Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = transparent and flexible capacitors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1662 KiB  
Article
A Protic Ionic Liquid Promoted Gel Polymer Electrolyte for Solid-State Electrochemical Energy Storage
by Jiaxing Liu, Zan Wang, Zhihao Yang, Meiling Liu and Hongtao Liu
Materials 2024, 17(23), 5948; https://doi.org/10.3390/ma17235948 - 5 Dec 2024
Viewed by 1005
Abstract
This study presents the synthesis of a transparent, flexible gel polymer electrolyte (GPE) based on the protic ionic liquid BMImHSO4 and on polyvinyl alcohol (PVA) through solution casting and electrochemical evaluation in a 2.5 V symmetrical C/C electrical double-layer solid-state capacitor (EDLC). [...] Read more.
This study presents the synthesis of a transparent, flexible gel polymer electrolyte (GPE) based on the protic ionic liquid BMImHSO4 and on polyvinyl alcohol (PVA) through solution casting and electrochemical evaluation in a 2.5 V symmetrical C/C electrical double-layer solid-state capacitor (EDLC). The freestanding GPE film exhibits high thermal stability (>300 °C), wide electrochemical windows (>2.7 V), and good ionic conductivity (2.43 × 10−2 S cm−1 at 20 °C). EDLC, using this novel GPE film, shows high specific capacitance (81 F g−1) as well as good retention above 90% of the initial capacitance after 4500 cycles. The engineered protic ionic liquid GPE is, hopefully, applicable to high-performance solid-state electrochemical energy storage. Full article
Show Figures

Figure 1

12 pages, 3245 KiB  
Article
Transparent and Efficient Wood-Based Triboelectric Nanogenerators for Energy Harvesting and Self-Powered Sensing
by Ting Cheng, Kunli Cao, Yidan Jing, Hongyan Wang and Yan Wu
Polymers 2024, 16(9), 1208; https://doi.org/10.3390/polym16091208 - 26 Apr 2024
Cited by 2 | Viewed by 1931
Abstract
Wood possesses several advantageous qualities including innocuity, low cost, aesthetic appeal, and excellent biocompatibility, and its naturally abundant functional groups and diverse structural forms facilitate functionalization modification. As the most sustainable bio-based material, the combination of wood with triboelectric nanogenerators (TENGs) stands poised [...] Read more.
Wood possesses several advantageous qualities including innocuity, low cost, aesthetic appeal, and excellent biocompatibility, and its naturally abundant functional groups and diverse structural forms facilitate functionalization modification. As the most sustainable bio-based material, the combination of wood with triboelectric nanogenerators (TENGs) stands poised to significantly advance the cause of green sustainable production while mitigating the escalating challenges of energy consumption. However, the inherent weak polarizability of natural wood limits its development for TENGs. Herein, we present the pioneering development of a flexible transparent wood-based triboelectric nanogenerator (TW-TENG) combining excellent triboelectrical properties, optical properties, and wood aesthetics through sodium chlorite delignification and epoxy resin impregnation. Thanks to the strong electron-donating groups in the epoxy resin, the TW-TENG obtained an open-circuit voltage of up to ~127 V, marking a remarkable 530% enhancement compared to the original wood. Furthermore, durability and stability were substantiated through 10,000 working cycles. In addition, the introduction of epoxy resin and lignin removal endowed the TW-TENG with excellent optical characteristics, with optical transmittance of up to 88.8%, while preserving the unique texture and aesthetics of the wood completely. Finally, we show the application prospects of TW-TENGs in the fields of self-power supply, motion sensing, and smart home through the demonstration of a TW-TENG in the charging and discharging of capacitors and the output of electrical signals in different scenarios. Full article
(This article belongs to the Special Issue High Proformance Wood Coating)
Show Figures

