Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (64)

Search Parameters:
Keywords = topical antioxidant nanoparticles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1280 KiB  
Article
Development and Optimization of a Quercetin-Loaded Chitosan Lactate Nanoparticle Hydrogel with Antioxidant and Antibacterial Properties for Topical Skin Applications
by Raghda Yazidi, Majdi Hammami, Hamza Ghadhoumi, Ameni Ben Abdennebi, Sawssen Selmi, Kamel Zayani, Karima Horchani-Naifer, Iness Bettaieb Rebey and Moufida Saidani Tounsi
Cosmetics 2025, 12(4), 141; https://doi.org/10.3390/cosmetics12040141 - 3 Jul 2025
Viewed by 872
Abstract
Nanotechnology has revolutionized dermocosmetic innovation by improving the stability, bioavailability, and efficacy of active ingredients. In this study, we developed and optimized a novel xanthan gum-based hydrogel containing quercetin-loaded chitosan lactate nanoparticles for antioxidant and antimicrobial skincare applications. Chitosan was converted to its [...] Read more.
Nanotechnology has revolutionized dermocosmetic innovation by improving the stability, bioavailability, and efficacy of active ingredients. In this study, we developed and optimized a novel xanthan gum-based hydrogel containing quercetin-loaded chitosan lactate nanoparticles for antioxidant and antimicrobial skincare applications. Chitosan was converted to its lactate form to enhance water solubility and enable nanoparticle formation at physiological pH via ionic gelation with citric acid. The formulation was optimized using Box–Behnken response surface methodology to achieve minimal particle size and maximal zeta potential. The final gel was structured with xanthan gum as the gelling polymer, into which the optimized nanoparticles were incorporated to create a stable and bioactive hydrogel system. Encapsulation efficiency was measured separately to assess the effectiveness of drug loading. The optimized nanoparticles exhibited a mean diameter of 422.02 nm, a zeta potential of +29.49 mV, and a high quercetin encapsulation efficiency (76.9%), corresponding to the proportion of quercetin retained in the nanoparticle matrix relative to the total amount initially used in the formulation. Antioxidant assays (TAC, DPPH, and reducing power) confirmed superior radical-scavenging activity of the nanoformulation compared to the base hydrogel. Antibacterial tests showed strong inhibition against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus, with MIC values comparable to streptomycin. Accelerated stability studies demonstrated excellent physicochemical and microbiological stability over 60 days. This natural, bioactive, and eco-friendly formulation represents a promising platform for next-generation cosmeceuticals targeting oxidative stress and skin-related pathogens. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

26 pages, 2898 KiB  
Article
Phytochemical Characterization, Bioactivities, and Nanoparticle-Based Topical Gel Formulation Development from Four Mitragyna speciosa Varieties
by Pimporn Anantaworasakul, Weeraya Preedalikit, Phunsuk Anantaworasakul, Sudarshan Singh, Aekkhaluck Intharuksa, Warunya Arunotayanun, Mingkwan Na Takuathung, Songwut Yotsawimonwat and Chuda Chittasupho
Gels 2025, 11(7), 494; https://doi.org/10.3390/gels11070494 - 26 Jun 2025
Viewed by 487
Abstract
Mitragyna speciosa (kratom) is a traditional medicinal plant rich in bioactive alkaloids and phenolics, known for their antioxidant and anti-aging properties. This study aimed to develop nanoparticle-based topical gels from ethanolic extracts of four kratom varieties, including Kan Daeng (KD), Hang Kang (HK), [...] Read more.
Mitragyna speciosa (kratom) is a traditional medicinal plant rich in bioactive alkaloids and phenolics, known for their antioxidant and anti-aging properties. This study aimed to develop nanoparticle-based topical gels from ethanolic extracts of four kratom varieties, including Kan Daeng (KD), Hang Kang (HK), Tai Bai-yao (KY), and Kan Keaw (KG). Kratom NPs were prepared using a solvent displacement method. The resulting nanoparticles (NPs) exhibited sizes of 201.9–256.2 nm, polydispersity indices (PDI) below 0.3, and a zeta potential between −22.6 and −29.6 mV. The phytochemical analysis revealed that KG and KY extracts contained the highest total phenolic content (TPC) and total flavonoid content (TFC), which were mostly retained after NP formulation. The HPLC analysis confirmed HK as the richest source of mitragynine (9.97 ± 0.10% w/w), while NP formulations displayed slightly reduced levels. Antioxidant activities assessed by DPPH, ABTS, and FRAP assays revealed enhanced radical scavenging in nanoparticle formulations, with IC50 values ranging from 151.23 to 199.87 µg/mL (DPPH) and 207.37 to 272.83 µg/mL (ABTS). All formulations exhibited a significant inhibition of collagenase (80.56 ± 1.60 to 97.23 ± 0.29%), elastase (45.46 ± 6.53 to 52.19 ± 1.20%), and hyaluronidase (83.23 ± 2.34 to 91.67 ± 3.56%), with nanoparticle forms showing superior enzyme inhibition. Notably, nanoparticle formulations exhibited superior inhibitory effects compared to crude extracts. HaCaT cytotoxicity tests confirmed high biocompatibility (IC50 > 700 µg/mL), especially for KD and KG NPs. The NP-loaded gels demonstrated acceptable physicochemical stability after heating/cooling cycle testing, with pH (7.27 to 7.88), viscosity (10.719 to 12.602 Pa·s), and favorable visual and textural properties. In summary, KG and KY cultivars emerged as the most promising cosmeceutical candidates due to their superior phytochemical content, antioxidant capacity, enzyme-inhibitory activities, and formulation performance. These findings support the potential use of KG NP and KY NP-loaded gels as multifunctional cosmeceutical agents for antioxidant protection, anti-aging, and skin rejuvenation. Full article
Show Figures

