Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,826)

Search Parameters:
Keywords = translate images

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
45 pages, 4319 KiB  
Review
Advancements in Radiomics-Based AI for Pancreatic Ductal Adenocarcinoma
by Georgios Lekkas, Eleni Vrochidou and George A. Papakostas
Bioengineering 2025, 12(8), 849; https://doi.org/10.3390/bioengineering12080849 (registering DOI) - 6 Aug 2025
Abstract
The advancement of artificial intelligence (AI), deep learning, and radiomics has introduced novel methodologies for the detection, classification, prognosis, and treatment evaluation of pancreatic ductal adenocarcinoma (PDAC). As the integration of AI into medical imaging continues to evolve, its potential to enhance early [...] Read more.
The advancement of artificial intelligence (AI), deep learning, and radiomics has introduced novel methodologies for the detection, classification, prognosis, and treatment evaluation of pancreatic ductal adenocarcinoma (PDAC). As the integration of AI into medical imaging continues to evolve, its potential to enhance early detection, refine diagnostic precision, and optimize treatment strategies becomes increasingly evident. However, despite significant progress, various challenges remain, particularly in terms of clinical applicability, generalizability, interpretability, and integration into routine practice. Understanding the current state of research is crucial for identifying gaps in the literature and exploring opportunities for future advancements. This literature review aims to provide a comprehensive overview of the existing studies on AI applications in PDAC, with a focus on disease detection, classification, survival prediction, treatment response assessment, and radiogenomics. By analyzing the methodologies, findings, and limitations of these studies, we aim to highlight the strengths of AI-driven approaches while addressing critical gaps that hinder their clinical translation. Furthermore, this review aims to discuss future directions in the field, emphasizing the need for multi-institutional collaborations, explainable AI models, and the integration of multi-modal data to advance the role of AI in personalized medicine for PDAC. Full article
Show Figures

Figure 1

55 pages, 2103 KiB  
Review
Reactive Oxygen Species: A Double-Edged Sword in the Modulation of Cancer Signaling Pathway Dynamics
by Manisha Nigam, Bajrang Punia, Deen Bandhu Dimri, Abhay Prakash Mishra, Andrei-Flavius Radu and Gabriela Bungau
Cells 2025, 14(15), 1207; https://doi.org/10.3390/cells14151207 - 6 Aug 2025
Abstract
Reactive oxygen species (ROS) are often seen solely as harmful byproducts of oxidative metabolism, yet evidence reveals their paradoxical roles in both promoting and inhibiting cancer progression. Despite advances, precise context-dependent mechanisms by which ROS modulate oncogenic signaling, therapeutic response, and tumor microenvironment [...] Read more.
Reactive oxygen species (ROS) are often seen solely as harmful byproducts of oxidative metabolism, yet evidence reveals their paradoxical roles in both promoting and inhibiting cancer progression. Despite advances, precise context-dependent mechanisms by which ROS modulate oncogenic signaling, therapeutic response, and tumor microenvironment dynamics remain unclear. Specifically, the spatial and temporal aspects of ROS regulation (i.e., the distinct effects of mitochondrial versus cytosolic ROS on the PI3K/Akt and NF-κB pathways, and the differential cellular outcomes driven by acute versus chronic ROS exposure) have been underexplored. Additionally, the specific contributions of ROS-generating enzymes, like NOX isoforms and xanthine oxidase, to tumor microenvironment remodeling and immune modulation remain poorly understood. This review synthesizes current findings with a focus on these critical gaps, offering novel mechanistic insights into the dualistic nature of ROS in cancer biology. By systematically integrating data on ROS source-specific functions and redox-sensitive signaling pathways, the complex interplay between ROS concentration, localization, and persistence is elucidated, revealing how these factors dictate the paradoxical support of tumor progression or induction of cancer cell death. Particular attention is given to antioxidant mechanisms, including NRF2-mediated responses, that may undermine the efficacy of ROS-targeted therapies. Recent breakthroughs in redox biosensors (i.e., redox-sensitive fluorescent proteins, HyPer variants, and peroxiredoxin–FRET constructs) enable precise, real-time ROS imaging across subcellular compartments. Translational advances, including redox-modulating drugs and synthetic lethality strategies targeting glutathione or NADPH dependencies, further highlight actionable vulnerabilities. This refined understanding advances the field by highlighting context-specific vulnerabilities in tumor redox biology and guiding more precise therapeutic strategies. Continued research on redox-regulated signaling and its interplay with inflammation and therapy resistance is essential to unravel ROS dynamics in tumors and develop targeted, context-specific interventions harnessing their dual roles. Full article
Show Figures