Figure 1

18 pages, 4311 KiB  
Article
Biobased Electronics: Tunable Dielectric and Piezoelectric Cellulose Nanocrystal—Protein Films
by Daniel Voignac, Shylee Belsey, Elisabeth Wermter, Yossi Paltiel and Oded Shoseyov
Nanomaterials 2023, 13(15), 2258; https://doi.org/10.3390/nano13152258 - 6 Aug 2023
Cited by 3 | Viewed by 2751
Abstract
Cellulose has been a go-to material for its dielectric properties from the onset of capacitor development. The demand for an energy storage solution continues to grow, but the supply remains limited and relies too often on fossil and mined materials. This work proposes [...] Read more.
Cellulose has been a go-to material for its dielectric properties from the onset of capacitor development. The demand for an energy storage solution continues to grow, but the supply remains limited and relies too often on fossil and mined materials. This work proposes a fully sustainable and green method with which to produce dielectric thin films made of renewable and degradable materials. Cellulose nanocrystals (CNC) made an excellent matrix for the dispersion of proteins and the fabrication of robust transparent thin films with enhanced dielectric permittivity. A range of proteins sources, additives and concentrations allowed for us to control the dielectric permittivity from εr = 4 to 50. The proteins screened came from animal and plant sources. The films were formed from drying a water suspension of the CNC and proteins through evaporation-induced self-assembly. This yielded nano-layered structures with very high specific surface areas, ideal for energy storage devices. The resulting films were characterized with respect to the electrical, mechanical, piezoelectric, and optical properties to be compared. Electrically conductive (σ = 1.53 × 103 S/m) CNC films were prepared with carbon nanotubes (CNT). The fabricated films were used to make flexible, sustainable, and degradable capacitors by layering protein-based films between CNC–CNT composite films. Full article
Show Figures

Figure 1

12 pages, 2494 KiB  
Article
Terahertz Electromagnetically Induced Transparency with Electric-Field-Coupled Inductor-Capacitor Resonators on LCP Substrate
by Haotian Ling, Zhaolin Li, Ke Li, Ruiqi Zhao, Pengfei Ma, Yongping Zhou, Jingxuan Li, Xiaoyu Xu, Yevhen Yashchyshyn, Xudong Zou and Yifei Zhang
Crystals 2023, 13(2), 283; https://doi.org/10.3390/cryst13020283 - 7 Feb 2023
Cited by 1 | Viewed by 2323
Abstract
Electromagnetically induced transparency (EIT) metamaterials (MTMs) based on the bright-dark mode theory have gained great interest in slow light, sensing, and energy storage in recent years. Typically, various split ring resonators with magnetic response have been proposed as dark resonators in EIT MTMs. [...] Read more.
Electromagnetically induced transparency (EIT) metamaterials (MTMs) based on the bright-dark mode theory have gained great interest in slow light, sensing, and energy storage in recent years. Typically, various split ring resonators with magnetic response have been proposed as dark resonators in EIT MTMs. Here, we have employed a cut-wire (CW) and two electric-field-coupled inductor-capacitor (ELC) resonators with a pure electrical response on a liquid crystal polymer (LCP) substrate with a low loss tangent to fulfill the EIT effect in the terahertz (THz) region. The former works as the bright mode, and the latter functions as the dark mode. The EIT phenomenon results from the destructive interference between these two modes, which can be verified by numerical simulation and near field distribution. In addition, a Lorentz oscillator model was studied to quantitatively analyze the relationship between the coupling strength and the coupling distance. As a demonstration, an EIT MTM device with 5000 units was fabricated and characterized, which showed a transmission window with a peak value of 0.75 at 0.414 THz. This work may inspire new multifunctional EIT MTMs, especially the flexible applications at THz frequencies. Full article
(This article belongs to the Special Issue Terahertz Metamaterials and Active Modulation)
Show Figures

Figure 1

22 pages, 3293 KiB  
Review
Recent Developments in Flexible Transparent Electrode
by Tingting Wang, Kuankuan Lu, Zhuohui Xu, Zimian Lin, Honglong Ning, Tian Qiu, Zhao Yang, Hua Zheng, Rihui Yao and Junbiao Peng
Crystals 2021, 11(5), 511; https://doi.org/10.3390/cryst11050511 - 5 May 2021
Cited by 72 | Viewed by 11328
Abstract
With the rapid development of flexible electronic devices (especially flexible LCD/OLED), flexible transparent electrodes (FTEs) with high light transmittance, high electrical conductivity, and excellent stretchability have attracted extensive attention from researchers and businesses. FTEs serve as an important part of display devices (touch [...] Read more.
With the rapid development of flexible electronic devices (especially flexible LCD/OLED), flexible transparent electrodes (FTEs) with high light transmittance, high electrical conductivity, and excellent stretchability have attracted extensive attention from researchers and businesses. FTEs serve as an important part of display devices (touch screen and display), energy storage devices (solar cells and super capacitors), and wearable medical devices (electronic skin). In this paper, we review the recent progress in the field of FTEs, with special emphasis on metal materials, carbon-based materials, conductive polymers (CPs), and composite materials, which are good alternatives to the traditional commercial transparent electrode (i.e., indium tin oxide, ITO). With respect to production methods, this article provides a detailed discussion on the performance differences and practical applications of different materials. Furthermore, major challenges and future developments of FTEs are also discussed. Full article
(This article belongs to the Special Issue Liquid Crystals in China)
Show Figures

