Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (124)

Search Parameters:
Keywords = transition-metal dichalcogenide monolayer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 2327 KiB  
Article
First-Principles Calculations for the H Adsorption of Monolayer MoTe2 for Hydrogen Evolution Reaction
by Xujing Gao and Jianling Meng
Inorganics 2025, 13(6), 197; https://doi.org/10.3390/inorganics13060197 - 13 Jun 2025
Viewed by 365
Abstract
Hydrogen from water splitting is seen as a promising future energy source. Pt electrochemical catalysts with an ideal hydrogen evolution reaction (HER) performance face problems relating to their cost and scarcity. Research into transition metal dichalcogenides (TMDs) as alternative catalysts is in demand. [...] Read more.
Hydrogen from water splitting is seen as a promising future energy source. Pt electrochemical catalysts with an ideal hydrogen evolution reaction (HER) performance face problems relating to their cost and scarcity. Research into transition metal dichalcogenides (TMDs) as alternative catalysts is in demand. In our work, H adsorption on monolayer MoTe2 is investigated at different sites and rates. Through structure and charge distribution analysis, it is found that uniform charge distribution facilitates H adsorption. In addition, the enhanced electronic density of states and reduced band gap calculated by the electronic energy band structure are advantageous for H adsorption. And the Mo edge of MoTe2 is sensitive to the H adsorption rate. Finally, the H adsorbed on the sites is stable at 600 K, as shown in molecular dynamics (MD) calculations. Our work provides a further mechanism for H adsorption on MoTe2. Full article
Show Figures

Figure 1

10 pages, 6353 KiB  
Article
Electronic Structures of Molecular Beam Epitaxially Grown SnSe2 Thin Films on 3×3-Sn Reconstructed Si(111) Surface
by Zhujuan Li, Qichao Tian, Kaili Wang, Yuyang Mu, Zhenjie Fan, Xiaodong Qiu, Qinghao Meng, Can Wang and Yi Zhang
Appl. Sci. 2025, 15(11), 6150; https://doi.org/10.3390/app15116150 - 29 May 2025
Viewed by 434
Abstract
SnSe2, as a prominent member of the post-transition metal dichalcogenides, exhibits many intriguing physical phenomena and excellent thermoelectric properties, calling for both fundamental study and potential application in two-dimensional (2D) devices. In this article, we realized the molecular beam epitaxial growth [...] Read more.
SnSe2, as a prominent member of the post-transition metal dichalcogenides, exhibits many intriguing physical phenomena and excellent thermoelectric properties, calling for both fundamental study and potential application in two-dimensional (2D) devices. In this article, we realized the molecular beam epitaxial growth of SnSe2 films on a 3×3-Sn reconstructed Si(111) surface. The analysis of reflection high-energy electron diffraction reveals the in-plane lattice orientation as SnSe2[110]//3-Sn [112]//Si [110]. In addition, the flat morphology of SnSe2 film was identified by scanning tunneling microscopy (STM), implying the relatively strong adsorption effect of 3-Sn/Si(111) substrate to the SnSe2 adsorbates. Subsequently, the interfacial charge transfer was observed by X-ray photoemission spectroscopy. Afterwards, the direct characterization of electronic structures was obtained via angle-resolved photoemission spectroscopy. In addition to proving the presence of interfacial charge transfer again, a new relatively flat in-gap band was found in monolayer and few-layer SnSe2, which disappeared in multi-layer SnSe2. The interface strain-induced partial structural phase transition of thin SnSe2 films is presumed to be the reason. Our results provide important information on the characterization and effective modulation of electronic structures of SnSe2 grown on 3-Sn/Si(111), paving the way for the further study and application of SnSe2 in 2D electronic devices. Full article
Show Figures

