Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (346)

Search Parameters:
Keywords = triboelectric device

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 9769 KiB  
Review
Recent Advances of Hybrid Nanogenerators for Sustainable Ocean Energy Harvesting: Performance, Applications, and Challenges
by Enrique Delgado-Alvarado, Enrique A. Morales-Gonzalez, José Amir Gonzalez-Calderon, Ma. Cristina Irma Peréz-Peréz, Jesús Delgado-Maciel, Mariana G. Peña-Juarez, José Hernandez-Hernandez, Ernesto A. Elvira-Hernandez, Maximo A. Figueroa-Navarro and Agustin L. Herrera-May
Technologies 2025, 13(8), 336; https://doi.org/10.3390/technologies13080336 - 2 Aug 2025
Viewed by 351
Abstract
Ocean energy is an abundant, eco-friendly, and renewable energy resource that is useful for powering sensor networks connected to the maritime Internet of Things (MIoT). These sensor networks can be used to measure different marine environmental parameters that affect ocean infrastructure integrity and [...] Read more.
Ocean energy is an abundant, eco-friendly, and renewable energy resource that is useful for powering sensor networks connected to the maritime Internet of Things (MIoT). These sensor networks can be used to measure different marine environmental parameters that affect ocean infrastructure integrity and harm marine ecosystems. This ocean energy can be harnessed through hybrid nanogenerators that combine triboelectric nanogenerators, electromagnetic generators, piezoelectric nanogenerators, and pyroelectric generators. These nanogenerators have advantages such as high-power density, robust design, easy operating principle, and cost-effective fabrication. However, the performance of these nanogenerators can be affected by the wear of their main components, reduction of wave frequency and amplitude, extreme corrosion, and sea storms. To address these challenges, future research on hybrid nanogenerators must improve their mechanical strength, including materials and packages with anti-corrosion coatings. Herein, we present recent advances in the performance of different hybrid nanogenerators to harvest ocean energy, including various transduction mechanisms. Furthermore, this review reports potential applications of hybrid nanogenerators to power devices in marine infrastructure or serve as self-powered MIoT monitoring sensor networks. This review discusses key challenges that must be addressed to achieve the commercial success of these nanogenerators, regarding design strategies with advanced simulation models or digital twins. Also, these strategies must incorporate new materials that improve the performance, reliability, and integration of future nanogenerator array systems. Thus, optimized hybrid nanogenerators can represent a promising technology for ocean energy harvesting with application in the maritime industry. Full article
(This article belongs to the Special Issue Technological Advances in Science, Medicine, and Engineering 2024)
Show Figures

Graphical abstract

36 pages, 6545 KiB  
Review
MXene-Based Composites for Energy Harvesting and Energy Storage Devices
by Jorge Alexandre Alencar Fotius and Helinando Pequeno de Oliveira
Solids 2025, 6(3), 41; https://doi.org/10.3390/solids6030041 - 1 Aug 2025
Viewed by 303
Abstract
MXenes, a class of two-dimensional transition metal carbides and nitrides, emerged as a promising material for next-generation energy storage and corresponding applications due to their unique combination of high electrical conductivity, tunable surface chemistry, and lamellar structure. This review highlights recent advances in [...] Read more.
MXenes, a class of two-dimensional transition metal carbides and nitrides, emerged as a promising material for next-generation energy storage and corresponding applications due to their unique combination of high electrical conductivity, tunable surface chemistry, and lamellar structure. This review highlights recent advances in MXene-based composites, focusing on their integration into electrode architectures for the development of supercapacitors, batteries, and multifunctional devices, including triboelectric nanogenerators. It serves as a comprehensive overview of the multifunctional capabilities of MXene-based composites and their role in advancing efficient, flexible, and sustainable energy and sensing technologies, outlining how MXene-based systems are poised to redefine multifunctional energy platforms. Electrochemical performance optimization strategies are discussed by considering surface functionalization, interlayer engineering, scalable synthesis techniques, and integration with advanced electrolytes, with particular attention paid to the development of hybrid supercapacitors, triboelectric nanogenerators (TENGs), and wearable sensors. These applications are favored due to improved charge storage capability, mechanical properties, and the multifunctionality of MXenes. Despite these aspects, challenges related to long-term stability, sustainable large-scale production, and environmental degradation must still be addressed. Emerging approaches such as three-dimensional self-assembly and artificial intelligence-assisted design are identified as key challenges for overcoming these issues. Full article
Show Figures

