Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (198)

Search Parameters:
Keywords = transient production rate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 11697 KiB  
Article
Layered Production Allocation Method for Dual-Gas Co-Production Wells
by Guangai Wu, Zhun Li, Yanfeng Cao, Jifei Yu, Guoqing Han and Zhisheng Xing
Energies 2025, 18(15), 4039; https://doi.org/10.3390/en18154039 - 29 Jul 2025
Viewed by 185
Abstract
The synergistic development of low-permeability reservoirs such as deep coalbed methane (CBM) and tight gas has emerged as a key technology to reduce development costs, enhance single-well productivity, and improve gas recovery. However, due to fundamental differences between coal seams and tight sandstones [...] Read more.
The synergistic development of low-permeability reservoirs such as deep coalbed methane (CBM) and tight gas has emerged as a key technology to reduce development costs, enhance single-well productivity, and improve gas recovery. However, due to fundamental differences between coal seams and tight sandstones in their pore structure, permeability, water saturation, and pressure sensitivity, significant variations exist in their flow capacities and fluid production behaviors. To address the challenges of production allocation and main reservoir identification in the co-development of CBM and tight gas within deep gas-bearing basins, this study employs the transient multiphase flow simulation software OLGA to construct a representative dual-gas co-production well model. The regulatory mechanisms of the gas–liquid distribution, deliquification efficiency, and interlayer interference under two typical vertical stacking relationships—“coal over sand” and “sand over coal”—are systematically analyzed with respect to different tubing setting depths. A high-precision dynamic production allocation method is proposed, which couples the wellbore structure with real-time monitoring parameters. The results demonstrate that positioning the tubing near the bottom of both reservoirs significantly enhances the deliquification efficiency and bottomhole pressure differential, reduces the liquid holdup in the wellbore, and improves the synergistic productivity of the dual-reservoirs, achieving optimal drainage and production performance. Building upon this, a physically constrained model integrating real-time monitoring data—such as the gas and liquid production from tubing and casing, wellhead pressures, and other parameters—is established. Specifically, the model is built upon fundamental physical constraints, including mass conservation and the pressure equilibrium, to logically model the flow paths and phase distribution behaviors of the gas–liquid two-phase flow. This enables the accurate derivation of the respective contributions of each reservoir interval and dynamic production allocation without the need for downhole logging. Validation results show that the proposed method reliably reconstructs reservoir contribution rates under various operational conditions and wellbore configurations. Through a comparison of calculated and simulated results, the maximum relative error occurs during abrupt changes in the production capacity, approximately 6.37%, while for most time periods, the error remains within 1%, with an average error of 0.49% throughout the process. These results substantially improve the timeliness and accuracy of the reservoir identification. This study offers a novel approach for the co-optimization of complex multi-reservoir gas fields, enriching the theoretical framework of dual-gas co-production and providing technically adaptive solutions and engineering guidance for multilayer unconventional gas exploitation. Full article
Show Figures

Figure 1

25 pages, 3454 KiB  
Article
Dynamic Temperature–Vacuum Swing Adsorption for Sustainable Direct Air Capture: Parametric Optimisation for High-Purity CO2 Removal
by Maryam Nasiri Ghiri, Hamid Reza Nasriani, Leila Khajenoori, Samira Mohammadkhani and Karl S. Williams
Sustainability 2025, 17(15), 6796; https://doi.org/10.3390/su17156796 - 25 Jul 2025
Viewed by 560
Abstract
Direct air capture (DAC), as a complementary strategy to carbon capture and storage (CCS), offers a scalable and sustainable pathway to remove CO2 directly from the ambient air. This study presents a detailed evaluation of the amine-functionalised metal-organic framework (MOF) sorbent, mmen-Mg [...] Read more.
Direct air capture (DAC), as a complementary strategy to carbon capture and storage (CCS), offers a scalable and sustainable pathway to remove CO2 directly from the ambient air. This study presents a detailed evaluation of the amine-functionalised metal-organic framework (MOF) sorbent, mmen-Mg2(dobpdc), for DAC using a temperature–vacuum swing adsorption (TVSA) process. While this sorbent has demonstrated promising performance in point-source CO2 capture, this is the first dynamic simulation-based study to rigorously assess its effectiveness for low-concentration atmospheric CO2 removal. A transient one-dimensional TVSA model was developed in Aspen Adsorption and validated against experimental breakthrough data to ensure accuracy in capturing both the sharp and gradual adsorption kinetics. To enhance process efficiency and sustainability, this work provides a comprehensive parametric analysis of key operational factors, including air flow rate, temperature, adsorption/desorption durations, vacuum pressure, and heat exchanger temperature, on process performance, including CO2 purity, recovery, productivity, and specific energy consumption. Under optimal conditions for this sorbent (vacuum pressure lower than 0.15 bar and feed temperature below 15 °C), the TVSA process achieved ~98% CO2 purity, recovery over 70%, and specific energy consumption of about 3.5 MJ/KgCO2. These findings demonstrate that mmen-Mg2(dobpdc) can achieve performance comparable to benchmark DAC sorbents in terms of CO2 purity and recovery, underscoring its potential for scalable DAC applications. This work advances the development of energy-efficient carbon removal technologies and highlights the value of step-shape isotherm adsorbents in supporting global carbon-neutrality goals. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