Figure 1

11 pages, 2993 KiB  
Article
Digitally Patterned Mesoporous Carbon Nanostructures of Colorless Polyimide for Transparent and Flexible Micro-Supercapacitor
by Hyeonwoo Kim, Suwon Hwang, Taeseung Hwang, Jung Bin In and Junyeob Yeo
Energies 2021, 14(9), 2547; https://doi.org/10.3390/en14092547 - 29 Apr 2021
Cited by 12 | Viewed by 3283
Abstract
Here, we demonstrate the fabrication of a flexible and transparent micro-supercapacitor (MSC), using colorless polyimide (CPI) via a direct laser writing carbonization (DLWC) process. The focused laser beam directly carbonizes the CPI substrate and generates a porous carbon structure on the surface of [...] Read more.
Here, we demonstrate the fabrication of a flexible and transparent micro-supercapacitor (MSC), using colorless polyimide (CPI) via a direct laser writing carbonization (DLWC) process. The focused laser beam directly carbonizes the CPI substrate and generates a porous carbon structure on the surface of the CPI substrate. Fluorine, which is one of the chemical compositions of CPI, can enhance the specific area and the conductivity of the carbon electrode by creating micropores in carbon structures during carbonization. Thus, the fabricated carbonized CPI-based MSC shows enhanced specific capacitance (1.20 mF at 10 mV s−1) and better transmittance (44.9%) compared to the conventional PI-based MSC. Additionally, the fabricated carbonized CPI-based MSC shows excellent cyclic performance with minimal reduction (<~10%) in 3000 cycles and high capacitance retention under mechanical bending test conditions. Due to its high flexibility, transparency, and capacitance, we expect that carbonized CPI-based MSC can be further applied to various flexible and transparent applications. Full article
(This article belongs to the Special Issue Novel Materials and Technologies for Supercapacitor Applications)
Show Figures

Graphical abstract

10 pages, 4352 KiB  
Article
Direct Laser Writing of Transparent Polyimide Film for Supercapacitor
by Fei Huang, Guoying Feng, Jiajia Yin, Sikun Zhou, Li Shen, Shutong Wang and Yun Luo
Nanomaterials 2020, 10(12), 2547; https://doi.org/10.3390/nano10122547 - 18 Dec 2020
Cited by 21 | Viewed by 4418
Abstract
Direct laser writing (DLW) is a convenient approach for fabricating graphene-based flexible electronic devices. In this paper, laser-induced graphene was successfully prepared on a thin and transparent polyimide film through the DLW process. Experiments have demonstrated that interdigital thin film capacitor prepared by [...] Read more.
Direct laser writing (DLW) is a convenient approach for fabricating graphene-based flexible electronic devices. In this paper, laser-induced graphene was successfully prepared on a thin and transparent polyimide film through the DLW process. Experiments have demonstrated that interdigital thin film capacitor prepared by the DLW method has a high specific capacitance of 8.11 mF/cm2 and volume capacitance density of 3.16 F/cm3 (0.05 mA/cm2) due to the doped fluoride in the laser-induced graphene. The capacitance is about 20 times larger than the super-capacitor based non-transparent polyimide film of the same thickness. Owing to its thin, flexible, higher electrochemical characteristics, the transparent polyimide film is promising for integrating and powering portable and wearable electronics. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Graphical abstract