Figure 1

17 pages, 258 KiB  
Review
Nutrient-Driven Antioxidant Interventions for Prevention of Age-Related and Diabetic Cataracts
by Rosa Giglio, Serena Milan, Leandro Inferrera, Daniele Tognetto, Fabiana D’Esposito, Federico Visalli, Caterina Gagliano and Marco Zeppieri
Nutrients 2025, 17(11), 1885; https://doi.org/10.3390/nu17111885 - 30 May 2025
Viewed by 497
Abstract
Cataract formation remains a significant cause of global visual impairment. Increasing attention has been directed toward antioxidant-based interventions as potential non-surgical strategies to delay or prevent cataractogenesis, particularly in the age-related and diabetic contexts. This review summarizes recent preclinical evidence on nutritional antioxidants [...] Read more.
Cataract formation remains a significant cause of global visual impairment. Increasing attention has been directed toward antioxidant-based interventions as potential non-surgical strategies to delay or prevent cataractogenesis, particularly in the age-related and diabetic contexts. This review summarizes recent preclinical evidence on nutritional antioxidants for the prevention of age-related and diabetic cataracts. Agents such as trimetazidine, Moringa oleifera stem extract, ginsenoside Rg1, lanosterol nanoparticles, β-casomorphin-7, and cerium oxide-based nanotherapies have been shown to mitigate oxidative damage, modulate redox signaling pathways, and preserve lens clarity. Advances in drug delivery, including topical formulations, nanoparticle carriers, and intravitreal injections, have been proposed to overcome the anatomical and pharmacokinetic barriers associated with the avascular lens. The new data support ongoing translational research to maximize the clinical use of antioxidants and highlight their therapeutic potential in the prevention of age-related and diabetic cataracts. Full article
(This article belongs to the Special Issue Diet and Supplements in the Prevention and Treatment of Eye Diseases)
31 pages, 1349 KiB  
Review
Biotechnological Applications of Biogenic Nanomaterials from Red Seaweed: A Systematic Review (2014–2024)
by Aline Nunes, Graziano Rilievo, Massimiliano Magro, Marcelo Maraschin, Fabio Vianello and Giuseppina Pace Pereira Lima
Int. J. Mol. Sci. 2025, 26(9), 4275; https://doi.org/10.3390/ijms26094275 - 30 Apr 2025
Viewed by 755
Abstract
Green synthesized nanoparticles (NPs) are arousing constantly increasing attention due to inherent advantages such as biocompatibility, nontoxicity, and cost-effectiveness. As the state of the art of this rapidly evolving topic demands a punctual update, the present study was focused on reviewing the novelty, [...] Read more.
Green synthesized nanoparticles (NPs) are arousing constantly increasing attention due to inherent advantages such as biocompatibility, nontoxicity, and cost-effectiveness. As the state of the art of this rapidly evolving topic demands a punctual update, the present study was focused on reviewing the novelty, feasibility, and effectiveness related to the specific category of red seaweed-derived NPs. Among algae, red seaweeds have already gained consideration in the global market due to their high content of primary and secondary metabolites, supporting multifunctional applications across various industries. This scoping review reveals how this interest has also driven their investigation as a natural source for the sustainable NP fabrication. The fragmentary body of studies was synthesized, identifying red seaweed NPs as a flourishing nanotechnological subgroup and meriting their own space in the scientific literature. Noteworthy, the great majority of the reviewed papers feature efficient controlled release, enhanced bioavailability, and reduced toxicity, making red seaweed NPs elective candidates for the medical sector as anticancer, antimicrobial, and antioxidant agents. Moreover, their parent natural counterparts seem to endow NPs with unexpected specificity toward biological targets such as prokaryotic and tumor cells. Nanotechnological solutions based on red seaweeds pave the way to a new avenue of opportunities and challenges. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