Figure 1

12 pages, 2424 KiB  
Article
Growth of Two-Dimensional Edge-Rich Screwed WS2 with High Active Site Density for Accelerated Hydrogen Evolution
by Dengchao Hu, Chaocheng Sun, Yida Wang, Fade Zhao, Yubao Li, Limei Song, Cuncai Lv, Weihao Zheng and Honglai Li
Catalysts 2025, 15(5), 496; https://doi.org/10.3390/catal15050496 - 20 May 2025
Viewed by 667
Abstract
Two-dimensional transition metal dichalcogenides have attracted considerable attention in electrocatalytic hydrogen evolution due to their unique layered structures and tunable electronic properties. However, prior research has predominantly focused on the intrinsic catalytic activity of planar few-layer structures, which offer limited exposure of edge-active [...] Read more.
Two-dimensional transition metal dichalcogenides have attracted considerable attention in electrocatalytic hydrogen evolution due to their unique layered structures and tunable electronic properties. However, prior research has predominantly focused on the intrinsic catalytic activity of planar few-layer structures, which offer limited exposure of edge-active sites due to their restricted two-dimensional geometry. Moreover, van der Waals interactions between layers impose substantial barriers to electron transport, significantly hindering charge transfer efficiency. To overcome these limitations, this study presents the innovative synthesis of high-quality single-screw WS2 with a 5° dislocation angle via physical vapor deposition. Second harmonic generation measurements revealed a pronounced asymmetric polarization response, while the selected area electron diffractionand atomic force microscopy elucidated the material’s distinctive screwed dislocation configuration. In contrast to planar monolayer WS2, the conical/screw-structured WS2—formed through screw-dislocation-mediated growth—exhibits a higher density of exposed edge-active catalytic sites and enhanced electron transport capabilities. Electrochemical performance tests revealed that in an alkaline medium, the screwed WS2 nanosheets exhibited an overpotential of 310 mV at a current density of −10 mA/cm2, with a Tafel slope of 204 mV/dec. Additionally, under a current density of 18 mA/cm2, the screwed WS2 can sustain this current density for at least 30 h. These findings offer valuable insights into the design of low-cost, high-efficiency, non-precious metal catalysts for hydrogen evolution reactions. Full article
(This article belongs to the Special Issue Two-Dimensional (2D) Materials in Catalysis)
Show Figures

Graphical abstract

11 pages, 2124 KiB  
Article
Tunable Hydrogen Evolution Reaction Property of Janus SWSe Monolayer Using Defect and Strain Engineering
by Tian Chen, Lu Shen, Fuyuan Wang and Ping Jiang
Molecules 2025, 30(7), 1588; https://doi.org/10.3390/molecules30071588 - 2 Apr 2025
Cited by 1 | Viewed by 425
Abstract
Janus-structured transition metal dichalcogenides (TMDs) demonstrate remarkable electronic, optical, and catalytic characteristics owing to their distinctive asymmetric configurations. In this study, we comprehensively analyze the stability of Janus SWSe containing common vacancy defects through first-principles calculations. The findings indicate that the Gibbs free [...] Read more.
Janus-structured transition metal dichalcogenides (TMDs) demonstrate remarkable electronic, optical, and catalytic characteristics owing to their distinctive asymmetric configurations. In this study, we comprehensively analyze the stability of Janus SWSe containing common vacancy defects through first-principles calculations. The findings indicate that the Gibbs free energy for the hydrogen evolution reaction (HER) is notably decreased to around 0.5 eV, which is lower compared with both pristine SWSe and traditional MoS2 monolayers. Importantly, the introduction of external strain further improves the HER efficiency of defect-modified Janus SWSe. This enhancement is linked to the adaptive relaxation of localized strain by unsaturated bonds in the defect area, leading to unique adjustable patterns. Our results clarify the fundamental mechanism driving the improved HER performance of SWSe via strain modulation, offering theoretical insights for designing effective HER catalysts using defective Janus TMDs. Full article
(This article belongs to the Special Issue Novel Two-Dimensional Energy-Environmental Materials)
Show Figures