Figure 1

24 pages, 3788 KiB  
Review
Advances in Photoacoustic Imaging of Breast Cancer
by Yang Wu, Keer Huang, Guoxiong Chen and Li Lin
Sensors 2025, 25(15), 4812; https://doi.org/10.3390/s25154812 - 5 Aug 2025
Abstract
Breast cancer is the leading cause of cancer-related mortality among women world-wide, and early screening is critical for improving patient survival. Medical imaging plays a central role in breast cancer screening, diagnosis, and treatment monitoring. However, conventional imaging modalities—including mammography, ultrasound, and magnetic [...] Read more.
Breast cancer is the leading cause of cancer-related mortality among women world-wide, and early screening is critical for improving patient survival. Medical imaging plays a central role in breast cancer screening, diagnosis, and treatment monitoring. However, conventional imaging modalities—including mammography, ultrasound, and magnetic resonance imaging—face limitations such as low diagnostic specificity, relatively slow imaging speed, ionizing radiation exposure, and dependence on exogenous contrast agents. Photoacoustic imaging (PAI), a novel hybrid imaging technique that combines optical contrast with ultrasonic spatial resolution, has shown great promise in addressing these challenges. By revealing anatomical, functional, and molecular features of the breast tumor microenvironment, PAI offers high spatial resolution, rapid imaging, and minimal operator dependence. This review outlines the fundamental principles of PAI and systematically examines recent advances in its application to breast cancer screening, diagnosis, and therapeutic evaluation. Furthermore, we discuss the translational potential of PAI as an emerging breast imaging modality, complementing existing clinical techniques. Full article
(This article belongs to the Special Issue Optical Imaging for Medical Applications)
Show Figures

Figure 1

25 pages, 6934 KiB  
Article
Feature Constraints Map Generation Models Integrating Generative Adversarial and Diffusion Denoising
by Chenxing Sun, Xixi Fan, Xiechun Lu, Laner Zhou, Junli Zhao, Yuxuan Dong and Zhanlong Chen
Remote Sens. 2025, 17(15), 2683; https://doi.org/10.3390/rs17152683 - 3 Aug 2025
Viewed by 157
Abstract
The accelerated evolution of remote sensing technology has intensified the demand for real-time tile map generation, highlighting the limitations of conventional mapping approaches that rely on manual cartography and field surveys. To address the critical need for rapid cartographic updates, this study presents [...] Read more.
The accelerated evolution of remote sensing technology has intensified the demand for real-time tile map generation, highlighting the limitations of conventional mapping approaches that rely on manual cartography and field surveys. To address the critical need for rapid cartographic updates, this study presents a novel multi-stage generative framework that synergistically integrates Generative Adversarial Networks (GANs) with Diffusion Denoising Models (DMs) for high-fidelity map generation from remote sensing imagery. Specifically, our proposed architecture first employs GANs for rapid preliminary map generation, followed by a cascaded diffusion process that progressively refines topological details and spatial accuracy through iterative denoising. Furthermore, we propose a hybrid attention mechanism that strategically combines channel-wise feature recalibration with coordinate-aware spatial modulation, enabling the enhanced discrimination of geographic features under challenging conditions involving edge ambiguity and environmental noise. Quantitative evaluations demonstrate that our method significantly surpasses established baselines in both structural consistency and geometric fidelity. This framework establishes an operational paradigm for automated, rapid-response cartography, demonstrating a particular utility in time-sensitive applications including disaster impact assessment, unmapped terrain documentation, and dynamic environmental surveillance. Full article
Show Figures