18 pages, 6921 KiB  
Article
Chitosan Nanoparticulate System Loaded with Cannabidiol: A Topical Formulation for Potential Alopecia Management
by Josenildo R. Oliveira, Débora S. Lopes, Milena C. S. Barbosa, Henrique N. Silva, Marcus V. L. Fook, Suédina M. L. Silva, João M. P. Q. Delgado and Antonio G. B. Lima
Processes 2025, 13(3), 617; https://doi.org/10.3390/pr13030617 - 21 Feb 2025
Cited by 1 | Viewed by 780
Abstract
This study explores an innovative topical formulation to treat alopecia by encapsulating cannabidiol (CBD) in chitosan nanoparticles. CBD, widely known for its anti-inflammatory, antioxidant, and endocannabinoid-modulating effects, shows significant potential for treating alopecia, a condition characterized by hair loss influenced by genetic, hormonal, [...] Read more.
This study explores an innovative topical formulation to treat alopecia by encapsulating cannabidiol (CBD) in chitosan nanoparticles. CBD, widely known for its anti-inflammatory, antioxidant, and endocannabinoid-modulating effects, shows significant potential for treating alopecia, a condition characterized by hair loss influenced by genetic, hormonal, or environmental factors. However, its low water solubility presents a significant challenge for topical applications. To address this issue, chitosan nanoparticles were synthesized using chitosan of reduced molecular mass (270 kDa) with an acetylation level of 12%, β-glycerophosphate as a crosslinking agent, and 1% glycerol to improve CBD encapsulation efficiency. Physicochemical characterization using scanning electron microscopy (SEM), zeta potential measurement, and Fourier transform infrared spectroscopy (FTIR) revealed that the β-glycerophosphate concentration impacted nanoparticle size and the electrostatic interactions between chitosan’s primary amines and phosphate groups of β-glycerophosphate. Among the tested concentrations (0.05, 0.1, 0.2, and 0.25 mol/L), 0.20 mol/L produced the smallest nanoparticles (390 nm), which were further optimized to encapsulate CBD, reaching a particle size of 227 nm. This optimized formulation may improve the solubility of CBD and enable targeted and sustained delivery to hair follicles. These findings highlight chitosan nanoparticles as a cutting-edge and scalable platform for transdermal delivery of hydrophobic bioactive compounds, presenting a promising approach for the effective management of alopecia. Full article
(This article belongs to the Special Issue Development and Characterization of Advanced Polymer Nanocomposites)
Show Figures

Figure 1

19 pages, 1775 KiB  
Article
Anti-Inflammatory Effects of Curcumin-Based Nanoparticles Containing α-Linolenic Acid in a Model of Psoriasis In Vitro
by Simona Serini, Sonia Trombino, Roberta Cassano, Mariapaola Marino and Gabriella Calviello
Nutrients 2025, 17(4), 692; https://doi.org/10.3390/nu17040692 - 14 Feb 2025
Cited by 3 | Viewed by 1804
Abstract
Background/Objectives. Psoriasis is a common chronic skin inflammatory disorder pathogenetically associated with genetic, environmental, and immunological factors. The hallmarks of psoriatic lesions include sustained inflammation related to alterations in the innate and adaptive immune response, uncontrolled keratinocyte proliferation, differentiation, and death, as well [...] Read more.
Background/Objectives. Psoriasis is a common chronic skin inflammatory disorder pathogenetically associated with genetic, environmental, and immunological factors. The hallmarks of psoriatic lesions include sustained inflammation related to alterations in the innate and adaptive immune response, uncontrolled keratinocyte proliferation, differentiation, and death, as well as dysregulated crosstalk between immune cells and keratinocytes. In search of novel therapeutic strategies based on the use of natural products and dietary components to combine to the available conventional and innovative therapeutics, we explored the anti-inflammatory, antioxidant, and immunomodulatory activities of Curcumin (CU)-based solid lipid nanoparticles (SLNs) carrying the omega-3 fatty acid linolenic acid (LNA) in an in vitro model of psoriasis that had been previously constructed and characterized by us. Methods. This in vitro model consists of differentiated in vitro THP-1 macrophages (Mφs) and NCTC-2544 keratinocytes exposed or not to conditioned medium (CM) from Mφs treated with the Toll-like receptor-7 ligand imiquimod (IMQ). Results. In Mφs, the treatment with CU-LNA-SLNs inhibited the IMQ-induced expression of proinflammatory cytokines (IL-23, IL-8, IL-6: 43%, 26.5% and 73.7% inhibition, respectively, vs IMQ-treated Mφs), as well as the hyperproliferative response (12.8% inhibition vs IMQ-treated Mφs) and the increase in cell death observed in keratinocytes treated with Mφ-derived CM (64.7% inhibition). Moreover, in the same conditions, CU-LNA-SLNs reverted to control levels of the increased keratinocyte expression of two markers of ferroptosis, a form of death recently involved in the pathogenesis of psoriasis (TFRC and MDA: 13.4% and 56.1% inhibition, respectively). Conclusions. These results suggest that CU-LNA-SLNs could inhibit psoriatic inflammation, as well as the hyperproliferation and death of keratinocytes in psoriatic lesions, and could be considered as a new possible therapeutic strategy for psoriasis to be further evaluated for the topic treatment of psoriatic skin in vivo. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