Figure 1

50 pages, 15545 KiB  
Review
Synergies in Materials and Manufacturing: A Review of Composites and 3D Printing for Triboelectric Energy Harvesting
by T. Pavan Rahul and P. S. Rama Sreekanth
J. Compos. Sci. 2025, 9(8), 386; https://doi.org/10.3390/jcs9080386 - 23 Jul 2025
Viewed by 452
Abstract
Sophisticated energy-harvesting technologies have swiftly progressed, expanding energy supply distribution and leveraging advancements in self-sustaining electronic devices. Despite substantial advancements in friction nanomotors within the last decade, a considerable technical obstacle remains for their flawless incorporation using printed electronics and autonomous devices. Integrating [...] Read more.
Sophisticated energy-harvesting technologies have swiftly progressed, expanding energy supply distribution and leveraging advancements in self-sustaining electronic devices. Despite substantial advancements in friction nanomotors within the last decade, a considerable technical obstacle remains for their flawless incorporation using printed electronics and autonomous devices. Integrating advanced triboelectric nanogenerator (TENG) technology with the rapidly evolving field of composite material 3D printing with has resulted in the advancement of three-dimensionally printed TENGs. Triboelectric nanogenerators are an important part of the next generation of portable energy harvesting and sensing devices that may be used for energy harvesting and artificial intelligence tasks. This paper systematically analyzes the continual development of 3D-printed TENGs and the integration of composite materials. The authors thoroughly review the latest material combinations of composite materials and 3D printing techniques for TENGs. Furthermore, this paper showcases the latest applications, such as using a TENG device to generate energy for electrical devices and harvesting energy from human motions, tactile sensors, and self-sustaining sensing gloves. This paper discusses the obstacles in constructing composite-material-based 3D-printed TENGs and the concerns linked to research and methods for improving electrical output performance. The paper finishes with an assessment of the issues associated with the evolution of 3D-printed TENGs, along with innovations and potential future directions in the dynamic realm of composite-material-based 3D-printed TENGs. Full article
(This article belongs to the Special Issue Advancements in Composite Materials for Energy Storage Applications)
Show Figures

Figure 1

68 pages, 1574 KiB  
Review
Influence of Surface Texture in Additively Manufactured Biocompatible Materials and Triboelectric Behavior
by Patricia Isabela Brăileanu and Nicoleta Elisabeta Pascu
Materials 2025, 18(14), 3366; https://doi.org/10.3390/ma18143366 - 17 Jul 2025
Viewed by 633
Abstract
This study analyzes the recent scientific literature on advanced biocompatible materials for triboelectric nanogenerators (TENGs) in biomedical applications. Focusing on materials like synthetic polymers, carbon-based derivatives, and advanced hybrids, the study interprets findings regarding their triboelectric properties and performance influenced by surface texture [...] Read more.
This study analyzes the recent scientific literature on advanced biocompatible materials for triboelectric nanogenerators (TENGs) in biomedical applications. Focusing on materials like synthetic polymers, carbon-based derivatives, and advanced hybrids, the study interprets findings regarding their triboelectric properties and performance influenced by surface texture and additive manufacturing techniques. Major findings reveal that precise control over surface morphology, enabled by additive manufacturing (AM) is promising for optimizing transferred charge density and maximizing TENG efficiency. The analysis highlights the relevance of these material systems and fabrication strategies for developing self-powered wearable and implantable biomedical devices through enabling biocompatible energy-harvesting components that can operate autonomously without external power, underscoring the need for stringent biocompatibility and performance stability. This work synthesizes current progress, identifying critical material and process design parameters for advancing the field of biocompatible TENGs. Full article
Show Figures

