, the emission of NOx is reduced as smaller nozzle diameters lower flame temperatures and suppress NOx production. U-shaped tubes without heat exchangers require higher flame temperatures and NOx emissions 20 times more than double P-type tubes. Full article
(This article belongs to the Proceedings of 2024 IEEE 6th Eurasia Conference on IoT, Communication and Engineering)
Show Figures

Figure 1

22 pages, 6213 KiB  
Article
Mechanistic Insights into Ammonium Chloride Particle Deposition in Hydrogenation Air Coolers: Experimental and CFD-DEM Analysis
by Haoyu Yin, Haozhe Jin, Xiaofei Liu, Chao Wang, Wei Chen, Fengguan Chen, Shuangqing Xu and Shuangquan Li
Processes 2025, 13(6), 1816; https://doi.org/10.3390/pr13061816 - 8 Jun 2025
Cited by 1 | Viewed by 651
Abstract
The operational reliability of industrial cooling systems is critically compromised by the crystallization of ammonium chloride (NH4Cl) in the terminal sections of heat exchangers and at air-cooler inlets. This study systematically investigated the deposition characteristics of NH4Cl particles in [...] Read more.
The operational reliability of industrial cooling systems is critically compromised by the crystallization of ammonium chloride (NH4Cl) in the terminal sections of heat exchangers and at air-cooler inlets. This study systematically investigated the deposition characteristics of NH4Cl particles in hydrogenation air coolers, along with the factors influencing this process, using a combination of experimental analyses and CFD-DEM coupled simulations. Numerical simulations indicated that gas velocity is the primary factor that governs the NH4Cl deposition behavior, whereas the NH4Cl particle size significantly affects the deposition propensity. Under turbulent conditions, larger particles (>300 μm) exhibit a greater deposition tendency due to increased inertial effects. A power-law equation (R2 > 0.75) fitted to the experimental data effectively predicts the variations in the deposition rates across tube bundles. This study offers a theoretical foundation and predictive framework for optimizing anti-clogging design and maintenance strategies in industrial air coolers. Full article
(This article belongs to the Section Particle Processes)
Show Figures

Figure 1

26 pages, 19159 KiB  
Article
Development of a Pipeline-Cleaning Robot for Heat-Exchanger Tubes
by Qianwen Liu, Canlin Li, Guangfei Wang, Lijuan Li, Jinrong Wang, Jianping Tan and Yuxiang Wu
Electronics 2025, 14(12), 2321; https://doi.org/10.3390/electronics14122321 - 6 Jun 2025
Viewed by 610
Abstract
Cleaning operations in narrow pipelines are often hindered by limited maneuverability and low efficiency, necessitating the development of a high-performance and highly adaptable robotic solution. To address this challenge, this study proposes a pipeline-cleaning robot specifically designed for the heat-exchange tubes of industrial [...] Read more.
Cleaning operations in narrow pipelines are often hindered by limited maneuverability and low efficiency, necessitating the development of a high-performance and highly adaptable robotic solution. To address this challenge, this study proposes a pipeline-cleaning robot specifically designed for the heat-exchange tubes of industrial heat exchangers. The robot features a dual-wheel cross-drive configuration to enhance motion stability and integrates a gear–rack-based alignment mechanism with a cam-based propulsion system to enable autonomous deployment and cleaning via a flexible arm. The robot adopts a modular architecture with a separated body and cleaning arm, allowing for rapid assembly and maintenance through bolted connections. A vision-guided control system is implemented to support accurate positioning and task scheduling within the primary pipeline. Experimental results demonstrate that the robot can stably execute automatic navigation and sub-pipe cleaning, achieving pipe-switching times of less than 30 s. The system operates reliably and significantly improves cleaning efficiency. The proposed robotic system exhibits strong adaptability and generalizability, offering an effective solution for automated cleaning in confined pipeline environments. Full article
(This article belongs to the Special Issue Intelligent Mobile Robotic Systems: Decision, Planning and Control)
Show Figures

Figure 1

19 pages, 2782 KiB  
Article
Numerical Study of the Condenser of a Small CO2 Refrigeration Unit Operating Under Supercritical Conditions
by Piotr Szymczak, Piotr Bogusław Jasiński and Marcin Łęcki
Energies 2025, 18(11), 2992; https://doi.org/10.3390/en18112992 - 5 Jun 2025
Viewed by 399
Abstract
The paper presents a numerical analysis of a tube-in-tube condenser of a small refrigeration system. One of the challenges in designing such units is to reduce their dimensions while maintaining the highest possible cooling capacity, so the research presented here focuses on the [...] Read more.
The paper presents a numerical analysis of a tube-in-tube condenser of a small refrigeration system. One of the challenges in designing such units is to reduce their dimensions while maintaining the highest possible cooling capacity, so the research presented here focuses on the search for and impact of the appropriate flow conditions of these two fluids on condenser performance. The refrigerant is supercritical CO2, which is cooled by water. Thermal-flow simulations were performed for eight CO2 inlet velocities in the range of 1–8 m/s, and four cooling water velocities of 0.5–2 m/s. The main parameters of the exchanger operation were analyzed: heat transfer coefficient, Nusselt number, overall heat transfer coefficient, and friction factor, which were compared with selected correlations. The results showed that the condenser achieves the highest power for the highest water velocities (2 m/s) and CO2 (8 m/s), i.e., over 1000 W, which corresponds to a heat flux on the tube surface of approx. 2.6 × 105 W/m2 and a heat transfer coefficient of approx. 4700 W/m2K. One of the most important conclusions is the discovery of a significant effect of water velocity on heat transfer from the CO2 side—an increase in water velocity from 0.5 m/s to 2 m/s results in an increase in the heat transfer coefficient sCO2 by over 60%, with the same Re number. The implication of this study is to show the possibility of adjusting and selecting condenser parameters over a wide range of capacities, just by changing the fluid velocity. Full article
(This article belongs to the Special Issue Advances in Supercritical Carbon Dioxide Cycle)
Show Figures

Figure 1

Back to TopTop