Figure 1

14 pages, 3805 KiB  
Article
Integrating Density Functional Theory Calculations and Machine Learning to Identify Conduction Band Minimum as a Descriptor for High-Efficiency Hydrogen Evolution Reaction Catalysts in Transition Metal Dichalcogenides
by Xiaolin Jiang, Guanqi Liu, Lifu Zhang and Zhenpeng Hu
Catalysts 2025, 15(4), 309; https://doi.org/10.3390/catal15040309 - 25 Mar 2025
Cited by 1 | Viewed by 1243
Abstract
Identifying efficient and physically meaningful descriptors is crucial for the rational design of hydrogen evolution reaction (HER) catalysts. In this study, we systematically investigate the HER activity of transition metal dichalcogenide (TMD) monolayers by combining density functional theory (DFT) calculations and machine learning [...] Read more.
Identifying efficient and physically meaningful descriptors is crucial for the rational design of hydrogen evolution reaction (HER) catalysts. In this study, we systematically investigate the HER activity of transition metal dichalcogenide (TMD) monolayers by combining density functional theory (DFT) calculations and machine learning techniques. By exploring the relationship between key electronic properties, including the conduction band minimum (CBM), pz band center, and hydrogen adsorption free energy (ΔG*H), we establish a strong linear correlation between the CBM and ΔG*H, identifying the CBM as a reliable and physically meaningful descriptor for HER activity. Furthermore, this correlation is validated in vacancy-defected TMD systems, demonstrating that the CBM remains an effective descriptor even in the presence of structural defects. To enable the rapid and accurate prediction of the CBM, we develop an interpretable three-dimensional model using the Sure Independence Screening and Sparsifying Operator (SISSO) algorithm. The SISSO model achieves a high predictive accuracy, with correlation coefficients (r) and coefficients of determination (R2) reaching 0.98 and 0.97 in the training and 0.99 and 0.99 in the validation tests, respectively. This study provides an efficient computational framework that combines first-principles calculations and machine learning to accelerate the screening and design of high-performance TMD-based HER catalysts. Full article
(This article belongs to the Special Issue Two-Dimensional (2D) Materials in Catalysis)
Show Figures

Figure 1

12 pages, 3362 KiB  
Article
Scalable and Contamination-Free Selenium-Assisted Exfoliation of Transition Metal Dichalcogenides WSe2 and MoSe2
by Rehan Younas, Guanyu Zhou and Christopher L. Hinkle
Processes 2025, 13(3), 791; https://doi.org/10.3390/pr13030791 - 8 Mar 2025
Viewed by 1696
Abstract
In two-dimensional (2D) materials research, exfoliating 2D transition metal dichalcogenides (TMDs) from their growth substrates for device fabrication remains a significant challenge. Current methods, such as those involving polymers, metals, or chemical etchants, suffer from limitations like contamination, defect introduction, and a lack [...] Read more.
In two-dimensional (2D) materials research, exfoliating 2D transition metal dichalcogenides (TMDs) from their growth substrates for device fabrication remains a significant challenge. Current methods, such as those involving polymers, metals, or chemical etchants, suffer from limitations like contamination, defect introduction, and a lack of scalability. Here, we demonstrate a selenium capping-based exfoliation technique. Its advantage lies in its ability to enable the clean, contamination-free exfoliation and transfer of TMD films. We successfully exfoliated and transferred monolayer and multilayer TMD films, including WSe2 and MoSe2. The selenium capping layer not only enables seamless exfoliation but also protects the film from oxidation, as confirmed by X-ray photoelectron spectroscopy and Raman spectroscopy. This approach is versatile and applicable to a range of TMDs and thicknesses, paving the way for the high-quality, scalable integration of 2D materials into nanoelectronic devices. Full article
Show Figures