15 pages, 1078 KiB  
Review
Immunological Insights into Photodynamic Therapy of Glioblastoma Multiforme
by Paweł Woźnicki, Dorota Bartusik-Aebisher, Agnieszka Przygórzewska and David Aebisher
Molecules 2025, 30(15), 3091; https://doi.org/10.3390/molecules30153091 - 24 Jul 2025
Viewed by 312
Abstract
The Gliomas account for 81% of all malignant central nervous system tumors and are classified by WHO into four grades of malignancy. Glioblastoma multiforme (GBM), the most common grade IV glioma, exhibits an extremely aggressive phenotype and a dismal five-year survival rate of [...] Read more.
The Gliomas account for 81% of all malignant central nervous system tumors and are classified by WHO into four grades of malignancy. Glioblastoma multiforme (GBM), the most common grade IV glioma, exhibits an extremely aggressive phenotype and a dismal five-year survival rate of only 6%, underscoring the urgent need for novel therapeutic approaches. Immunotherapy has emerged as a promising strategy, and photodynamic therapy (PDT) in particular has attracted attention for its dual cytotoxic and immunostimulatory effects. In GBM models, PDT induces immunogenic cell death characterized by the release of damage-associated molecular patterns (DAMPs), which promote antigen presentation and activate T cell responses. Additionally, PDT transiently increases blood–brain barrier permeability, facilitating immune cell infiltration into the tumor microenvironment, and enhances clearance of waste products via stimulation of meningeal lymphatic vessels. Importantly, PDT can reprogram or inactivate immunosuppressive tumor-associated macrophages, thereby counteracting the pro-tumoral microenvironment. Despite these encouraging findings, further preclinical and clinical studies are required to elucidate PDT’s underlying immunological mechanisms fully and to optimize treatment regimens that maximize its efficacy as part of integrated immunotherapeutic strategies against GBM. Full article
(This article belongs to the Special Issue Innovative Anticancer Compounds and Therapeutic Strategies)
Show Figures

Figure 1

32 pages, 6134 KiB  
Article
Nonlinear Dynamic Modeling and Analysis of Drill Strings Under Stick–Slip Vibrations in Rotary Drilling Systems
by Mohamed Zinelabidine Doghmane
Energies 2025, 18(14), 3860; https://doi.org/10.3390/en18143860 - 20 Jul 2025
Viewed by 317
Abstract
This paper presents a comprehensive study of torsional stick–slip vibrations in rotary drilling systems through a comparison between two lumped parameter models with differing complexity: a simple two-degree-of-freedom (2-DOF) model and a complex high-degree-of-freedom (high-DOF) model. The two models are developed under identical [...] Read more.
This paper presents a comprehensive study of torsional stick–slip vibrations in rotary drilling systems through a comparison between two lumped parameter models with differing complexity: a simple two-degree-of-freedom (2-DOF) model and a complex high-degree-of-freedom (high-DOF) model. The two models are developed under identical boundary conditions and consider an identical nonlinear friction torque dynamic involving the Stribeck effect and dry friction phenomena. The high-DOF model is calculated with the Finite Element Method (FEM) to enable accurate simulation of the dynamic behavior of the drill string and accurate representation of wave propagation, energy build-up, and torque response. Field data obtained from an Algerian oil well with Measurement While Drilling (MWD) equipment are used to guide modeling and determine simulations. According to the findings, the FEM-based high-DOF model demonstrates better performance in simulating basic stick–slip dynamics, such as drill bit velocity oscillation, nonlinear friction torque formation, and transient bit-to-surface contacts. On the other hand, the 2-DOF model is not able to represent these effects accurately and can lead to inappropriate control actions and mitigation of vibration severity. This study highlights the importance of robust model fidelity in building reliable real-time rotary drilling control systems. From the performance difference measurement between low-resolution and high-resolution models, the findings offer valuable insights to optimize drilling efficiency further, minimize non-productive time (NPT), and improve the rate of penetration (ROP). This contribution points to the need for using high-fidelity models, such as FEM-based models, in facilitating smart and adaptive well control strategies in modern petroleum drilling engineering. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