27 pages, 2772 KiB  
Review
Nanoparticle-Encapsulated Plant Polyphenols and Flavonoids as an Enhanced Delivery System for Anti-Acne Therapy
by Ririn Puspadewi, Tiana Milanda, Muhaimin Muhaimin and Anis Yohana Chaerunisaa
Pharmaceuticals 2025, 18(2), 209; https://doi.org/10.3390/ph18020209 - 4 Feb 2025
Cited by 2 | Viewed by 1966
Abstract
This study conducted a literature review by searching for articles related to the treatment of skin infections/wrinkles using nano-delivery systems containing natural compounds. The search was conducted in various databases for articles published in the last 10 years, with strict inclusion and exclusion [...] Read more.
This study conducted a literature review by searching for articles related to the treatment of skin infections/wrinkles using nano-delivery systems containing natural compounds. The search was conducted in various databases for articles published in the last 10 years, with strict inclusion and exclusion criteria. Of the 490 articles found, 40 were considered relevant. Acne vulgaris is a common dermatological disorder characterised by inflammation of the sebaceous glands, often resulting in the development of pimples, cysts, and scarring. Conventional treatments, including antibiotics and topical retinoids, frequently demonstrate limitations such as side effects, resistance, and insufficient skin absorption. Recent advancements in nanotechnology have enabled the creation of innovative drug-delivery systems that enhance the effectiveness and reduce the adverse effects of anti-acne medications. Polyphenols and flavonoids, natural bioactive compounds with notable anti-inflammatory, antioxidant, and antibacterial properties, are recognised for their therapeutic effectiveness in acne treatment. However, their practical application is hindered by insufficient solubility, stability, and bioavailability. The incorporation of these compounds into nanoparticle-based delivery systems has shown promise in resolving these challenges. Various nanoparticle platforms, including lipid-based nanoparticles, polymeric nanoparticles, and solid lipid nanoparticles, are evaluated for their ability to improve the stability, controlled release, and targeted delivery of polyphenols and flavonoids to the skin. The advent of polyphenol and flavonoid-loaded nanoparticles marks a new acne therapy era. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

21 pages, 4941 KiB  
Article
Ophthalmic In Situ Nanocomposite Gel for Delivery of a Hydrophobic Antioxidant
by Marta Slavkova, Christina Voycheva, Teodora Popova, Borislav Tzankov, Diana Tzankova, Ivanka Spassova, Daniela Kovacheva, Denitsa Stefanova, Virginia Tzankova and Krassimira Yoncheva
Gels 2025, 11(2), 105; https://doi.org/10.3390/gels11020105 - 2 Feb 2025
Cited by 2 | Viewed by 2125
Abstract
The topical administration of in situ hydrogels for ocular pathologies is a promising application strategy for providing high effectiveness and patient compliance. Curcumin, a natural polyphenol, possesses all the prerequisites for successful therapy of ophthalmic diseases, but unfortunately its physicochemical properties hurdle the [...] Read more.
The topical administration of in situ hydrogels for ocular pathologies is a promising application strategy for providing high effectiveness and patient compliance. Curcumin, a natural polyphenol, possesses all the prerequisites for successful therapy of ophthalmic diseases, but unfortunately its physicochemical properties hurdle the practical use. Applying a composite in situ thermoresponsive hydrogel formulation embedded with polymer nanoparticles is a potent strategy to overcome all the identified drawbacks. In the present work we prepared uniform spherical nanoparticles (296.4 ± 3.1 nm) efficiently loaded with curcumin (EE% 82.5 ± 2.3%) based on the biocompatible and biodegradable poly-(lactic-co-glycolic acid). They were thoroughly physicochemically characterized in terms of FTIR, SEM, TGA, and DLS, in vitro release following Fickian diffusion (45.62 ± 2.37%), and stability over 6 months. Their lack of cytotoxicity was demonstrated in vitro on HaCaT cell lines, and the potential for antioxidant protection was also outlined, starting from concentrations as low as 0.1 µM and reaching 41% protection at 5 µM. An in situ thermoresponsive hydrogel (17% w/v poloxamer 407 and 0.1% Carbopol) with suitable properties for ophthalmic application was optimized with respect to gelation temperature (31.40 ± 0.36 °C), gelling time (8.99 ± 0.28 s) upon tears dilution, and gel erosion (90.75 ± 4.06%). Upon curcumin-loaded nanoparticle embedding, the in situ hydrogels demonstrated appropriate pseudoplastic behavior and viscosity at 35 °C (2129 ± 24 Pa∙s), 6-fold increase in the permeation, and prolonged release over 6 h. Full article
(This article belongs to the Special Issue Composite Hydrogels for Biomedical Applications)
Show Figures