Figure 1

24 pages, 3243 KiB  
Article
Design of Experiments Leads to Scalable Analgesic Near-Infrared Fluorescent Coconut Nanoemulsions
by Amit Chandra Das, Gayathri Aparnasai Reddy, Shekh Md. Newaj, Smith Patel, Riddhi Vichare, Lu Liu and Jelena M. Janjic
Pharmaceutics 2025, 17(8), 1010; https://doi.org/10.3390/pharmaceutics17081010 - 1 Aug 2025
Viewed by 196
Abstract
Background: Pain is a complex phenomenon characterized by unpleasant experiences with profound heterogeneity influenced by biological, psychological, and social factors. According to the National Health Interview Survey, 50.2 million U.S. adults (20.5%) experience pain on most days, with the annual cost of prescription [...] Read more.
Background: Pain is a complex phenomenon characterized by unpleasant experiences with profound heterogeneity influenced by biological, psychological, and social factors. According to the National Health Interview Survey, 50.2 million U.S. adults (20.5%) experience pain on most days, with the annual cost of prescription medication for pain reaching approximately USD 17.8 billion. Theranostic pain nanomedicine therefore emerges as an attractive analgesic strategy with the potential for increased efficacy, reduced side-effects, and treatment personalization. Theranostic nanomedicine combines drug delivery and diagnostic features, allowing for real-time monitoring of analgesic efficacy in vivo using molecular imaging. However, clinical translation of these nanomedicines are challenging due to complex manufacturing methodologies, lack of standardized quality control, and potentially high costs. Quality by Design (QbD) can navigate these challenges and lead to the development of an optimal pain nanomedicine. Our lab previously reported a macrophage-targeted perfluorocarbon nanoemulsion (PFC NE) that demonstrated analgesic efficacy across multiple rodent pain models in both sexes. Here, we report PFC-free, biphasic nanoemulsions formulated with a biocompatible and non-immunogenic plant-based coconut oil loaded with a COX-2 inhibitor and a clinical-grade, indocyanine green (ICG) near-infrared fluorescent (NIRF) dye for parenteral theranostic analgesic nanomedicine. Methods: Critical process parameters and material attributes were identified through the FMECA (Failure, Modes, Effects, and Criticality Analysis) method and optimized using a 3 × 2 full-factorial design of experiments. We investigated the impact of the oil-to-surfactant ratio (w/w) with three different surfactant systems on the colloidal properties of NE. Small-scale (100 mL) batches were manufactured using sonication and microfluidization, and the final formulation was scaled up to 500 mL with microfluidization. The colloidal stability of NE was assessed using dynamic light scattering (DLS) and drug quantification was conducted through reverse-phase HPLC. An in vitro drug release study was conducted using the dialysis bag method, accompanied by HPLC quantification. The formulation was further evaluated for cell viability, cellular uptake, and COX-2 inhibition in the RAW 264.7 macrophage cell line. Results: Nanoemulsion droplet size increased with a higher oil-to-surfactant ratio (w/w) but was no significant impact by the type of surfactant system used. Thermal cycling and serum stability studies confirmed NE colloidal stability upon exposure to high and low temperatures and biological fluids. We also demonstrated the necessity of a solubilizer for long-term fluorescence stability of ICG. The nanoemulsion showed no cellular toxicity and effectively inhibited PGE2 in activated macrophages. Conclusions: To our knowledge, this is the first instance of a celecoxib-loaded theranostic platform developed using a plant-derived hydrocarbon oil, applying the QbD approach that demonstrated COX-2 inhibition. Full article
(This article belongs to the Special Issue Quality by Design in Pharmaceutical Manufacturing)
Show Figures

Graphical abstract

25 pages, 5899 KiB  
Review
Non-Invasive Medical Imaging in the Evaluation of Composite Scaffolds in Tissue Engineering: Methods, Challenges, and Future Directions
by Samira Farjaminejad, Rosana Farjaminejad, Pedram Sotoudehbagha and Mehdi Razavi
J. Compos. Sci. 2025, 9(8), 400; https://doi.org/10.3390/jcs9080400 - 1 Aug 2025
Viewed by 281
Abstract
Tissue-engineered scaffolds, particularly composite scaffolds composed of polymers combined with ceramics, bioactive glasses, or nanomaterials, play a vital role in regenerative medicine by providing structural and biological support for tissue repair. As scaffold designs grow increasingly complex, the need for non-invasive imaging modalities [...] Read more.
Tissue-engineered scaffolds, particularly composite scaffolds composed of polymers combined with ceramics, bioactive glasses, or nanomaterials, play a vital role in regenerative medicine by providing structural and biological support for tissue repair. As scaffold designs grow increasingly complex, the need for non-invasive imaging modalities capable of monitoring scaffold integration, degradation, and tissue regeneration in real-time has become critical. This review summarizes current non-invasive imaging techniques used to evaluate tissue-engineered constructs, including optical methods such as near-infrared fluorescence imaging (NIR), optical coherence tomography (OCT), and photoacoustic imaging (PAI); magnetic resonance imaging (MRI); X-ray-based approaches like computed tomography (CT); and ultrasound-based modalities. It discusses the unique advantages and limitations of each modality. Finally, the review identifies major challenges—including limited imaging depth, resolution trade-offs, and regulatory hurdles—and proposes future directions to enhance translational readiness and clinical adoption of imaging-guided tissue engineering (TE). Emerging prospects such as multimodal platforms and artificial intelligence (AI) assisted image analysis hold promise for improving precision, scalability, and clinical relevance in scaffold monitoring. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