14 pages, 2726 KiB  
Article
Streamer Discharge Modeling for Plasma-Assisted Combustion
by Stuart Reyes and Shirshak Kumar Dhali
Plasma 2025, 8(3), 28; https://doi.org/10.3390/plasma8030028 - 10 Jul 2025
Viewed by 308
Abstract
Some of the popular and successful atmospheric pressure fuel/air plasma-assisted combustion methods use repetitive ns pulsed discharges and dielectric-barrier discharges. The transient phase in such discharges is dominated by transport under strong space charge from ionization fronts, which is best characterized by the [...] Read more.
Some of the popular and successful atmospheric pressure fuel/air plasma-assisted combustion methods use repetitive ns pulsed discharges and dielectric-barrier discharges. The transient phase in such discharges is dominated by transport under strong space charge from ionization fronts, which is best characterized by the streamer model. The role of the nonthermal plasma in such discharges is to produce radicals, which accelerates the chemical conversion reaction leading to temperature rise and ignition. Therefore, the characterization of the streamer and its energy partitioning is essential to develop a predictive model. We examine the important characteristics of streamers that influence combustion and develop some macroscopic parameters. Our results show that the radicals’ production efficiency at an applied field is nearly independent of time and the radical density generated depends only on the electrical energy density coupled to the plasma. We compare the results of the streamer model to the zero-dimensional uniform field Townsend-like discharge, and our results show a significant difference. The results concerning the influence of energy density and repetition rate on the ignition of a hydrogen/air fuel mixture are presented. Full article
(This article belongs to the Special Issue New Insights into Plasma Theory, Modeling and Predictive Simulations)
Show Figures

Figure 1

27 pages, 10163 KiB  
Article
Through-Scale Numerical Investigation of Microstructure Evolution During the Cooling of Large-Diameter Rings
by Mariusz Wermiński, Mateusz Sitko and Lukasz Madej
Materials 2025, 18(14), 3237; https://doi.org/10.3390/ma18143237 - 9 Jul 2025
Viewed by 275
Abstract
The prediction of microstructure evolution during thermal processing plays a crucial role in tailoring the mechanical properties of metallic components. Therefore, this work presents a comprehensive, multiscale modelling approach to simulating phase transformations in large-diameter steel rings during cooling. A finite-element-based thermal model [...] Read more.
The prediction of microstructure evolution during thermal processing plays a crucial role in tailoring the mechanical properties of metallic components. Therefore, this work presents a comprehensive, multiscale modelling approach to simulating phase transformations in large-diameter steel rings during cooling. A finite-element-based thermal model was first used to simulate transient temperature distributions in a large-diameter ring under different cooling conditions, including air and water quenching. These thermal histories were subsequently employed in two complementary phase transformation models of different levels of complexity. The Avrami model provides a first-order approximation of the evolution of phase volume fractions, while a complex full-field cellular automata approach explicitly simulates the nucleation and growth of ferrite grains at the microstructural level, incorporating local kinetics and microstructural heterogeneities. The results highlight the sensitivity of final grain morphology to local cooling rates within the ring and initial austenite grain sizes. Simulations demonstrated the formation of heterogeneous microstructures, particularly pronounced in the ring’s surface region, due to sharp thermal gradients. This approach offers valuable insights for optimising heat treatment conditions to obtain high-quality large-diameter ring products. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Graphical abstract