Graphical abstract

10 pages, 456 KiB  
Article
Solid Lipid Nanoparticles for Skin Delivery of Trans-Resveratrol: Impact of Preparation Methods on Formulation Stability
by Andressa Tardim Cruz, Leonardo Delello Di Filippo, Jonatas Lobato Duarte, Antonio José Guillot, Alberto Pérez-García, Ana Melero and Marlus Chorilli
Cosmetics 2025, 12(1), 7; https://doi.org/10.3390/cosmetics12010007 - 7 Jan 2025
Cited by 1 | Viewed by 2242
Abstract
Trans-resveratrol (RES) is a natural polyphenol known for its antioxidant, anti-inflammatory, and anti-aging properties, making it highly valuable in cosmetic applications. Solid lipid nanoparticles (SLNs) offer a promising solution to enhance RES’s stability and cutaneous availability. This study aimed to develop and characterize [...] Read more.
Trans-resveratrol (RES) is a natural polyphenol known for its antioxidant, anti-inflammatory, and anti-aging properties, making it highly valuable in cosmetic applications. Solid lipid nanoparticles (SLNs) offer a promising solution to enhance RES’s stability and cutaneous availability. This study aimed to develop and characterize SLNs encapsulating RES for enhanced skin delivery. Multiple methodologies were evaluated to determine the impact of preparation methods on formulation stability. SLNs were formulated using stearic acid, soy phosphatidylcholine, polysorbate 80, cetyltrimethylammonium bromide, and poloxamer 407, with variations in heating temperatures and homogenization techniques. Stability assessments were conducted over 90 days, examining organoleptic properties of the hydrodynamic diameter, polydispersity index, and zeta potential. Encapsulation efficiency and skin permeation studies were performed to investigate the efficacy of SLNs in delivering RES. Results demonstrated that formulations prepared with Ultra Turrax at 24,000 rpm and heating at higher temperatures exhibited enhanced stability and smaller particle sizes. The selected formulations, F1 (prepared at 80 °C) and F2 (prepared at 70 °C) presented encapsulation efficiencies of 70% and 72%, respectively. Skin permeation studies confirmed the ability of SLNs to facilitate RES delivery through the skin. The study concludes that SLNs are suitable carriers for RES skin delivery, offering improved stability and sustained release, thus representing a promising approach for topical applications to leverage RES’s cutaneous therapeutic benefits. Full article
(This article belongs to the Special Issue Nanotechnology Advances in Cosmetics)
Show Figures

Figure 1

37 pages, 2634 KiB  
Review
The Potential Application of Nanocarriers in Delivering Topical Antioxidants
by Zulfan Zazuli, Rika Hartati, Cornelia Rosasepti Rowa, Sukmadjaja Asyarie and Satrialdi
Pharmaceuticals 2025, 18(1), 56; https://doi.org/10.3390/ph18010056 - 6 Jan 2025
Cited by 1 | Viewed by 2313
Abstract
The imbalance in the production of reactive oxygen species (ROS) with endogenous antioxidant capacity leads to oxidative stress, which drives many disorders, especially in the skin. In such conditions, supplementing exogenous antioxidants may help the body prevent the negative effect of ROS. However, [...] Read more.
The imbalance in the production of reactive oxygen species (ROS) with endogenous antioxidant capacity leads to oxidative stress, which drives many disorders, especially in the skin. In such conditions, supplementing exogenous antioxidants may help the body prevent the negative effect of ROS. However, the skin, as the outermost barrier of the body, provides a perfect barricade, making the antioxidant delivery complicated. Several strategies have been developed to enhance the penetration of antioxidants through the skin, one of which is nanotechnology. This review focuses on utilizing several nanocarrier systems, including nanoemulsions, liposomes, solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), and polymeric nanoparticles, for transporting antioxidants into the skin. We also reveal ROS formation in the skin and the role of antioxidant therapy, as well as the natural sources of antioxidants. Furthermore, we discuss the clinical application of topical antioxidant therapy concomitantly with the current status of using nanotechnology to deliver topical antioxidants. This review will accelerate the advancement of topical antioxidant therapy. Full article
Show Figures