24 pages, 624 KiB  
Systematic Review
Integrating Artificial Intelligence into Perinatal Care Pathways: A Scoping Review of Reviews of Applications, Outcomes, and Equity
by Rabie Adel El Arab, Omayma Abdulaziz Al Moosa, Zahraa Albahrani, Israa Alkhalil, Joel Somerville and Fuad Abuadas
Nurs. Rep. 2025, 15(8), 281; https://doi.org/10.3390/nursrep15080281 - 31 Jul 2025
Viewed by 143
Abstract
Background: Artificial intelligence (AI) and machine learning (ML) have been reshaping maternal, fetal, neonatal, and reproductive healthcare by enhancing risk prediction, diagnostic accuracy, and operational efficiency across the perinatal continuum. However, no comprehensive synthesis has yet been published. Objective: To conduct a scoping [...] Read more.
Background: Artificial intelligence (AI) and machine learning (ML) have been reshaping maternal, fetal, neonatal, and reproductive healthcare by enhancing risk prediction, diagnostic accuracy, and operational efficiency across the perinatal continuum. However, no comprehensive synthesis has yet been published. Objective: To conduct a scoping review of reviews of AI/ML applications spanning reproductive, prenatal, postpartum, neonatal, and early child-development care. Methods: We searched PubMed, Embase, the Cochrane Library, Web of Science, and Scopus through April 2025. Two reviewers independently screened records, extracted data, and assessed methodological quality using AMSTAR 2 for systematic reviews, ROBIS for bias assessment, SANRA for narrative reviews, and JBI guidance for scoping reviews. Results: Thirty-nine reviews met our inclusion criteria. In preconception and fertility treatment, convolutional neural network-based platforms can identify viable embryos and key sperm parameters with over 90 percent accuracy, and machine-learning models can personalize follicle-stimulating hormone regimens to boost mature oocyte yield while reducing overall medication use. Digital sexual-health chatbots have enhanced patient education, pre-exposure prophylaxis adherence, and safer sexual behaviors, although data-privacy safeguards and bias mitigation remain priorities. During pregnancy, advanced deep-learning models can segment fetal anatomy on ultrasound images with more than 90 percent overlap compared to expert annotations and can detect anomalies with sensitivity exceeding 93 percent. Predictive biometric tools can estimate gestational age within one week with accuracy and fetal weight within approximately 190 g. In the postpartum period, AI-driven decision-support systems and conversational agents can facilitate early screening for depression and can guide follow-up care. Wearable sensors enable remote monitoring of maternal blood pressure and heart rate to support timely clinical intervention. Within neonatal care, the Heart Rate Observation (HeRO) system has reduced mortality among very low-birth-weight infants by roughly 20 percent, and additional AI models can predict neonatal sepsis, retinopathy of prematurity, and necrotizing enterocolitis with area-under-the-curve values above 0.80. From an operational standpoint, automated ultrasound workflows deliver biometric measurements at about 14 milliseconds per frame, and dynamic scheduling in IVF laboratories lowers staff workload and per-cycle costs. Home-monitoring platforms for pregnant women are associated with 7–11 percent reductions in maternal mortality and preeclampsia incidence. Despite these advances, most evidence derives from retrospective, single-center studies with limited external validation. Low-resource settings, especially in Sub-Saharan Africa, remain under-represented, and few AI solutions are fully embedded in electronic health records. Conclusions: AI holds transformative promise for perinatal care but will require prospective multicenter validation, equity-centered design, robust governance, transparent fairness audits, and seamless electronic health record integration to translate these innovations into routine practice and improve maternal and neonatal outcomes. Full article
Show Figures