Figure 1

19 pages, 3404 KiB  
Article
Auger Recombination and Carrier-Surface Optical Phonon Interaction in Van Der Waals Heterostructures Composed of Graphene and 2D Transition Metal Chalcogenides
by Mounira Mahdouani, Ramzi Bourguiga and Spiros Gardelis
Materials 2025, 18(3), 720; https://doi.org/10.3390/ma18030720 - 6 Feb 2025
Cited by 2 | Viewed by 913
Abstract
We perform a theoretical investigation of the electron–surface optical phonon (SOP) interaction in Van der Waals heterostructures (vdWHs) formed by monolayer graphene (1LG) and transition metal dichalcogenides (TMDCs), using eigenenergies obtained from the tight-binding Hamiltonian for electrons. Our analysis reveals that the SOP [...] Read more.
We perform a theoretical investigation of the electron–surface optical phonon (SOP) interaction in Van der Waals heterostructures (vdWHs) formed by monolayer graphene (1LG) and transition metal dichalcogenides (TMDCs), using eigenenergies obtained from the tight-binding Hamiltonian for electrons. Our analysis reveals that the SOP interaction strength strongly depends on the specific TMDC material. TMDC layers generate localized SOP modes near the 1LG/TMDC interface, serving as effective scattering centers for graphene carriers through long-range Fröhlich coupling. This interaction leads to resonant coupling of electronic sub-levels with SOP, resulting in Rabi splitting of the electronon energy levels. We further explore the influence of different TMDCs, such as WS2, WSe2, MoS2, and MoSe2, on transport properties such as SOP-limited mobility, resistivity, conductivity, and scattering rates across various temperatures and charge carrier densities. Our analysis confirms that at elevated temperatures and low carrier densities, surface optical phonon scattering becomes a dominant factor in determining resistivity. Additionally, we investigate the Auger recombination process at the 1LG/TMDC interface, showing that both Auger and SOP scattering rates increase significantly at room temperature and higher, ultimately converging to constant values as the temperature rises. In contrast, their impact is minimal at lower temperatures. These results highlight the potential of 1LG/TMDC-based vdWHs for controlling key processes, such as SOP interactions and Auger recombination, paving the way for high-performance nanoelectronic and optoelectronic devices. Full article
(This article belongs to the Special Issue Low-Dimensional Materials: Design and Optoelectronic Properties)
Show Figures

Figure 1

7 pages, 1941 KiB  
Article
Enhanced Optoelectronic Performance and Polarized Sensitivity in WSe2 Nanoscrolls Through Quasi-One-Dimensional Structure
by Jinggao Sui, Xiang Lan, Zhikang Ao and Jinhui Cao
Nanomaterials 2024, 14(23), 1935; https://doi.org/10.3390/nano14231935 - 30 Nov 2024
Cited by 1 | Viewed by 1149
Abstract
Transition metal dichalcogenides (TMDs), such as tungsten diselenide (WSe2), are expected to be used in next-generation optoelectronic devices due to their unique properties. In this study, we developed a simple method of using ethanol to scroll monolayer WSe2 nanosheets into [...] Read more.
Transition metal dichalcogenides (TMDs), such as tungsten diselenide (WSe2), are expected to be used in next-generation optoelectronic devices due to their unique properties. In this study, we developed a simple method of using ethanol to scroll monolayer WSe2 nanosheets into nanoscrolls. These nanoscrolls have a quasi-one-dimensional structure, which enhances their electronic and optical properties. The characterization confirmed their unique structure, and the photodetectors made of these nanoscrolls have high sensitivity to polarized light, with anisotropy ratios of 1.3 and 1.7 at wavelengths of 638 nm and 808 nm. The enhanced light response is attributed to the large surface area and quantum wire-like behavior of the nanoscrolls, making them suitable for advanced polarization-sensitive devices. Full article
Show Figures