Graphical abstract

15 pages, 3566 KiB  
Article
Advanced Amperometric Microsensors for the Electrochemical Quantification of Quercetin in Ginkgo biloba Essential Oil from Regenerative Farming Practices
by Elena Oancea, Ioana Adina Tula, Gabriela Stanciu, Raluca-Ioana Ștefan-van Staden, Jacobus (Koos) Frederick van Staden and Magdalena Mititelu
Metabolites 2025, 15(1), 6; https://doi.org/10.3390/metabo15010006 - 31 Dec 2024
Viewed by 1044
Abstract
In this study, we present a novel approach using amperometric microsensors to detect quercetin in cosmetic formulations and track its metabolic behavior after topical application. This method offers a sensitive, real-time alternative to conventional techniques, enabling the detection of quercetin’s bioavailability, its transformation [...] Read more.
In this study, we present a novel approach using amperometric microsensors to detect quercetin in cosmetic formulations and track its metabolic behavior after topical application. This method offers a sensitive, real-time alternative to conventional techniques, enabling the detection of quercetin’s bioavailability, its transformation into active metabolites, and its potential therapeutic effects when applied to the skin. Quercetin (Q) is a bioactive flavonoid known for its potent antioxidant properties, naturally present in numerous plants, particularly those with applications in cosmetic formulations. In response to the growing interest in developing novel plant-based dermo-cosmetic solutions, this study investigates the electrochemical detection of quercetin, a ketone-type flavonoid, extracted from Gingko biloba essential oil. Three newly designed amperometric microsensors were developed to assess their efficacy in detecting quercetin in botanical samples. The sensor configurations utilized two forms of carbon material as a foundation: graphite (G) and carbon nanoparticles (CNs). These base materials were modified with paraffin oil, chitosan (CHIT), and cobalt(II) tetraphenylporphyrin (Co(II)TPP) to enhance sensitivity. Differential pulse voltammetry (DPV) served as the analytical method for this investigation. Among the sensors, the CHIT/G–CN microsensor exhibited the highest sensitivity, with a detection limit of 1.22 × 10−7 mol L−1, followed by the G–CN (5.64 × 10−8 mol L−1) and Co(II)TPP/G–CN (9.80 × 10−8 mol L−1) microsensors. The minimum detectable concentration was observed with the G–CN and CoP/G–CN microsensors, achieving a threshold as low as 0.0001 μmol L−1. Recovery rates and relative standard deviation (RSD) values averaged 97.4% ± 0.43, underscoring the sensors’ reliability for quercetin detection in botanical matrices. Full article
Show Figures

Figure 1

29 pages, 6039 KiB  
Article
Innovative Solid Lipid Nanoparticle-Enriched Hydrogels for Enhanced Topical Delivery of L-Glutathione: A Novel Approach to Anti-Ageing
by Mengyang Liu, Manisha Sharma, Guoliang Lu, Zhiwen Zhang, Wenting Song and Jingyuan Wen
Pharmaceutics 2025, 17(1), 4; https://doi.org/10.3390/pharmaceutics17010004 - 24 Dec 2024
Cited by 5 | Viewed by 1523
Abstract
Background: Skin ageing, driven predominantly by oxidative stress from reactive oxygen species (ROS) induced by environmental factors like ultraviolet A (UVA) radiation, accounts for approximately 80% of extrinsic skin damage. L-glutathione (GSH), a potent antioxidant, holds promise in combating UVA-induced oxidative stress. However, [...] Read more.
Background: Skin ageing, driven predominantly by oxidative stress from reactive oxygen species (ROS) induced by environmental factors like ultraviolet A (UVA) radiation, accounts for approximately 80% of extrinsic skin damage. L-glutathione (GSH), a potent antioxidant, holds promise in combating UVA-induced oxidative stress. However, its instability and limited penetration through the stratum corneum hinder its topical application. This study introduces a novel solid lipid nanoparticle (SLN)-enriched hydrogel designed to enhance GSH stability, skin penetration, and sustained release for anti-ageing applications. Methods: GSH-loaded SLNs were prepared via a double-emulsion technique and optimized using factorial design. These SLNs were incorporated into 1–3% (w/v) Carbopol hydrogels to produce a semi-solid formulation. The hydrogel’s characteristics, including morphology, mechanical and rheological properties, drug release, stability, antioxidant activity, cytotoxicity, and skin penetration, were evaluated. Results: SEM and FTIR confirmed the uniform dispersion of SLNs within the hydrogel. The formulation exhibited desirable properties, including gel strength (5.1 ± 0.5 g), spreadability (33.6 ± 1.9 g·s), pseudoplasticity, and elasticity. In vitro studies revealed a biphasic GSH release profile, with sustained release over 72 h and over 70% cumulative release. The hydrogel significantly improved antioxidant capacity, protecting human fibroblasts from UVA-induced oxidative stress and enhancing cell viability. Stability studies indicated that 4 °C was optimal for storage over three months. Notably, the hydrogel enhanced GSH penetration through the stratum corneum by 3.7-fold. Conclusions: This SLN-enriched hydrogel effectively improves GSH topical delivery and antioxidant efficacy, providing a promising platform for anti-ageing and other bioactive compounds with similar delivery challenges. Full article
(This article belongs to the Special Issue Advances in Delivery of Peptides and Proteins)
Show Figures