Graphical abstract

27 pages, 2729 KiB  
Review
Polymer Composite-Based Triboelectric Nanogenerators: Recent Progress, Design Principles, and Future Perspectives
by Geon-Ju Choi, Sang-Hyun Sohn, Se-Jin Kim and Il-Kyu Park
Polymers 2025, 17(14), 1962; https://doi.org/10.3390/polym17141962 - 17 Jul 2025
Viewed by 456
Abstract
The escalating consumption of fossil fuels and the rapid development of portable electronics have increased interest in alternative energy solutions that can sustainably self-power wearable devices. Triboelectric nanogenerators (TENGs), which convert mechanical energy into electricity through contact electrification and electrostatic induction, have emerged [...] Read more.
The escalating consumption of fossil fuels and the rapid development of portable electronics have increased interest in alternative energy solutions that can sustainably self-power wearable devices. Triboelectric nanogenerators (TENGs), which convert mechanical energy into electricity through contact electrification and electrostatic induction, have emerged as a promising technology due to their high voltage output, lightweight design, and simple fabrication. However, the performance of TENGs is often limited by a low surface charge density, inadequate dielectric properties, and poor charge retention of triboelectric materials. To address these challenges, recent research has focused on the use of polymer composites that incorporate various functional fillers. The filler materials play roles in improving dielectric performance and enhancing mechanical durability, thereby boosting triboelectric output even in harsh environments, while also diminishing charge loss. This review comprehensively examines the role of polymer composite design in TENG performance, with particular emphasis on materials categorized by their triboelectric polarity. Tribo-negative polymers, such as PDMS and PVDF, benefit from filler incorporation and phase engineering to enhance surface charge density and charge retention. By contrast, tribo-positive materials like nylon and cellulose have demonstrated notable improvements in mechanical robustness and environmental stability through composite strategies. The interplay between material selection, surface engineering, and filler design is highlighted as a critical path toward developing high-performance, self-powered TENG systems. Finally, this review discusses the current challenges and future opportunities for advancing TENG technology toward practical and scalable applications. Full article
(This article belongs to the Special Issue Advances in Polymer Composites for Nanogenerator Applications)
Show Figures

Figure 1

15 pages, 2184 KiB  
Article
First-Principles Study on Interfacial Triboelectrification Between Water and Halogen-Functionalized Polymer Surfaces
by Taili Tian, Bo Zhao, Yimin Wang, Shifan Huang, Xiangcheng Ju and Yuyan Fan
Lubricants 2025, 13(7), 303; https://doi.org/10.3390/lubricants13070303 - 11 Jul 2025
Viewed by 389
Abstract
Contact electrification (CE), or triboelectrification, is an electron transfer phenomenon occurring at the interface between dissimilar materials due to differences in polarity, holding significant research value in tribology. The microscopic mechanisms of CE remain unclear due to the complex coupling of multiple physical [...] Read more.
Contact electrification (CE), or triboelectrification, is an electron transfer phenomenon occurring at the interface between dissimilar materials due to differences in polarity, holding significant research value in tribology. The microscopic mechanisms of CE remain unclear due to the complex coupling of multiple physical processes. Recently, with the rise of triboelectric nanogenerator (TENG) technology, solid–liquid contact electrification has demonstrated vast application potential, sparking considerable interest in its underlying mechanisms. Emerging experimental evidence indicates that at water–polymer CE interfaces, the process involves not only traditional ion adsorption but also electron transfer. Halogen-containing functional groups in the solid material significantly enhance the CE effect. To elucidate the microscopic mechanism of water–polymer CE, this study employed first-principles density functional theory (DFT) calculations, simulating the interfacial electrification process using unit cell models of water contacting polymers. We systematically and quantitatively investigated the charge transfer characteristics at interfaces between water and three representative polymers with similar backbones but different halogen-functionalized (F, Cl) side chains: fluorinated ethylene propylene (FEP), polyvinyl chloride (PVC), and polytetrafluoroethylene (PTFE), focusing on evaluating halogen’s influence and mechanism on interfacial electron transfer. The results reveal that electron transfer is primarily governed by the energy levels of the polymer’s lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO). Halogen functional groups modulate the material’s electron-donating/accepting capabilities by altering these frontier orbital energy levels. Consequently, we propose that the critical strategy for polymer chemical modification resides in lowering the LUMO energy level of electron-accepting materials. This study provides a novel theoretical insight into the charge transfer mechanism at solid–liquid interfaces, offers guidance for designing high-performance TENG interfacial materials, and holds significant importance for both the fundamental theory and the development of advanced energy devices. Full article
Show Figures