Figure 1

15 pages, 2460 KiB  
Review
Oxygen-Generating Metal Peroxide Particles for Cancer Therapy, Diagnosis, and Theranostics
by Adnan Memić and Turdimuhammad Abdullah
Future Pharmacol. 2025, 5(3), 41; https://doi.org/10.3390/futurepharmacol5030041 - 30 Jul 2025
Viewed by 301
Abstract
Theranostic materials, which combine therapeutic and diagnostic capabilities, represent a promising advancement in cancer treatment by improving both the precision and personalization of therapies. Recently, metal peroxides (MePOs) have attracted significant interest from researchers for their potential use in both cancer diagnosis and [...] Read more.
Theranostic materials, which combine therapeutic and diagnostic capabilities, represent a promising advancement in cancer treatment by improving both the precision and personalization of therapies. Recently, metal peroxides (MePOs) have attracted significant interest from researchers for their potential use in both cancer diagnosis and therapy. This review provides an overview of recent developments in the application of MePOs for innovative cancer treatment strategies. The unique properties of MePOs, such as oxygen generation, are highlighted for their potential to improve therapeutic outcomes, especially in hypoxic tumor microenvironments. Initially, methods for MePO synthesis are briefly discussed, including hydrolyzation–precipitation, reversed-phase microemulsion, and sonochemical techniques, emphasizing the role of surfactants in regulating the particle size and enhancing bioactivity. Next, we discuss the main therapeutic approaches where MePOs have shown promise. These applications include chemotherapy, photodynamic therapy (PDT), immunotherapy, and radiation therapy. Overall, we focus on integrating MePOs into theranostic platforms to enhance cancer treatment and enable diagnostic imaging for improved clinical outcomes. Finally, we discuss potential future research directions that could lead to clinical translation and the development of advanced medicines. Full article
Show Figures

Graphical abstract

17 pages, 1603 KiB  
Perspective
A Perspective on Quality Evaluation for AI-Generated Videos
by Zhichao Zhang, Wei Sun and Guangtao Zhai
Sensors 2025, 25(15), 4668; https://doi.org/10.3390/s25154668 - 28 Jul 2025
Viewed by 321
Abstract
Recent breakthroughs in AI-generated content (AIGC) have transformed video creation, empowering systems to translate text, images, or audio into visually compelling stories. Yet reliable evaluation of these machine-crafted videos remains elusive because quality is governed not only by spatial fidelity within individual frames [...] Read more.
Recent breakthroughs in AI-generated content (AIGC) have transformed video creation, empowering systems to translate text, images, or audio into visually compelling stories. Yet reliable evaluation of these machine-crafted videos remains elusive because quality is governed not only by spatial fidelity within individual frames but also by temporal coherence across frames and precise semantic alignment with the intended message. The foundational role of sensor technologies is critical, as they determine the physical plausibility of AIGC outputs. In this perspective, we argue that multimodal large language models (MLLMs) are poised to become the cornerstone of next-generation video quality assessment (VQA). By jointly encoding cues from multiple modalities such as vision, language, sound, and even depth, the MLLM can leverage its powerful language understanding capabilities to assess the quality of scene composition, motion dynamics, and narrative consistency, overcoming the fragmentation of hand-engineered metrics and the poor generalization ability of CNN-based methods. Furthermore, we provide a comprehensive analysis of current methodologies for assessing AIGC video quality, including the evolution of generation models, dataset design, quality dimensions, and evaluation frameworks. We argue that advances in sensor fusion enable MLLMs to combine low-level physical constraints with high-level semantic interpretations, further enhancing the accuracy of visual quality assessment. Full article
(This article belongs to the Special Issue Perspectives in Intelligent Sensors and Sensing Systems)
Show Figures