Graphical abstract

18 pages, 2990 KiB  
Article
A Theoretical Study of the Electron–Surface Optical Phonon Interaction in Monolayer Transition Metal Dichalcogenides Deposited on SiC and hexagonal BN Dielectric Substrates in the Vicinity of the Points K+(K) of the Brillouin Zone
by Mounira Mahdouani, Ramzi Bourguiga and Spiros Gardelis
Materials 2024, 17(22), 5552; https://doi.org/10.3390/ma17225552 - 14 Nov 2024
Cited by 1 | Viewed by 1465
Abstract
We theoretically investigated the electron–surface optical phonon interaction across the long-range Fröhlich coupling in monolayer transition metal dichalcogenides, such as WS2, WSe2, MoS2, and MoSe2 monolayers, on SiC and hexagonal BN dielectric substrates. We [...] Read more.
We theoretically investigated the electron–surface optical phonon interaction across the long-range Fröhlich coupling in monolayer transition metal dichalcogenides, such as WS2, WSe2, MoS2, and MoSe2 monolayers, on SiC and hexagonal BN dielectric substrates. We employed the effective Hamiltonian in the K+(K) valley of the hexagonal Brillouin zone to assess the electronic energy shifts induced by the interaction between electronic states and surface polar optical phonons. Our results indicate that the interaction between electrons and surface optical phonons depends upon the polar nature of the substrate. We have also calculated the polaronic oscillator strength, as well as the polaronic scattering rate of the lower polaron state in monolayer WS2, WSe2, MoS2, and MoSe2 on SiC and hexagonal BN dielectric substrates. As a result, we have theoretically proved the following: firstly, the enhancement of the polaronic scattering rate with temperature, and secondly, the notable influence of the careful selection of surrounding dielectrics on both the polaronic oscillator strength and the polaronic scattering rate. Thus, optimal dielectrics would be those exhibiting both elevated optical phonon energy and a high static dielectric constant. Full article
(This article belongs to the Special Issue Low-Dimensional Materials: Design and Optoelectronic Properties)
Show Figures

Figure 1

22 pages, 4881 KiB  
Article
Janus Monolayer of 1T-TaSSe: A Computational Study
by Karol Szałowski
Materials 2024, 17(18), 4591; https://doi.org/10.3390/ma17184591 - 19 Sep 2024
Cited by 4 | Viewed by 1920
Abstract
Materials exhibiting charge density waves are attracting increasing attention owing to their complex physics and potential for applications. In this paper, we present a computational, first principles-based study of the Janus monolayer of 1T-TaSSe transition metal dichalcogenide. We extensively compare the results with [...] Read more.
Materials exhibiting charge density waves are attracting increasing attention owing to their complex physics and potential for applications. In this paper, we present a computational, first principles-based study of the Janus monolayer of 1T-TaSSe transition metal dichalcogenide. We extensively compare the results with those obtained for parent compounds, TaS2 and TaSe2 monolayers, with confirmed presence of 13×13 charge density waves. The structural and electronic properties of the normal (undistorted) phase and distorted phase with 13×13 periodic lattice distortion are discussed. In particular, for a normal phase, the emergence of dipolar moment due to symmetry breaking is demonstrated, and its sensitivity to an external electric field perpendicular to the monolayer is investigated. Moreover, the appearance of imaginary energy phonon modes suggesting structural instability is shown. For the distorted phase, we predict the presence of a flat, weakly dispersive band related to the appearance of charge density waves, similar to the one observed in parent compounds. The results suggest a novel platform for studying charge density waves in two-dimensional transition metal dichalcogenides. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

11 pages, 13353 KiB  
Article
In Situ Studies on the Influence of Surface Symmetry on the Growth of MoSe2 Monolayer on Sapphire Using Reflectance Anisotropy Spectroscopy and Differential Reflectance Spectroscopy
by Yufeng Huang, Mengjiao Li, Zhixin Hu, Chunguang Hu, Wanfu Shen, Yanning Li and Lidong Sun
Nanomaterials 2024, 14(17), 1457; https://doi.org/10.3390/nano14171457 - 7 Sep 2024
Cited by 1 | Viewed by 2081
Abstract
The surface symmetry of the substrate plays an important role in the epitaxial high-quality growth of 2D materials; however, in-depth and in situ studies on these materials during growth are still limited due to the lack of effective in situ monitoring approaches. In [...] Read more.
The surface symmetry of the substrate plays an important role in the epitaxial high-quality growth of 2D materials; however, in-depth and in situ studies on these materials during growth are still limited due to the lack of effective in situ monitoring approaches. In this work, taking the growth of MoSe2 as an example, the distinct growth processes on Al2O3 (112¯0) and Al2O3 (0001) are revealed by parallel monitoring using in situ reflectance anisotropy spectroscopy (RAS) and differential reflectance spectroscopy (DRS), respectively, highlighting the dominant role of the surface symmetry. In our previous study, we found that the RAS signal of MoSe2 grown on Al2O3 (112¯0) initially increased and decreased ultimately to the magnitude of bare Al2O3 (112¯0) when the first layer of MoSe2 was fully merged, which is herein verified by the complementary DRS measurement that is directly related to the film coverage. Consequently, the changing rate of reflectance anisotropy (RA) intensity at 2.5 eV is well matched with the dynamic changes in differential reflectance (DR) intensity. Moreover, the surface-dominated uniform orientation of MoSe2 islands at various stages determined by RAS was further investigated by low-energy electron diffraction (LEED) and atomic force microscopy (AFM). By contrast, the RAS signal of MoSe2 grown on Al2O3 (0001) remains at zero during the whole growth, implying that the discontinuous MoSe2 islands have no preferential orientations. This work demonstrates that the combination of in situ RAS and DRS can provide valuable insights into the growth of unidirectional aligned islands and help optimize the fabrication process for single-crystal transition metal dichalcogenide (TMDC) monolayers. Full article
Show Figures