Figure 1

24 pages, 4771 KiB  
Article
Constant High-Voltage Triboelectric Nanogenerator with Stable AC for Sustainable Energy Harvesting
by Aso Ali Abdalmohammed Shateri, Salar K. Fatah, Fengling Zhuo, Nazifi Sani Shuaibu, Chuanrui Chen, Rui Wan and Xiaozhi Wang
Micromachines 2025, 16(7), 801; https://doi.org/10.3390/mi16070801 - 9 Jul 2025
Viewed by 443
Abstract
Triboelectric nanogenerators (TENGs) hold significant potential for decentralized energy harvesting; however, their dependence on rotational mechanical energy often limits their ability to harness ubiquitous horizontal motion in real-world applications. Here, a single horizontal linear-to-rotational triboelectric nanogenerator (SHLR-TENG) is presented, designed to efficiently convert [...] Read more.
Triboelectric nanogenerators (TENGs) hold significant potential for decentralized energy harvesting; however, their dependence on rotational mechanical energy often limits their ability to harness ubiquitous horizontal motion in real-world applications. Here, a single horizontal linear-to-rotational triboelectric nanogenerator (SHLR-TENG) is presented, designed to efficiently convert linear motion into rotational energy using a robust gear system, enabling a high voltage and reliable full cycle of alternating current (AC). The device features a radially patterned disk with triboelectric layers composed of polyimide. The SHLR-TENG achieves a peak-to-peak voltage of 1420 V, a short-circuit current of 117 µA, and an average power output of 41.5 mW, with a surface charge density of 110 µC/m2. Moreover, it demonstrates a power density per unit volume of 371.2 W·m−3·Hz−1. The device retains 80% efficiency after 1.5 million cycles, demonstrating substantial durability under mechanical stress. These properties enable the SHLR-TENG to directly power commercial LEDs and low-power circuits without the need for energy storage. This study presents an innovative approach to sustainable energy generation by integrating horizontal motion harvesting with rotational energy conversion. The compact and scalable design of the SHLR-TENG, coupled with its resilience to humidity (20–90% RH) and temperature fluctuations (10–70 °C), positions it as a promising next-generation energy source for Internet of Things (IoT) devices and autonomous systems. Full article
(This article belongs to the Special Issue Micro-Energy Harvesting Technologies and Self-Powered Sensing Systems)
Show Figures

Figure 1

21 pages, 5380 KiB  
Communication
Influence of MWCNT Concentration on Performance of Nylon/MWCNT Nanocomposite-Based Triboelectric Nanogenerators Fabricated via Spin Coating Method
by Talia Tene, Orkhan Gulahmadov, Lala Gahramanli, Mustafa Muradov, Jadranka Blazhevska Gilev, Telli Hamzayeva, Shafag Bayramova, Stefano Bellucci and Cristian Vacacela Gomez
Nanoenergy Adv. 2025, 5(3), 9; https://doi.org/10.3390/nanoenergyadv5030009 - 7 Jul 2025
Viewed by 436
Abstract
This work reports the fabrication and optimization of nylon/multi-walled carbon nanotube (MWCNT) nanocomposite-based triboelectric nanogenerators (TENGs) using a spin coating method. By carefully tuning the MWCNT concentration, the device achieved a substantial enhancement in electrical output, with open-circuit voltage and short-circuit current peaking [...] Read more.
This work reports the fabrication and optimization of nylon/multi-walled carbon nanotube (MWCNT) nanocomposite-based triboelectric nanogenerators (TENGs) using a spin coating method. By carefully tuning the MWCNT concentration, the device achieved a substantial enhancement in electrical output, with open-circuit voltage and short-circuit current peaking at 29.7 V and 3.0 μA, respectively, at 0.05 wt% MWCNT loading on the surface of nylon. The corresponding power density reached approximately 13.9 mW/m2, representing a significant improvement over pure nylon-based TENGs. The enhanced performance is attributed to improved charge trapping and dielectric properties due to well-dispersed MWCNTs on the surface of nylon, while excessive loading caused agglomeration, reducing efficiency. This lightweight, flexible nanocomposite TENG offers a promising solution for efficient, sustainable energy harvesting in wearable electronics and self-powered sensor systems, highlighting its potential for practical energy applications. Full article
Show Figures