Figure 1

21 pages, 599 KiB  
Review
Radiomics Beyond Radiology: Literature Review on Prediction of Future Liver Remnant Volume and Function Before Hepatic Surgery
by Fabrizio Urraro, Giulia Pacella, Nicoletta Giordano, Salvatore Spiezia, Giovanni Balestrucci, Corrado Caiazzo, Claudio Russo, Salvatore Cappabianca and Gianluca Costa
J. Clin. Med. 2025, 14(15), 5326; https://doi.org/10.3390/jcm14155326 - 28 Jul 2025
Viewed by 251
Abstract
Background: Post-hepatectomy liver failure (PHLF) is the most worrisome complication after a major hepatectomy and is the leading cause of postoperative mortality. The most important predictor of PHLF is the future liver remnant (FLR), the volume of the liver that will remain after [...] Read more.
Background: Post-hepatectomy liver failure (PHLF) is the most worrisome complication after a major hepatectomy and is the leading cause of postoperative mortality. The most important predictor of PHLF is the future liver remnant (FLR), the volume of the liver that will remain after the hepatectomy, representing a major concern for hepatobiliary surgeons, radiologists, and patients. Therefore, an accurate preoperative assessment of the FLR and the prediction of PHLF are crucial to minimize risks and enhance patient outcomes. Recent radiomics and deep learning models show potential in predicting PHLF and the FLR by integrating imaging and clinical data. However, most studies lack external validation and methodological homogeneity and rely on small, single-center cohorts. This review outlines current CT-based approaches for surgical risk stratification and key limitations hindering clinical translation. Methods: A literature analysis was performed on the PubMed Dataset. We reviewed original articles using the subsequent keywords: [(Artificial intelligence OR radiomics OR machine learning OR deep learning OR neural network OR texture analysis) AND liver resection AND CT]. Results: Of 153 pertinent papers found, we underlined papers about the prediction of PHLF and about the FLR. Models were built according to machine learning (ML) and deep learning (DL) automatic algorithms. Conclusions: Radiomics models seem reliable and applicable to clinical practice in the preoperative prediction of PHLF and the FLR in patients undergoing major liver surgery. Further studies are required to achieve larger validation cohorts. Full article
(This article belongs to the Special Issue Advances in Gastroenterological Surgery)
Show Figures

Figure 1

29 pages, 17807 KiB  
Article
Low-Cost Microalgae Cell Concentration Estimation in Hydrochemistry Applications Using Computer Vision
by Julia Borisova, Ivan V. Morshchinin, Veronika I. Nazarova, Nelli Molodkina and Nikolay O. Nikitin
Sensors 2025, 25(15), 4651; https://doi.org/10.3390/s25154651 - 27 Jul 2025
Viewed by 321
Abstract
Accurate and efficient estimation of microalgae cell concentration is critical for applications in hydrochemical monitoring, biofuel production, pharmaceuticals, and ecological studies. Traditional methods, such as manual counting with a hemocytometer, are time-consuming and prone to human error, while automated systems are often costly [...] Read more.
Accurate and efficient estimation of microalgae cell concentration is critical for applications in hydrochemical monitoring, biofuel production, pharmaceuticals, and ecological studies. Traditional methods, such as manual counting with a hemocytometer, are time-consuming and prone to human error, while automated systems are often costly and require extensive training data. This paper presents a low-cost, automated approach for estimating cell concentration in Chlorella vulgaris suspensions using classical computer vision techniques. The proposed method eliminates the need for deep learning by leveraging the Hough circle transform to detect and count cells in microscope images, combined with a conversion factor to translate pixel measurements into metric units for direct concentration calculation (cells/mL). Validation against manual hemocytometer counts demonstrated strong agreement, with a Pearson correlation coefficient of 0.96 and a mean percentage difference of 17.96%. The system achieves rapid processing (under 30 s per image) and offers interpretability, allowing specialists to verify results visually. Key advantages include affordability, minimal hardware requirements, and adaptability to other microbiological applications. Limitations, such as sensitivity to cell clumping and impurities, are discussed. This work provides a practical, accessible solution for laboratories lacking expensive automated equipment, bridging the gap between manual methods and high-end technologies. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