13 pages, 652 KiB  
Review
Evaluating the Risk of Hypophosphatemia with Ferric Carboxymaltose and the Recommended Approaches for Management: A Consensus Statement
by Giuseppe Rosano, Justin Ezekowitz, Elizabeta Nemeth, Piotr Ponikowski, Martina Rauner, Melvin Seid, Donat R. Spahn, Jurgen Stein, Jay Wish and Robert J. Mentz
J. Clin. Med. 2025, 14(14), 4861; https://doi.org/10.3390/jcm14144861 - 9 Jul 2025
Viewed by 655
Abstract
Background/Objectives: The development of hypophosphatemia has been associated with intravenous iron products, with the rate of hypophosphatemia found to be higher with ferric carboxymaltose. This consensus statement provides clinical guidance on the risk of hypophosphatemia development with ferric carboxymaltose and the approaches for [...] Read more.
Background/Objectives: The development of hypophosphatemia has been associated with intravenous iron products, with the rate of hypophosphatemia found to be higher with ferric carboxymaltose. This consensus statement provides clinical guidance on the risk of hypophosphatemia development with ferric carboxymaltose and the approaches for management. To develop consensus recommendations regarding the clinical implications of hypophosphatemia after the administration of ferric carboxymaltose, the assessment of patient risk profile, and recommended approaches for risk reduction. Methods: Consensus statements were developed from an in-person meeting of specialists with expertise in iron pathophysiology and iron therapy and further supplemented with literature review. The multidisciplinary expert panel comprised global iron specialists spanning anesthesiology, cardiology, gastroenterology, obstetrics/gynecology, hematology, nephrology, and iron molecular biology. Structured discussions were held in an in-person meeting to gather expert opinion on the evidence base regarding intravenous iron and hypophosphatemia. Consolidated summary opinions underwent further iterations of panel review to form consensus recommendation statements. Results: The expert panel developed the following consensus statements: (1) Routine serum phosphate level measurement is not recommended for low-risk patients before or after treatment with ferric carboxymaltose, as most cases of hypophosphatemia that occur following the administration of ferric carboxymaltose are asymptomatic and transient; (2) patients receiving ferric carboxymaltose should be assessed for the degree of risk for developing symptomatic or severe hypophosphatemia prior to administration; (3) monitoring serum phosphate is recommended for patients at an increased risk for developing low serum phosphate or who require repeated courses of ferric carboxymaltose treatment at higher doses; (4) prophylactic oral phosphorus after ferric carboxymaltose is unlikely to effectively elevate phosphate and is not recommended for routine clinical practice; and (5) hypophosphatemic osteomalacia is rare and the risk of development after the administration of ferric carboxymaltose, in particular single infusion, is low. Conclusions: Hypophosphatemia following ferric carboxymaltose is predominantly asymptomatic and transient. Individuals at higher risk for developing hypophosphatemia with ferric carboxymaltose treatment include those who receive multiple infusions, higher cumulative doses, or long-term iron treatment or who have underlying clinical risk factors. These consensus statements provide structured guidance on the risk of hypophosphatemia with ferric carboxymaltose and the approaches to clinical management. Full article
(This article belongs to the Section Hematology)
Show Figures