Figure 1

19 pages, 3030 KiB  
Article
Effect of Chitosan Properties and Dissolution State on Solution Rheology and Film Performance in Triboelectric Nanogenerators
by Francisca Araújo, Solange Magalhães, Bruno Medronho, Alireza Eivazi, Christina Dahlström, Magnus Norgren and Luís Alves
Gels 2025, 11(7), 523; https://doi.org/10.3390/gels11070523 - 5 Jul 2025
Viewed by 440
Abstract
Chitosan films with potential application in triboelectric nanogenerators (TENGs) represent a promising approach to replace non-biobased materials in these innovative devices. In the present work, chitosan with varying molecular weights (MW) and degrees of deacetylation was dissolved in aqueous acetic acid (AA) at [...] Read more.
Chitosan films with potential application in triboelectric nanogenerators (TENGs) represent a promising approach to replace non-biobased materials in these innovative devices. In the present work, chitosan with varying molecular weights (MW) and degrees of deacetylation was dissolved in aqueous acetic acid (AA) at different acid concentrations. It was observed that the MW had a greater influence on the viscosity of the solution compared to either the acid concentration or deacetylation degree. Gel formation occurred in high-MW chitosan solutions prepared with low AA concentration. Films prepared from chitosan solutions, through solvent-casting, were used to prepare TENGs. The power output of the TENGs increased with higher concentrations of AA used in the chitosan dissolution process. Similarly, the residual AA content in the dried films also increased with higher initial AA concentrations. Additionally, hot-pressing of the films significantly improves the TENG power output due to the decrease in morphological defects of the films. It was demonstrated that a good selection of the acid concentration not only facilitates the dissolution of chitosan but also plays a key role in defining the properties of the resulting solutions and films, thereby directly impacting the performance of the TENGs. Full article
(This article belongs to the Special Issue Advances in Chitin- and Chitosan-Based Hydrogels (2nd Edition))
Show Figures

Figure 1

10 pages, 3184 KiB  
Communication
High-Performance Triboelectric Nanogenerator Based on PVDF Nanofibers Modified by a Charge Control Agent n-Propyl Gallate
by Chao Li, Xueying Yang, Xin Tang, Ying Yang, Linjiang Shen, Dawei Gu and Mustafa Eginligil
Materials 2025, 18(13), 3089; https://doi.org/10.3390/ma18133089 - 30 Jun 2025
Viewed by 359
Abstract
Triboelectric nanogenerators (TENGs), as an emerging energy harvesting device, can efficiently convert the weak mechanical energy in the environment into electrical energy, demonstrating significant potential in self-powered systems. In this study, polyvinylidene fluoride (PVDF) nanofiber films mixed with a small amount of n-propyl [...] Read more.
Triboelectric nanogenerators (TENGs), as an emerging energy harvesting device, can efficiently convert the weak mechanical energy in the environment into electrical energy, demonstrating significant potential in self-powered systems. In this study, polyvinylidene fluoride (PVDF) nanofiber films mixed with a small amount of n-propyl gallate (PG) were prepared by using the electrospinning technique, and TENGs were fabricated based on these films. Unexpectedly, experimental results showed that PG (with 0.5–2.5 wt%) did not affect the β phase of the PVDF. However, the TENG based on PVDF/PG composite nanofiber film with 1 wt% PG (PG1-TENG) exhibited large output values of 334 V, 4.36 μA, and 78.4 nC for output voltage, current, and transferred charge, respectively, with a power density of 5.27 W/m2, which highlights ~60% improvement in output voltage over pristine PVDF-TENG. This observation was attributed to the unique charge regulation ability of PG, without altering PVDF’s β phase. Furthermore, application potential of PG1-TENG was demonstrated by powering up an LCD calculator and 480 LEDs. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