Graphical abstract

27 pages, 3129 KiB  
Review
Essential Oils as Dermocosmetic Agents, Their Mechanism of Action and Nanolipidic Formulations for Maximized Skincare
by Shamama Javed, Bharti Mangla, Ahmad Salawi, Muhammad H. Sultan, Yosif Almoshari and Waquar Ahsan
Cosmetics 2024, 11(6), 210; https://doi.org/10.3390/cosmetics11060210 - 2 Dec 2024
Cited by 10 | Viewed by 8802
Abstract
Essential oils (EOs) are known for their diverse bioactivities, including antioxidant, anti-inflammatory, antibacterial, antifungal, antiviral, skin-barrier repairing and anticancer, and therefore, hold profound potential to be used in cosmetic and skincare products. Owing to these properties, EOs have long been utilized to address [...] Read more.
Essential oils (EOs) are known for their diverse bioactivities, including antioxidant, anti-inflammatory, antibacterial, antifungal, antiviral, skin-barrier repairing and anticancer, and therefore, hold profound potential to be used in cosmetic and skincare products. Owing to these properties, EOs have long been utilized to address a range of dermatological issues, from acne and inflammation to aging and dryness. However, problems associated with EOs beset their practical applications, which include high volatility, oxidation, hydrophobic nature, low bioavailability, skin irritation, chemical transformation and poor stability in air and light. A prospective of nanolipidic formulations, including the nanostructured lipid carriers (NLCs) and solid lipid nanoparticles (SLNs) system for improved skin delivery of these EOs highlights the possibility of their use in topical applications, which offer several advantages such as improved bioavailability and stability, lower toxicity and higher drug content. These nanoformulations protect the EOs from environmental degradation and improve their penetration into deeper skin layers, leading to prolonged therapeutic benefits. The delivery of bioactive agents using a conventional topical preparation exhibits low penetration, frequent applications, poor adherence and prolonged therapy duration, whereas the novel delivery system exhibits improved stability of the drug, enhanced skin penetration, enhanced retention and better therapeutic efficacy. This review provides a comprehensive compendium of information on EOs, which are widely used in skincare, along with their nanolipidic formulations for maximized skincare uses. The mechanism of action of EOs as skin bioactive agents, challenges associated with their use, advances in nanolipidic formulations and their market value as cosmetic skincare products are also explored. Full article
(This article belongs to the Section Cosmetic Formulations)
Show Figures

Figure 1

18 pages, 7067 KiB  
Article
Lipid Nanoparticle Formulations for the Skin Delivery of Cannabidiol
by Maria Natalia Calienni, Mirian Ana Scavone, Ana Paula Sanguinetti, Merlina Corleto, Magalí Rocío Di Meglio, Pablo Raies, Diego Sebastián Cristos, Paulo César Maffia and Jorge Montanari
Pharmaceutics 2024, 16(12), 1490; https://doi.org/10.3390/pharmaceutics16121490 - 21 Nov 2024
Cited by 1 | Viewed by 1684
Abstract
Background/Objectives: The aims of this work were to formulate cannabidiol in different lipid carriers for skin delivery after topical application and to study their stability, interaction with the skin, and antibacterial activity. Methods: Solid lipid nanoparticles and nanostructured lipid carriers loaded with cannabidiol [...] Read more.
Background/Objectives: The aims of this work were to formulate cannabidiol in different lipid carriers for skin delivery after topical application and to study their stability, interaction with the skin, and antibacterial activity. Methods: Solid lipid nanoparticles and nanostructured lipid carriers loaded with cannabidiol were prepared and characterized in terms of their physicochemical properties, colloidal stability, protection of the antioxidant capacity of cannabidiol, as well as their retention over time. Skin penetration was assessed using an in vitro model with human skin. The antibacterial activity was tested against Staphylococcus aureus and compared to free cannabidiol. Results: Three nanoformulations exhibited the best size and reproducibility values and were selected for further studies. The formulations were stable, protected the active ingredient, succeeded in delivering it to deep skin layers, and demonstrated antibacterial activity. Conclusions: These cannabidiol nanoformulations show potential for use in skin diseases and conditions, as they protect the active ingredient, enhance its delivery to the skin, and exhibit antibacterial effects. Full article
(This article belongs to the Special Issue Topical Drug Delivery: Current Status and Perspectives)
Show Figures