Figure 1

17 pages, 5753 KiB  
Protocol
Protoplast-Based Regeneration Enables CRISPR/Cas9 Application in Two Temperate Japonica Rice Cultivars
by Marion Barrera, Blanca Olmedo, Matías Narváez, Felipe Moenne-Locoz, Anett Rubio, Catalina Pérez, Karla Cordero-Lara and Humberto Prieto
Plants 2025, 14(13), 2059; https://doi.org/10.3390/plants14132059 - 5 Jul 2025
Viewed by 617
Abstract
Rice (Oryza sativa L.), a staple food for over half of the global population, plays a pivotal role in food security. Among its two primary groups, japonica and indica, temperate japonica varieties are particularly valued for their high-quality grain and culinary [...] Read more.
Rice (Oryza sativa L.), a staple food for over half of the global population, plays a pivotal role in food security. Among its two primary groups, japonica and indica, temperate japonica varieties are particularly valued for their high-quality grain and culinary uses. Although some of these varieties are adapted to cooler climates, they often suffer from reduced productivity or increased disease susceptibility when cultivated in warmer productive environments. These limitations underscore the need for breeding programs to incorporate biotechnological tools that can enhance the adaptability and resilience of the plants. However, New Genomic Techniques (NGTs), including CRISPR-Cas9, require robust in vitro systems, which are still underdeveloped for temperate japonica genotypes. In this study, we developed a reproducible and adaptable protocol for protoplast isolation and regeneration from the temperate japonica cultivars ‘Ónix’ and ‘Platino’ using somatic embryos as the starting tissue. Protoplasts were isolated via enzymatic digestion (1.5% Cellulase Onozuka R-10 and 0.75% Macerozyme R-10) in 0.6 M AA medium over 18–20 h at 28 °C. Regeneration was achieved through encapsulation in alginate beads and coculture with feeder extracts in 2N6 medium, leading to embryogenic callus formation within 35 days. Seedlings were regenerated in N6R and N6F media and acclimatized under greenhouse conditions within three months. The isolated protoplast quality displayed viability rates of 70–99% within 48 h and supported transient PEG-mediated transfection with GFP. Additionally, the transient expression of a gene editing CRISPR-Cas9 construct targeting the DROUGHT AND SALT TOLERANCE (OsDST) gene confirmed genome editing capability. This protocol offers a scalable and genotype-adaptable system for protoplast-based regeneration and gene editing in temperate japonica rice, supporting the application of NGTs in the breeding of cold-adapted cultivars. Full article
Show Figures

Graphical abstract

23 pages, 9131 KiB  
Article
Mathematical Modeling Unveils a New Role for Transient Mitochondrial Permeability Transition in ROS Damage Prevention
by Olga A. Zagubnaya, Vitaly A. Selivanov, Mark Pekker, Carel J. H. Jonkhout, Yaroslav R. Nartsissov and Marta Cascante
Cells 2025, 14(13), 1006; https://doi.org/10.3390/cells14131006 - 1 Jul 2025
Viewed by 412
Abstract
We have previously shown that the mitochondrial respiratory chain (RC) can switch between the following two states: (i) an “ATP-producing” state characterized by the low production of reactive oxygen species (ROS), the vigorous translocation of hydrogen ions (H+), and the storage [...] Read more.
We have previously shown that the mitochondrial respiratory chain (RC) can switch between the following two states: (i) an “ATP-producing” state characterized by the low production of reactive oxygen species (ROS), the vigorous translocation of hydrogen ions (H+), and the storage of energy from the H+ gradient in the form of ATP, and (ii) an “ROS-producing” state, where the translocation of H+ is slow but the production of ROS is high. Here, we suggest that the RC transition from an ATP-producing to an ROS-producing state initiates a mitochondrial permeability transition (MPT) by generating a burst of ROS. Numerous MPT activators induce the transition of the RC to an ROS-producing state, and the ROS generated in this state activate the MPT. The MPT, in turn, induces changes in conditions that are necessary for the RC to return to an ATP-producing state, decreasing the ROS production rate and restoring the normal permeability of the inner membrane. In this way, the transient MPT prevents cell damage from oxidative stress that would occur if the RC remained in an ROS-producing state. It is shown that an overload of glutamate, which enters through excitatory amino acid transporters (EAATs), induces the RC to switch to an ROS-producing state. Subsequent MPT activation causes a transition back to an ATP-producing state. The model was used to predict the spatial–temporal dynamics of glutamate concentrations and H2O2 production rates in a three-dimensional digital phantom of nervous tissue. Full article
(This article belongs to the Special Issue Mitochondria Meets Oxidative Stress)
Show Figures