24 pages, 11109 KiB  
Review
Review of Self-Powered Wireless Sensors by Triboelectric Breakdown Discharge
by Shuzhe Liu, Jixin Yi, Guyu Jiang, Jiaxun Hou, Yin Yang, Guangli Li, Xuhui Sun and Zhen Wen
Micromachines 2025, 16(7), 765; https://doi.org/10.3390/mi16070765 - 29 Jun 2025
Viewed by 565
Abstract
This review systematically examines recent advances in self-powered wireless sensing technologies based on triboelectric nanogenerators (TENGs), focusing on innovative methods that leverage breakdown discharge effects to achieve high-precision and long-distance signal transmission. These methods offer novel technical pathways and theoretical frameworks for next-generation [...] Read more.
This review systematically examines recent advances in self-powered wireless sensing technologies based on triboelectric nanogenerators (TENGs), focusing on innovative methods that leverage breakdown discharge effects to achieve high-precision and long-distance signal transmission. These methods offer novel technical pathways and theoretical frameworks for next-generation wireless sensing systems. To address the core limitations of conventional wireless sensors, such as a restricted transmission range, high power consumption, and suboptimal integration, this analysis elucidates the mechanism of the generation of high-frequency electromagnetic waves through localized electric field ionization induced by breakdown discharge. Key research directions are synthesized to enhance TENG-based sensing capabilities, including novel device architectures, the optimization of RLC circuit models, the integration of machine learning algorithms, and power management strategies. While current breakdown discharge sensors face challenges such as energy dissipation, multimodal coupling complexity, and signal interpretation barriers, future breakthroughs in material engineering and structural design are anticipated to drive advancements in efficiency, miniaturization, and intelligent functionality in this field. Full article
Show Figures

Figure 1

28 pages, 2905 KiB  
Review
Gel-Based Self-Powered Nanogenerators: Materials, Mechanisms, and Emerging Opportunities
by Aditya Narayan Singh and Kyung-Wan Nam
Gels 2025, 11(6), 451; https://doi.org/10.3390/gels11060451 - 12 Jun 2025
Viewed by 818
Abstract
With the rapid rise in Internet of Things (IoT) and artificial intelligence (AI) technologies, there is an increasing need for portable, wearable, and self-powered flexible sensing devices. In such scenarios, self-powered nanogenerators have emerged as promising energy harvesters capable of converting ambient mechanical [...] Read more.
With the rapid rise in Internet of Things (IoT) and artificial intelligence (AI) technologies, there is an increasing need for portable, wearable, and self-powered flexible sensing devices. In such scenarios, self-powered nanogenerators have emerged as promising energy harvesters capable of converting ambient mechanical stimuli into electrical energy, enabling the development of autonomous flexible sensors and sustainable systems. This review highlights recent advances in nanogenerator technologies—particularly those based on piezoelectric and triboelectric effects—with a focus on soft, flexible, and gel-based polymer materials. Key mechanisms of energy conversion are discussed alongside strategies to enhance performance through material innovation, structural design, and device integration. Special attention is given to the role of gel-type composites, which offer unique advantages such as mechanical tunability, self-healing ability, and biocompatibility, making them highly suitable for next-generation wearable, biomedical, and environmental sensing applications. We also explore the evolving landscape of energy applications, from microscale sensors to large-area systems, and identify critical challenges and opportunities for future research. By synthesizing progress across materials, mechanisms, and application domains, this review aims to guide the rational design of high-performance, sustainable nanogenerators for the next era of energy technologies. Full article
Show Figures

Figure 1

13 pages, 2706 KiB  
Article
In Situ Contact-Separation TENG for High-Speed Rail Wind Monitoring
by Guangzheng Wang, Depeng Fu, Yuankun Li and Xiaoxiong Wang
Nanomaterials 2025, 15(11), 839; https://doi.org/10.3390/nano15110839 - 30 May 2025
Viewed by 441
Abstract
Triboelectric nanogenerators have attracted extensive attention as they can complete sensing during energy conversion, triggering a series of self-powered designs. Traditional TENG bipolar independent fabrication technology requires secondary motion control, which limits its application scenarios. In this work, we propose a flag-type TENG [...] Read more.
Triboelectric nanogenerators have attracted extensive attention as they can complete sensing during energy conversion, triggering a series of self-powered designs. Traditional TENG bipolar independent fabrication technology requires secondary motion control, which limits its application scenarios. In this work, we propose a flag-type TENG prepared using in situ electrospinning technology, in which the connecting region is obtained by electrospinning deposition of PVDF on nylon as the receiving electrode. The active area is isolated with silicone oil paper. After electrospinning, the silicone oil paper was removed, and the distance between the nylon and PVDF is far beyond the van der Waals range. Thus, contact separation can be effectively carried out under the action of wind. The device has been proven to be able to be used for monitoring wind conditions at high-speed rail stations and enables completely self-powered monitoring of the wind level using self-powered LED coding. The device no longer relies on additional batteries or wires to work, providing additional ideas for future self-powered system design. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