Figure 1

26 pages, 5605 KiB  
Article
Ocimum basilicum and Lagenaria siceraria Loaded Lignin Nanoparticles as Versatile Antioxidant, Immune Modulatory, Anti-Efflux, and Antimicrobial Agents for Combating Multidrug-Resistant Bacteria and Fungi
by Lamiaa A. El-Samahy, Yasmine H. Tartor, Adel Abdelkhalek, Ioan Pet, Mirela Ahmadi and Sameh M. El-Nabtity
Antioxidants 2024, 13(7), 865; https://doi.org/10.3390/antiox13070865 - 19 Jul 2024
Cited by 3 | Viewed by 1987
Abstract
Lignin nanoparticles emerged as a promising alternative for drug delivery systems owing to their biodegradability and bioactive properties. This study investigated the antimicrobial activity of the ethanolic extract of Ocimum basilicum-loaded lignin nanoparticles (OB-LNPs) and Lagenaria siceraria seed oil-loaded lignin nanoparticles (LS-LNPs) [...] Read more.
Lignin nanoparticles emerged as a promising alternative for drug delivery systems owing to their biodegradability and bioactive properties. This study investigated the antimicrobial activity of the ethanolic extract of Ocimum basilicum-loaded lignin nanoparticles (OB-LNPs) and Lagenaria siceraria seed oil-loaded lignin nanoparticles (LS-LNPs) to find a solution for antimicrobial resistance. OB-LNPs and LS-LNPs were tested for their antimicrobial potential against Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae, Staphylococcus aureus, Salmonella enterica, Trichophyton mentagrophytes, Trichophyton rubrum, and Microsporum canis. OB-LNPs and LS-LNPs were further tested for their anti-efflux activity against ciprofloxacin-resistant Salmonella enterica strains and for treating Salmonella infection in a rat model. We also investigated the antifungal efficacy of OB-LNPs and LS-LNPs for treating T. rubrum infection in a guinea pig model. Both OB-LNPs and LS-LNPs showed strong antimicrobial potential against S. Typhimurium and T. rubrum infections. LS-LNPs showed antibacterial activity against Salmonella enterica species with a MIC range of 0.5–4 µg/mL and antifungal activity against T. rubrum with a MIC range of 0.125–1 µg/mL. OB-LNPs showed antibacterial activity against Salmonella enterica species with a MIC range of 0.5–2 µg/mL and antifungal activity against T. rubrum with a MIC range of 0.25–2 µg/mL. OB-LNPs and LS-LNPs downregulated the expression of ramA and acrB efflux pump genes (fold change values ranged from 0.2989 to 0.5434; 0.4601 to 0.4730 for ramA and 0.3842–0.6199; 0.5035–0.8351 for acrB). Oral administration of OB-LNPs and LS-LNPs in combination with ciprofloxacin had a significant effect on all blood parameters, as well as on liver and kidney function parameters. Oxidative stress mediators, total antioxidant capacity, and malondialdehyde were abolished by oral administration of OB-LNPs and LS-LNPs (0.5 mL/rat once daily for 5 days). Interferon-γ and tumor necrosis factor-α were also reduced in comparison with the positive control group and the ciprofloxacin-treated group. Histopathological examination of the liver and intestine of OB-LNPs and LS-LNPs-treated rats revealed an elevation in Salmonella clearance. Treatment of T. rubrum-infected guinea pigs with OB-LNPs and LS-LNPs topically in combination with itraconazole resulted in a reduction in lesion scores, microscopy, and culture results. In conclusion, OB-LNPs and LS-LNPs possess immunomodulatory and antioxidant potential and can be used as naturally derived nanoparticles for drug delivery and treatment of Salmonellosis and dermatophytosis infections. Full article
Show Figures

Figure 1

Back to TopTop