Graphical abstract

20 pages, 746 KiB  
Article
The Impact of Medical Insurance Penetration and Macroeconomic Factors on Healthcare Expenditure and Quality Outcomes in Saudi Arabia: An ARDL Analysis of Economic Sustainability
by Faten Derouez and Norah Falah Munahi Bin Shary
Sustainability 2025, 17(12), 5604; https://doi.org/10.3390/su17125604 - 18 Jun 2025
Viewed by 420
Abstract
This study investigated the determinants of the Healthcare Quality Index (HQI) in Saudi Arabia over the period from 1990 to 2024. It specifically analyzed the impact of six key variables: Medical Insurance Penetration Rate (MIPR), Gross Domestic Product per Capita (GDP), Unemployment Rate [...] Read more.
This study investigated the determinants of the Healthcare Quality Index (HQI) in Saudi Arabia over the period from 1990 to 2024. It specifically analyzed the impact of six key variables: Medical Insurance Penetration Rate (MIPR), Gross Domestic Product per Capita (GDP), Unemployment Rate (UR), Inflation Rate (IR), Government Healthcare Expenditure as a Percentage of GDP (GHE), and Foreign Direct Investment in the Healthcare Sector (FDI). Utilizing the Autoregressive Distributed Lag (ARDL) and Vector Error Correction Model (VECM) techniques, this research explored both the short-term dynamics and the long-term equilibrium relationships among these time-series variables, while also accounting for cointegration and potential endogeneity. This study contributes to the existing literature by applying the ARDL and VECM methodologies to comprehensively analyze the combined impact of these factors on HQI within the unique economic and social framework of Saudi Arabia, addressing a notable void in this specific context and exploring both transient fluctuations and sustained equilibrium relationships. The key findings revealed distinct influences across time horizons. In the short term, GDP and GHE significantly and positively affect HQI, whereas UR and IR demonstrate a significant negative impact. Short-term impacts of MIPR and FDI are found to be positive but not statistically significant. The long-term analysis indicates that MIPR, GHE, and FDI have a significant positive influence on HQI, while IR maintains a significant negative impact. GDP and UR effects are not statistically significant in the long term. Further analysis using Granger causality tests and VECM confirmed that MIPR, GDP, GHE, and FDI collectively Granger-cause HQI, with government healthcare expenditure playing a crucial role in correcting short-term deviations toward long-term equilibrium. This study concludes that long-term strategies focusing on expanding insurance coverage, increasing government healthcare investment, and attracting foreign direct investment are vital for significantly enhancing healthcare quality in Saudi Arabia. The sustained positive influence of these factors and the critical role of government spending in maintaining long-term stability underscore their importance for effective healthcare policy. While emphasizing these long-term drivers, policymakers should also remain cognizant of the significant negative short-term fluctuations caused by unemployment and inflation. Full article
Show Figures

Figure 1

24 pages, 3309 KiB  
Article
Evaluation of Low-Carbon Development in the Construction Industry and Forecast of Trends: A Case Study of the Yangtze River Delta Region
by Min Li, Yue Zhang, Gui Yu, Jiazhen Sun, Jie Liu, Yinsheng Wang and Yang Yu
Sustainability 2025, 17(12), 5435; https://doi.org/10.3390/su17125435 - 12 Jun 2025
Viewed by 396
Abstract
The low-carbon economy is becoming a critical global development paradigm. As the world’s largest carbon emitter, China’s transition toward low-carbon practices in its construction sector is pivotal for achieving its carbon peaking and carbon neutrality goals. Research into the decarbonization pathways and driving [...] Read more.
The low-carbon economy is becoming a critical global development paradigm. As the world’s largest carbon emitter, China’s transition toward low-carbon practices in its construction sector is pivotal for achieving its carbon peaking and carbon neutrality goals. Research into the decarbonization pathways and driving factors of this energy- and emission-intensive industry is essential. It not only reduces the sector’s dependence on traditional energy sources but also provides vital support for China’s national energy conservation and emissions reduction strategy. As the construction industry transitions toward low-carbon sustainability, traditional unidimensional assessments based solely on socio-economic and ecological factors are inadequate. This study proposed an integrated evaluation framework using the CRITIC–TOPSIS model, incorporating technological, social, economic, industrial, and energy dimensions. Panel data on energy consumption in the Yangtze River Delta (YRD) region were employed to assess the construction sector’s low-carbon development level and an ARIMA model was utilized to forecast its low-carbon potential. The results indicate that from 2011 to 2022, the sector’s total carbon emissions followed a unimodal trajectory (initial increase followed by decline), with indirect emissions exceeding 90%, primarily from cement, steel, and other building materials. The regional construction industry exhibited a unimodal trajectory in low-carbon development, characterized by an initial increase followed by a decline. Average construction carbon emissions reached 41,637.5877 million tons, with a transient surge (69.67% increase) occurring between 2011 and 2014. This was followed by a 41.83% reduction from 2014 to 2022, with emissions projected to stabilize and gradually increase through 2030. Technological and industrial factors constitute the primary drivers of sectoral low carbon. Quantitative analysis identified the capital utilization rate, industrial structure, and construction industry gross domestic product (GDP) as key impediments to low-carbon transition, with average impedance degrees of 8.713%, 12.280%, and 12.697%, respectively. This study has revealed the key driving factors for the low-carbon development of the construction industry, extending theoretical frameworks for construction industry sustainability. These findings offer empirical support for formulating regionally differentiated carbon mitigation policies. Full article
Show Figures