58 pages, 1238 KiB  
Review
The Collapse of Brain Clearance: Glymphatic-Venous Failure, Aquaporin-4 Breakdown, and AI-Empowered Precision Neurotherapeutics in Intracranial Hypertension
by Matei Șerban, Corneliu Toader and Răzvan-Adrian Covache-Busuioc
Int. J. Mol. Sci. 2025, 26(15), 7223; https://doi.org/10.3390/ijms26157223 - 25 Jul 2025
Viewed by 355
Abstract
Although intracranial hypertension (ICH) has traditionally been framed as simply a numerical escalation of intracranial pressure (ICP) and usually dealt with in its clinical form and not in terms of its complex underlying pathophysiology, an emerging body of evidence indicates that ICH is [...] Read more.
Although intracranial hypertension (ICH) has traditionally been framed as simply a numerical escalation of intracranial pressure (ICP) and usually dealt with in its clinical form and not in terms of its complex underlying pathophysiology, an emerging body of evidence indicates that ICH is not simply an elevated ICP process but a complex process of molecular dysregulation, glymphatic dysfunction, and neurovascular insufficiency. Our aim in this paper is to provide a complete synthesis of all the new thinking that is occurring in this space, primarily on the intersection of glymphatic dysfunction and cerebral vein physiology. The aspiration is to review how glymphatic dysfunction, largely secondary to aquaporin-4 (AQP4) dysfunction, can lead to delayed cerebrospinal fluid (CSF) clearance and thus the accumulation of extravascular fluid resulting in elevated ICP. A range of other factors such as oxidative stress, endothelin-1, and neuroinflammation seem to significantly impair cerebral autoregulation, making ICH challenging to manage. Combining recent studies, we intend to provide a revised conceptualization of ICH that recognizes the nuance and complexity of ICH that is understated by previous models. We wish to also address novel diagnostics aimed at better capturing the dynamic nature of ICH. Recent advances in non-invasive imaging (i.e., 4D flow MRI and dynamic contrast-enhanced MRI; DCE-MRI) allow for better visualization of dynamic changes to the glymphatic and cerebral blood flow (CBF) system. Finally, wearable ICP monitors and AI-assisted diagnostics will create opportunities for these continuous and real-time assessments, especially in limited resource settings. Our goal is to provide examples of opportunities that exist that might augment early recognition and improve personalized care while ensuring we realize practical challenges and limitations. We also consider what may be therapeutically possible now and in the future. Therapeutic opportunities discussed include CRISPR-based gene editing aimed at restoring AQP4 function, nano-robotics aimed at drug targeting, and bioelectronic devices purposed for ICP modulation. Certainly, these proposals are innovative in nature but will require ethically responsible confirmation of long-term safety and availability, particularly to low- and middle-income countries (LMICs), where the burdens of secondary ICH remain preeminent. Throughout the review, we will be restrained to a balanced pursuit of innovative ideas and ethical considerations to attain global health equity. It is not our intent to provide unequivocal answers, but instead to encourage informed discussions at the intersections of research, clinical practice, and the public health field. We hope this review may stimulate further discussion about ICH and highlight research opportunities to conduct translational research in modern neuroscience with real, approachable, and patient-centered care. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Neurobiology 2025)
Show Figures

Figure 1

18 pages, 8171 KiB  
Article
Improving the Treatment of Brain Gliomas Through Small-Particle-Size Paclitaxel-Loaded Micelles with a High Safety Profile
by Bohan Chen, Liming Gong, Jing Feng, MongHsiu Song, Mingji Jin, Liqing Chen, Zhonggao Gao and Wei Huang
Pharmaceutics 2025, 17(8), 965; https://doi.org/10.3390/pharmaceutics17080965 - 25 Jul 2025
Viewed by 288
Abstract
Background/Objectives: Paclitaxel (PTX) is widely used in the treatment of a variety of solid tumours due to its broad-spectrum anti-tumour activity, but its use in brain gliomas is limited by insufficient blood–brain tumour barrier (BBTB) penetration and systemic toxicity. The aim of [...] Read more.
Background/Objectives: Paclitaxel (PTX) is widely used in the treatment of a variety of solid tumours due to its broad-spectrum anti-tumour activity, but its use in brain gliomas is limited by insufficient blood–brain tumour barrier (BBTB) penetration and systemic toxicity. The aim of this study was to develop a Solutol HS-15-based micellar nanoparticle (PSM) to enhance the brain glioma targeting of PTX and reduce toxicity. Methods: PSMs were prepared by solvent injection and characterised for particle size, encapsulation rate, haemolysis rate and in vitro release properties. A C6 in situ glioma mouse model was used to assess the brain targeting and anti-tumour effects of the PSM by in vivo imaging, tissue homogenate fluorescence analysis and bioluminescence monitoring. Meanwhile, its safety was evaluated by weight monitoring, serum biochemical indexes and histopathological analysis. Results: The particle size of PSMs was 13.45 ± 0.70 nm, with an encapsulation rate of 96.39%, and it demonstrated excellent cellular uptake. In tumour-bearing mice, PSMs significantly enhanced brain tumour targeting with a brain drug concentration 5.94 times higher than that of free PTX. Compared with Taxol, PSMs significantly inhibited tumour growth (terminal luminescence intensity <1 × 106 p/s/cm2/Sr) and did not cause significant liver or kidney toxicity or body weight loss. Conclusions: PSMs achieve an efficient accumulation of brain gliomas through passive targeting and EPR effects while significantly reducing the systemic toxicity of PTX. Its simple preparation process and excellent therapeutic efficacy support its use as a potential clinically translational candidate for glioma treatment. Full article
Show Figures

