Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = tire–rim slip

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
7 pages, 2262 KiB  
Proceeding Paper
Winter-Safe Slip Prevention Rim for E-Scooter: Design to Production Lifecycle Analysis
by Afia Rasool, Guru Ratan Satsangee, Leander Arickswamy, Muhammad Mohsin Ashfaq and Rafiq Ahmad
Eng. Proc. 2024, 76(1), 88; https://doi.org/10.3390/engproc2024076088 - 22 Nov 2024
Viewed by 551
Abstract
Electric scooters (e-scooters) are becoming popular for short-distance urban transportation since they prioritize environmental sustainability. To enhance the rider’s safety in Alberta’s winter weather, this study entails incorporating real-time posture identification, tire pressure, and slip traction monitoring in e-scooters. This is achieved by [...] Read more.
Electric scooters (e-scooters) are becoming popular for short-distance urban transportation since they prioritize environmental sustainability. To enhance the rider’s safety in Alberta’s winter weather, this study entails incorporating real-time posture identification, tire pressure, and slip traction monitoring in e-scooters. This is achieved by deploying sensors from traction control and tire pressure monitoring systems into the rims of e-scooters. The suggested rim’s 3D CAD models, its whole manufacturing cycle, and a simulation-based production layout study are discussed in detail. The manufacturing process simulations reveal bottlenecks, followed by proposed optimizations exhibiting enhanced efficiency, and minimized waiting times. Full article
Show Figures

Figure 1

11 pages, 4322 KiB  
Article
Estimation of Tire Side-Slip Angles Based on the Frequency Domain Lateral Acceleration Characteristics Inside Tires
by Yu Tang, Liang Tao, Yuanqiang Li, Dashan Zhang and Xiaolong Zhang
Machines 2024, 12(4), 229; https://doi.org/10.3390/machines12040229 - 29 Mar 2024
Cited by 5 | Viewed by 2290
Abstract
The identification and control of tire side slip angle is the key to vehicle stability control. Intelligent tire technology based on the sensing of side-slip acceleration inside the tire provides a novel method for estimating the tire side-slip angle. This study proposed a [...] Read more.
The identification and control of tire side slip angle is the key to vehicle stability control. Intelligent tire technology based on the sensing of side-slip acceleration inside the tire provides a novel method for estimating the tire side-slip angle. This study proposed a method to estimate the tire side-slip angle by using the frequency domain lateral acceleration of the tire. First, an intelligent tire testing system was constructed by independently developing a special rim assembly and data collector. A three-axis accelerometer was placed on the right side of the tire, and the acceleration value was acquired by using a wired method with a sampling frequency of 50 kHz. Second, based on the constructed test system, a tire side deflection test was carried out on the Flat Trac bench. Through data analysis, it was found that the lateral acceleration was in the frequency domain of 400 Hz. As the side-slip angle increased from −4° to 4°, the vibration amplitude gradually decreased. Moreover, the vibration amplitude within 0.5~2 kHz was highly correlated with the side-slip angle. Subsequently, the vibration amplitude of the lateral acceleration within 2 kHz was extracted at an interval of 20 Hz as the feature point, and a frequency domain data set FDAy3 was established together with the vertical load and tire pressure. Finally, the support vector machine (SVM) algorithm was employed to make predictions on the data set. The grid search method was utilized to find the optimal parameter values of the model penalty factor c and radial basis kernel function coefficient g, which were 1.4142 and 0.0884, respectively. The results suggested that the root mean square error of the model prediction was 0.0806°, and the maximum estimated angle deviation of the prediction was 0.4587°. Meanwhile, the optimal prediction accuracy and real-time performance were achieved when the number of feature points and the feature frequency band were 25 and within 500 Hz, respectively. The findings of this study confirm that it is feasible to estimate the tire side-slip angle based on the frequency domain lateral acceleration of the tire, which provides a new method for tire side-slip angle estimation. Full article
(This article belongs to the Topic Vehicle Dynamics and Control)
Show Figures

Figure 1

13 pages, 2455 KiB  
Article
Modelling of Truck Tire–Rim Slip on Sandy Loam Using Advanced Computational Techniques
by William Collings, Zeinab El-Sayegh, Jing Ren and Moustafa El-Gindy
Geotechnics 2024, 4(1), 229-241; https://doi.org/10.3390/geotechnics4010012 - 25 Feb 2024
Viewed by 1400
Abstract
Vehicles often experience low tire pressures and high torques in off-road operations, making tire–rim slip likely. Tire–rim slip is undesirable relative rotation between the tire and rim, which, in this study, is measured by the relative tire–rim slip rate. There is little research [...] Read more.
Vehicles often experience low tire pressures and high torques in off-road operations, making tire–rim slip likely. Tire–rim slip is undesirable relative rotation between the tire and rim, which, in this study, is measured by the relative tire–rim slip rate. There is little research on the effect of different terrains on tire–rim slip despite its significance for off-road driving; therefore, this topic was explored through Finite Element Analysis (FEA) simulations. An upland sandy loam soil was modelled and calibrated using Smoothed-Particle Hydrodynamics (SPH), and then a Regional Haul Drive (RHD) truck tire was simulated driving over this terrain, with a drawbar load added to increase drive torque. To examine their effects, five parameters were changed: tire–rim friction coefficient, longitudinal wheel speed, drawbar load, vertical load, and inflation pressure. The simulations showed that increasing the tire–rim friction coefficient and the inflation pressure decreased the tire–rim slip while increasing the vertical and drawbar loads increased the tire–rim slip. Varying the longitudinal wheel speed had no significant effect. Tire–rim slip was more likely to occur on the soil because it happened at lower drawbar loads on the soil than on the hard surface. These research results increased knowledge of tire–rim slip mechanics and provided a foundation for exploring tire–rim slip on other terrains, such as clays or sands. Full article
(This article belongs to the Special Issue Recent Advances in Geotechnical Engineering (2nd Edition))
Show Figures