Figure 1

18 pages, 6495 KiB  
Article
Numerical Investigation of Factors Influencing Multiple Hydraulic Fracture Propagation from Directional Long Boreholes in Coal Seam Roofs
by Maolin Yang, Shuai Lv, Yu Meng, Xing Wang, Sicheng Wang and Jiangfu He
Appl. Sci. 2025, 15(12), 6521; https://doi.org/10.3390/app15126521 - 10 Jun 2025
Viewed by 307
Abstract
The hanging of hard roofs in coal seams poses a significant threat to the safe mining of coal. Hydraulic fracturing is an important method to achieve the pre-weakening of coal seam roofs. Clarifying the scope of hydraulic fracturing in coal seam roofs and [...] Read more.
The hanging of hard roofs in coal seams poses a significant threat to the safe mining of coal. Hydraulic fracturing is an important method to achieve the pre-weakening of coal seam roofs. Clarifying the scope of hydraulic fracturing in coal seam roofs and its influencing factors is a prerequisite for ensuring the effectiveness of the pre-weakening process. In this paper, we developed a fluid–structure coupling numerical simulation model for hydraulic fracturing based on the element damage theory, and have systematically examined the effects of both engineering parameters and geological factors on the hydraulic fracture propagation behavior of the segmented fracturing of coal seam roofs. Results indicate that increasing the injection rate can significantly enhance fracture propagation length. A larger stress difference directs fractures along the maximum principal stress direction and effectively extends their length. Additionally, increasing the spacing between fracture stages reduces stress interference between clusters, leading to a transition from asymmetric to uniform fracture propagation. To validate the numerical simulation results, we conducted a field test on the hydraulic fracturing of the coal seam roof, and monitored the affected area by using transient electromagnetic and microseismic monitoring techniques. Monitoring results indicated that the effective impact range of field hydraulic fracturing was consistent with the numerical simulation results. Through the systematic monitoring of support resistance and coal body stress, the supporting resistance in the fractured zone decreased by 25.10%, and the coal seam stress in the fractured zone exhibited a 1 MPa reduction. Observations demonstrate the significant effectiveness of hydraulic fracturing in regional control of the coal seam roof. This study combines numerical simulation with engineering practice to investigate hydraulic fracturing performance under varying operational conditions, with the findings providing robust technical support for safe and efficient mining production. Full article
Show Figures

Figure 1

18 pages, 756 KiB  
Article
Impact of Trade Openness and Exchange Rate Volatility on South Africa’s Industrial Growth: Assessment Using ARDL and SVAR Models
by Tafirenyika Sunde
Sustainability 2025, 17(11), 4933; https://doi.org/10.3390/su17114933 - 27 May 2025
Viewed by 661
Abstract
This paper explores the impact of trade openness and exchange rate volatility on South Africa’s industrial growth from 1980 to 2024 through a hybrid econometric framework combining Autoregressive Distributed Lag (ARDL) and Structural Vector Autoregression (SVAR) models. It captures both long-term relationships and [...] Read more.
This paper explores the impact of trade openness and exchange rate volatility on South Africa’s industrial growth from 1980 to 2024 through a hybrid econometric framework combining Autoregressive Distributed Lag (ARDL) and Structural Vector Autoregression (SVAR) models. It captures both long-term relationships and short-term economic patterns; the analysis reveals that gross domestic product (GDP) is the most significant and consistent driver of industrial value added (IVAD), while trade openness and currency volatility exert limited standalone effects. Structural shocks, notably the 2008 global financial crisis and the COVID-19 pandemic, had significant negative short-term impacts on industrial performance, highlighting systemic vulnerabilities. Robustness tests, including rolling window ARDL and first-difference GDP estimation, confirm the persistence of these relationships. Impulse response functions and forecast error variance decomposition underscore the transient and moderate influence of external shocks compared with the dominant role of internal macroeconomic fundamentals. These findings indicate that liberalisation and exchange rate flexibility must be embedded within a broader developmental strategy underpinned by institutional strength, resilience building, and sustainability principles. This study provides fresh insights supporting policy frameworks that prioritise domestic industrial capacity, macroeconomic stability, and alignment with Sustainable Development Goal 9—inclusive and sustainable industrialisation. Full article
Show Figures