73 pages, 15140 KiB  
Review
Electrode Materials for Supercapacitors: A Review of Recent Advances
by Parnia Forouzandeh, Vignesh Kumaravel and Suresh C. Pillai
Catalysts 2020, 10(9), 969; https://doi.org/10.3390/catal10090969 - 26 Aug 2020
Cited by 505 | Viewed by 54275
Abstract
The advanced electrochemical properties, such as high energy density, fast charge–discharge rates, excellent cyclic stability, and specific capacitance, make supercapacitor a fascinating electronic device. During recent decades, a significant amount of research has been dedicated to enhancing the electrochemical performance of the supercapacitors [...] Read more.
The advanced electrochemical properties, such as high energy density, fast charge–discharge rates, excellent cyclic stability, and specific capacitance, make supercapacitor a fascinating electronic device. During recent decades, a significant amount of research has been dedicated to enhancing the electrochemical performance of the supercapacitors through the development of novel electrode materials. In addition to highlighting the charge storage mechanism of the three main categories of supercapacitors, including the electric double-layer capacitors (EDLCs), pseudocapacitors, and the hybrid supercapacitors, this review describes the insights of the recent electrode materials (including, carbon-based materials, metal oxide/hydroxide-based materials, and conducting polymer-based materials, 2D materials). The nanocomposites offer larger SSA, shorter ion/electron diffusion paths, thus improving the specific capacitance of supercapacitors (SCs). Besides, the incorporation of the redox-active small molecules and bio-derived functional groups displayed a significant effect on the electrochemical properties of electrode materials. These advanced properties provide a vast range of potential for the electrode materials to be utilized in different applications such as in wearable/portable/electronic devices such as all-solid-state supercapacitors, transparent/flexible supercapacitors, and asymmetric hybrid supercapacitors. Full article
(This article belongs to the Special Issue Electrocatalysis and Electrode Materials for Energy Production)
Show Figures

Figure 1

15 pages, 2592 KiB  
Review
A Review on Flexible and Transparent Energy Storage System
by Jie Li, Qianqian Jiang, Nannan Yuan and Jianguo Tang
Materials 2018, 11(11), 2280; https://doi.org/10.3390/ma11112280 - 14 Nov 2018
Cited by 27 | Viewed by 6396
Abstract
Due to the broad application prospect, flexible and transparent electronic device has been widely used in portable wearable devices, energy storage smart window and other fields, which owns many advantages such as portable, foldable, small-quality, low-cost, good transparency, high performance and so on. [...] Read more.
Due to the broad application prospect, flexible and transparent electronic device has been widely used in portable wearable devices, energy storage smart window and other fields, which owns many advantages such as portable, foldable, small-quality, low-cost, good transparency, high performance and so on. All these electronic devices are inseparable from the support of energy storage device. Energy storage device, like lithium-ion battery and super capacitor, also require strict flexibility and transparency as the energy supply equipment of electronic devices. Here, we demonstrate the development and applications of flexible and transparent lithium-ion battery and super capacitor. In particular, carbon nanomaterials are widely used in flexible and transparent electronic device, due to their excellent optical and electrical properties and good mechanical properties. For example, carbon nanotubes with high electrical conductivity and low density have been widely reported by researchers. Otherwise, graphene as an emerging two-dimensional material with electrical conductivity and carrier mobility attracts comparatively more attention than that of other carbon nanomaterials. Substantial effort has been put on the research for graphene-based energy storage system by researchers from all over the world. But, there is still a long way to accomplish this goal of improving the performance for stretchable and transparent electronic device due to the existing technical conditions. Full article
(This article belongs to the Special Issue Supported Materials for Catalytic Application)
Show Figures

Figure 1

12 pages, 6469 KiB  
Article
Transparent and Flexible Capacitors with an Ultrathin Structure by Using Graphene as Bottom Electrodes
by Tao Guo, Guozhen Zhang, Xi Su, Heng Zhang, Jiaxian Wan, Xue Chen, Hao Wu and Chang Liu
Nanomaterials 2017, 7(12), 418; https://doi.org/10.3390/nano7120418 - 28 Nov 2017
Cited by 14 | Viewed by 5745
Abstract
Ultrathin, transparent and flexible capacitors using graphene as the bottom electrodes were directly fabricated on polyethylene naphthalate (PEN) substrates. ZrO2 dielectric films were deposited on the treated surface of graphene by atomic layer deposition (ALD). The deposition process did not introduce any [...] Read more.
Ultrathin, transparent and flexible capacitors using graphene as the bottom electrodes were directly fabricated on polyethylene naphthalate (PEN) substrates. ZrO2 dielectric films were deposited on the treated surface of graphene by atomic layer deposition (ALD). The deposition process did not introduce any detectible defects in the graphene, as indicated by Raman measurements, guaranteeing the electrical performances of the graphene electrodes. The Aluminum-doped zinc oxide (AZO) films were prepared as the top electrodes using the ALD technique. The capacitors presented a high capacitance density (10.3 fF/μm2 at 10 kHz) and a relatively low leakage current (5.3 × 10−6 A/cm2 at 1 V). Bending tests revealed that the capacitors were able to work normally at an outward bending radius of 10 mm without any deterioration of electrical properties. The capacitors exhibited an average optical transmittance of close to 70% at visible wavelengths. Thus, it opens the door to practical applications in transparent integrated circuits. Full article
Show Figures

Figure 1

Back to TopTop