38 pages, 2989 KiB  
Review
Electroactive Polymers for Self-Powered Actuators and Biosensors: Advancing Biomedical Diagnostics Through Energy Harvesting Mechanisms
by Nargish Parvin, Sang Woo Joo, Jae Hak Jung and Tapas Kumar Mandal
Actuators 2025, 14(6), 257; https://doi.org/10.3390/act14060257 - 23 May 2025
Viewed by 1292
Abstract
Electroactive polymers (EAPs) have emerged as versatile materials for self-powered actuators and biosensors, revolutionizing biomedical diagnostics and healthcare technologies. These materials harness various energy harvesting mechanisms, including piezoelectricity, triboelectricity, and ionic conductivity, to enable real-time, energy-efficient, and autonomous sensing and actuation without external [...] Read more.
Electroactive polymers (EAPs) have emerged as versatile materials for self-powered actuators and biosensors, revolutionizing biomedical diagnostics and healthcare technologies. These materials harness various energy harvesting mechanisms, including piezoelectricity, triboelectricity, and ionic conductivity, to enable real-time, energy-efficient, and autonomous sensing and actuation without external power sources. This review explores recent advancements in EAP-based self-powered systems, focusing on their applications in biosensing, soft robotics, and biomedical actuation. The integration of nanomaterials, flexible electronics, and wireless communication technologies has significantly enhanced their sensitivity, durability, and multifunctionality, making them ideal for next-generation wearable and implantable medical devices. Additionally, this review discusses key challenges, including material stability, biocompatibility, and optimization strategies for enhanced performance. Future perspectives on the clinical translation of EAP-based actuators and biosensors are also highlighted, emphasizing their potential to transform smart healthcare and bioelectronic applications. Full article
(This article belongs to the Special Issue Electroactive Polymer (EAP) for Actuators and Sensors Applications)
Show Figures

Figure 1

26 pages, 5819 KiB  
Review
Hybrid Energy Harvesting Applications of ZnO Nanorods for Future Implantable and Wearable Devices
by Kathalingam Adaikalam and Hyun-Seok Kim
Micromachines 2025, 16(6), 605; https://doi.org/10.3390/mi16060605 - 22 May 2025
Viewed by 618
Abstract
The currently used electrical energy devices for portable applications are in limited life and need of frequent recharging, it is a big bottleneck for wireless and transportation systems. The scientific community is motivated to find innovative and efficient devices to convert environmental energy [...] Read more.
The currently used electrical energy devices for portable applications are in limited life and need of frequent recharging, it is a big bottleneck for wireless and transportation systems. The scientific community is motivated to find innovative and efficient devices to convert environmental energy into useful forms. Nanogenerator can mitigate this issue by harvesting ambient energy of different forms into useful electrical energy. Particularly flexible nanogenerators can efficiently convert ambient mechanical energy into electrical energy which can be fruitfully used for self-powered sensors and electronic appliances. Zinc oxide is an interesting photosensitive and piezoelectric material that is expected to play a vital role in the synergetic harvesting of environmental thermal, sound, mechanical, and solar energies. As ZnO can be synthesized using easy methods and materials at low cost, the conversion efficiencies of solar and other energy forms can increase considerably. ZnO is a versatile material with interesting semiconducting, optical, and piezoelectric properties; it can be used advantageously to harvest more than one type of ambient energy. The coupled semiconducting and piezoelectric properties of ZnO are attractive for fabricating nanogenerators capable of harvesting both ambient optical and mechanical energies simultaneously. These nanolevel conversion devices are much required to power remote and implantable devices without the need for additional power sources. The present review briefly discusses the principles and mechanisms of different energy harvesting abilities of ZnO nanorods and their composites by consolidating available literature. In addition, the developments taking place in nanogenerators of different kinds—such as photovoltaic, piezoelectric, pyroelectric, and triboelectrics for self-powered technology—and their progress in hybrid energy harvesting application is reviewed. Full article
Show Figures

Figure 1

Back to TopTop