Figure 1

12 pages, 620 KiB  
Review
Manganese-Based Contrast Agents as Alternatives to Gadolinium: A Comprehensive Review
by Linda Poggiarelli, Caterina Bernetti, Luca Pugliese, Federico Greco, Bruno Beomonte Zobel and Carlo A. Mallio
Clin. Pract. 2025, 15(8), 137; https://doi.org/10.3390/clinpract15080137 - 25 Jul 2025
Viewed by 300
Abstract
Background/Objectives: Magnetic resonance imaging (MRI) is a powerful, non-invasive diagnostic tool capable of capturing detailed anatomical and physiological information. MRI contrast agents enhance image contrast but, especially linear gadolinium-based compounds, have been associated with safety concerns. This has prompted interest in alternative contrast [...] Read more.
Background/Objectives: Magnetic resonance imaging (MRI) is a powerful, non-invasive diagnostic tool capable of capturing detailed anatomical and physiological information. MRI contrast agents enhance image contrast but, especially linear gadolinium-based compounds, have been associated with safety concerns. This has prompted interest in alternative contrast agents. Manganese-based contrast agents offer a promising substitute, owing to manganese’s favorable magnetic properties, natural biological role, and strong T1 relaxivity. This review aims to critically assess the structure, mechanisms, applications, and challenges of manganese-based contrast agents in MRI. Methods: This review synthesizes findings from preclinical and clinical studies involving various types of manganese-based contrast agents, including small-molecule chelates, nanoparticles, theranostic platforms, responsive agents, and controlled-release systems. Special attention is given to pharmacokinetics, biodistribution, and safety evaluations. Results: Mn-based agents demonstrate promising imaging capabilities, with some achieving relaxivity values comparable to gadolinium compounds. Targeted uptake mechanisms, such as hepatocyte-specific transport via organic anion-transporting polypeptides, allow for enhanced tissue contrast. However, concerns remain regarding the in vivo release of free Mn2+ ions, which could lead to toxicity. Preliminary toxicity assessments report low cytotoxicity, but further comprehensive long-term safety studies should be carried out. Conclusions: Manganese-based contrast agents present a potential alternative to gadolinium-based MRI agents pending further validation. Despite promising imaging performance and biocompatibility, further investigation into stability and safety is essential. Additional research is needed to facilitate the clinical translation of these agents. Full article
Show Figures

Figure 1

22 pages, 16961 KiB  
Article
Highly Accelerated Dual-Pose Medical Image Registration via Improved Differential Evolution
by Dibin Zhou, Fengyuan Xing, Wenhao Liu and Fuchang Liu
Sensors 2025, 25(15), 4604; https://doi.org/10.3390/s25154604 - 25 Jul 2025
Viewed by 206
Abstract
Medical image registration is an indispensable preprocessing step to align medical images to a common coordinate system before in-depth analysis. The registration precision is critical to the following analysis. In addition to representative image features, the initial pose settings and multiple poses in [...] Read more.
Medical image registration is an indispensable preprocessing step to align medical images to a common coordinate system before in-depth analysis. The registration precision is critical to the following analysis. In addition to representative image features, the initial pose settings and multiple poses in images will significantly affect the registration precision, which is largely neglected in state-of-the-art works. To address this, the paper proposes a dual-pose medical image registration algorithm based on improved differential evolution. More specifically, the proposed algorithm defines a composite similarity measurement based on contour points and utilizes this measurement to calculate the similarity between frontal–lateral positional DRR (Digitally Reconstructed Radiograph) images and X-ray images. In order to ensure the accuracy of the registration algorithm in particular dimensions, the algorithm implements a dual-pose registration strategy. A PDE (Phased Differential Evolution) algorithm is proposed for iterative optimization, enhancing the optimization algorithm’s ability to globally search in low-dimensional space, aiding in the discovery of global optimal solutions. Extensive experimental results demonstrate that the proposed algorithm provides more accurate similarity metrics compared to conventional registration algorithms; the dual-pose registration strategy largely reduces errors in specific dimensions, resulting in reductions of 67.04% and 71.84%, respectively, in rotation and translation errors. Additionally, the algorithm is more suitable for clinical applications due to its lower complexity. Full article
(This article belongs to the Special Issue Recent Advances in X-Ray Sensing and Imaging)
Show Figures

Figure 1

Back to TopTop