Figure 1

15 pages, 3868 KiB  
Article
Enhanced Carrier Transport Performance of Monolayer Hafnium Disulphide by Strain Engineering
by Yun-Fang Chung and Shu-Tong Chang
Nanomaterials 2024, 14(17), 1420; https://doi.org/10.3390/nano14171420 - 30 Aug 2024
Cited by 1 | Viewed by 1284
Abstract
For semiconducting two-dimensional transition metal dichalcogenides (TMDs), the carrier transport properties of the material are affected by strain engineering. In this study, we investigate the carrier mobility of monolayer hafnium disulphide (HfS2) under different biaxial strains by first-principles calculations combined with [...] Read more.
For semiconducting two-dimensional transition metal dichalcogenides (TMDs), the carrier transport properties of the material are affected by strain engineering. In this study, we investigate the carrier mobility of monolayer hafnium disulphide (HfS2) under different biaxial strains by first-principles calculations combined with the Kubo–Greenwood mobility approach and the compact band model. The decrease/increase in the effective mass of the conduction band (CB) of monolayer HfS2 caused by biaxial tensile/compressive strain is the major reason for the enhancement/degradation of its electron mobility. The lower hole effective mass of the valence bands (VB) in monolayer HfS2 under biaxial compressive strain improves its hole transport performance compared to that under biaxial tensile strain. In summary, biaxial compressive strain causes a decrease in both the effective mass and phonon scattering rate of monolayer HfS2, resulting in an increase in its carrier mobility. Under the biaxial compressive strain reaches 4%, the electron mobility enhancement ratio of the CB of monolayer HfS2 is ~90%. For the VB of monolayer HfS2, the maximum hole mobility enhancement ratio appears to be ~13% at a biaxial compressive strain of 4%. Our results indicate that the carrier transport performance of monolayer HfS2 can be greatly improved by strain engineering. Full article
(This article belongs to the Special Issue Theoretical Calculation Study of Nanomaterials: 2nd Edition)
Show Figures

Figure 1

16 pages, 2545 KiB  
Article
Cavity-Tuned Exciton Dynamics in Transition Metal Dichalcogenides Monolayers
by Kaijun Shen, Kewei Sun, Maxim F. Gelin and Yang Zhao
Materials 2024, 17(16), 4127; https://doi.org/10.3390/ma17164127 - 20 Aug 2024
Cited by 4 | Viewed by 1579
Abstract
A fully quantum, numerically accurate methodology is presented for the simulation of the exciton dynamics and time-resolved fluorescence of cavity-tuned two-dimensional (2D) materials at finite temperatures. This approach was specifically applied to a monolayer WSe2 system. Our methodology enabled us to identify [...] Read more.
A fully quantum, numerically accurate methodology is presented for the simulation of the exciton dynamics and time-resolved fluorescence of cavity-tuned two-dimensional (2D) materials at finite temperatures. This approach was specifically applied to a monolayer WSe2 system. Our methodology enabled us to identify the dynamical and spectroscopic signatures of polaronic and polaritonic effects and to elucidate their characteristic timescales across a range of exciton–cavity couplings. The approach employed can be extended to simulation of various cavity-tuned 2D materials, specifically for exploring finite temperature nonlinear spectroscopic signals. Full article
(This article belongs to the Special Issue Feature Papers in Materials Physics (2nd Edition))
Show Figures