Figure 1

14 pages, 1633 KiB  
Article
Hydrodynamic Cavitation in Shockwave-Power-Reactor-Assisted Biodiesel Production in Continuous from Soybean and Waste Cooking Oil
by James R. Vera-Rozo, Edison A. Caicedo-Peñaranda and José M. Riesco-Avila
Energies 2025, 18(11), 2761; https://doi.org/10.3390/en18112761 - 26 May 2025
Viewed by 466
Abstract
The transesterification process for biodiesel production is constrained by high thermal input, prolonged residence time, and intensive mechanical agitation. This study investigates process intensification via hydrodynamic cavitation using a custom-built Shockwave Power Reactor (SPR), enabling continuous biodiesel synthesis from soybean and used cooking [...] Read more.
The transesterification process for biodiesel production is constrained by high thermal input, prolonged residence time, and intensive mechanical agitation. This study investigates process intensification via hydrodynamic cavitation using a custom-built Shockwave Power Reactor (SPR), enabling continuous biodiesel synthesis from soybean and used cooking oils. A statistically designed experimental matrix was applied to evaluate the reactor’s transient–stable thermal regime and the influence of operational parameters: rotor speed (1700–3415 rpm), volumetric flow rate (60–105 mL/min), methanol-to-oil molar ratio (6:1 to 12:1), and alkali catalyst type (NaOH or KOH). For benchmarking, conventional alkaline transesterification was optimized. The FAME yields from the SPR system exceeded 96.5% and complied with EN14103 standards. Specific energy analysis showed that cavitation-enhanced transesterification reduced energy consumption and peak temperature compared to traditional methods. The SPR’s capacity to induce high shear and localized turbulence under controlled cavitation offers a promising pathway for low-energy, scalable biodiesel production. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

24 pages, 7008 KiB  
Article
Comparison Between AICV, ICD, and Liner Completions in the Displacement Front and Production Efficiency in Heavy Oil Horizontal Wells
by Andres Pinilla, Miguel Asuaje and Nicolas Ratkovich
Processes 2025, 13(5), 1576; https://doi.org/10.3390/pr13051576 - 19 May 2025
Viewed by 549
Abstract
Autonomous inflow control devices (AICDs) offer a promising means of delaying early water breakthrough in heavy oil horizontal wells; yet, current design practices remain largely empirical. A three-dimensional, field-calibrated computational fluid dynamics (CFD) model was developed to establish a mechanistic basis that solves [...] Read more.
Autonomous inflow control devices (AICDs) offer a promising means of delaying early water breakthrough in heavy oil horizontal wells; yet, current design practices remain largely empirical. A three-dimensional, field-calibrated computational fluid dynamics (CFD) model was developed to establish a mechanistic basis that solves the transient Navier–Stokes equations for turbulent two-phase flow via a volume-of-fluid formulation. Pressure-controlled inflow boundaries were tuned to build up data from four Colombian heavy oil producers, enabling a quantitative comparison with production logs. Model predictions deviate by no more than ±14% for oil rate and ±10% for water rate over a 500-day horizon, providing confidence in subsequent scenario analysis. Replacing a slotted liner completion with optimally sized AICDs lowers cumulative water-cut by up to 93%, reduces annular friction losses by 18%, and cuts estimated life cycle CO2 emissions per stock-tank barrel by 82%. Sensitivity analysis identifies nozzle diameter as the dominant design variable, with a nonlinear interaction between local drawdown pressure and the oil–water viscosity ratio. These findings demonstrate that CFD-guided AICD design can materially extend wells’ economic life while delivering substantial environmental benefits. The validated workflow establishes a low-risk, physics-based path for tailoring AICDs to reservoir conditions before field deployment. Full article
(This article belongs to the Special Issue 1st SUSTENS Meeting: Advances in Sustainable Engineering Systems)
Show Figures

Figure 1

Back to TopTop