Figure 1

8 pages, 2271 KiB  
Article
Spectroscopic Analysis on Different Stacking Configurations of Multilayered MoSe2
by Xiang Hu, Yong Wang, Jiaren Yuan, Xiaxia Liao and Yangbo Zhou
Materials 2024, 17(16), 3998; https://doi.org/10.3390/ma17163998 - 11 Aug 2024
Viewed by 1816
Abstract
Transition metal dichalcogenides (TMDs) are drawing significant attention due to their intriguing photoelectric properties, and these interesting properties are closely related to the number of layers. Obtaining layer-controlled and high-quality TMD is still a challenge. In this context, we use the salt-assisted chemical [...] Read more.
Transition metal dichalcogenides (TMDs) are drawing significant attention due to their intriguing photoelectric properties, and these interesting properties are closely related to the number of layers. Obtaining layer-controlled and high-quality TMD is still a challenge. In this context, we use the salt-assisted chemical vapor deposition to grow multilayered MoSe2 flake and characterize it by Raman spectroscopy, second harmonic generation, and photon luminescence. Spectroscopic analysis is an effective way to characterize the stacking order and optoelectronic properties of two-dimensional materials. Notably, the corresponding mapping reflects the film quality and homogeneity. We found that the grown continuous monolayer, bilayer, and trilayer of MoSe2 sheets with different stacking orders exhibit distinctive features. For bilayer MoSe2, the most stable stacking configurations are the AA’ and AB order. And the uniformity of the spectroscopy maps demonstrates the high quality of the stacked MoSe2 sheets. Full article
Show Figures

Figure 1

12 pages, 4284 KiB  
Article
Photoluminescence of Chemically and Electrically Doped Two-Dimensional Monolayer Semiconductors
by Hyungjin Kim, Valerio Adinolfi and Sin-Hyung Lee
Materials 2024, 17(16), 3962; https://doi.org/10.3390/ma17163962 - 9 Aug 2024
Cited by 2 | Viewed by 1458
Abstract
Two-dimensional (2D) transition metal dichalcogenide (TMDC) monolayers exhibit unique physical properties, such as self-terminating surfaces, a direct bandgap, and near-unity photoluminescence (PL) quantum yield (QY), which make them attractive for electronic and optoelectronic applications. Surface charge transfer has been widely used as a [...] Read more.
Two-dimensional (2D) transition metal dichalcogenide (TMDC) monolayers exhibit unique physical properties, such as self-terminating surfaces, a direct bandgap, and near-unity photoluminescence (PL) quantum yield (QY), which make them attractive for electronic and optoelectronic applications. Surface charge transfer has been widely used as a technique to control the concentration of free charge in 2D semiconductors, but its estimation and the impact on the optoelectronic properties of the material remain a challenge. In this work, we investigate the optical properties of a WS2 monolayer under three different doping approaches: benzyl viologen (BV), potassium (K), and electrostatic doping. Owing to the excitonic nature of 2D TMDC monolayers, the PL of the doped WS2 monolayer exhibits redshift and a decrease in intensity, which is evidenced by the increase in trion population. The electron concentrations of 3.79×1013 cm2, 6.21×1013 cm2, and 3.12×1012 cm2 were measured for WS2 monolayers doped with BV, K, and electrostatic doping, respectively. PL offers a direct and versatile approach to probe the doping effect, allowing for the measurement of carrier concentration in 2D monolayer semiconductors. Full article
(This article belongs to the Special Issue Luminescent Properties of Advanced Materials)
Show Figures

Figure 1

Back to TopTop