Figure 1

19 pages, 3523 KiB  
Article
Modeling and Validation of a Passenger Car Tire Using Finite Element Analysis
by Haniyeh Fathi, Zeinab El-Sayegh, Jing Ren and Moustafa El-Gindy
Vehicles 2024, 6(1), 384-402; https://doi.org/10.3390/vehicles6010016 - 9 Feb 2024
Cited by 15 | Viewed by 4727
Abstract
This paper focuses on the modeling and analysis of a four-groove passenger car tire, size 235/55R19, using finite element analysis. The Mooney–Rivlin material model is employed to define the hyperelastic behavior of the tire rubber compounds for all solid elements. The tire rim [...] Read more.
This paper focuses on the modeling and analysis of a four-groove passenger car tire, size 235/55R19, using finite element analysis. The Mooney–Rivlin material model is employed to define the hyperelastic behavior of the tire rubber compounds for all solid elements. The tire rim is modeled as a rigid body using aluminum alloy material, and the beads are modeled as beam elements using steel material. The tire model is validated in both static and dynamic domains through several simulations and is compared to published measured data. The tire is validated using footprint and vertical stiffness tests in the static domain. In the static footprint test, a steady-state vertical load is applied, and the tire–road contact area is computed. In the vertical stiffness test, a ramp vertical load is applied, and the tire’s vertical displacement is measured to calculate the tire’s vertical stiffness. In the dynamic domain, the tire is validated using drum-cleat and cornering tests. In the drum-cleat test, a drum with a 2.5 m diameter and a cleat with a 15 mm radius is used to excite the tire structure and obtain the frequency of the vertical and longitudinal first modes of vibration, that is, by applying the fast Fourier transformation (FFT) of the vertical and longitudinal reaction forces at the tire center. In addition to this test, the tire model is pre-steered on a flat surface with a two-degree slip angle and subjected to a steady state linear speed of 10 km/h to predict the cornering force and compute the cornering stiffness. In addition, the effect of tire longitudinal speed on the rolling resistance coefficient is then predicted at zero slip angle using the ISO 28580 rolling resistance test. The findings of this research work provide insights into passenger car tire–road interaction analysis and will be further used to perform tire rubber compound material model sensitivity analysis. Full article
(This article belongs to the Topic Vehicle Dynamics and Control)
Show Figures

Figure 1

17 pages, 6012 KiB  
Article
An Advancement in Truck-Tire–Road Interaction Using the Finite Element Analysis
by Haniyeh Fathi, Mehran Khosravi, Zeinab El-Sayegh and Moustafa El-Gindy
Mathematics 2023, 11(11), 2462; https://doi.org/10.3390/math11112462 - 26 May 2023
Cited by 11 | Viewed by 3031
Abstract
This paper aimed to investigate the cornering characteristics of a Regional Haul Steer II, RHS 315/80 R22.5 truck tire traveling on a dry, hard surface using the Finite element analysis (FEA). This research was carried out using commercial Finite Element software and Pam-Crash [...] Read more.
This paper aimed to investigate the cornering characteristics of a Regional Haul Steer II, RHS 315/80 R22.5 truck tire traveling on a dry, hard surface using the Finite element analysis (FEA). This research was carried out using commercial Finite Element software and Pam-Crash in an Explicit Environment. A finite element truck tire model was developed to apply the tire terrain cornering condition. The concentrated loads and boundary conditions for the rim and wheel were applied to the model. The rubber material was defined using the Mooney–Rivlin model. The truck tire cornering operating conditions, including three different speeds with respect to various positive slip angles, were investigated. Several simulations were repeated at various operating conditions, including three different inflation pressures and three different vertical loads. Subsequently, the tire lateral force was computed using the local and global frame coordinates. Additionally, the self-aligning moment was extracted from the tire cross-section at each operating condition. Finally, a comparison between the simulation results showed that the tire lateral force was highly sensitive to the variation of the slip angles at the higher domain, and also that the tire inflation pressure, regardless of the speed, was considered to be one of the main parameters directly affecting the tire-cornering properties. Full article
(This article belongs to the Special Issue Nonlinear Vibration Theory and Mechanical Dynamics)
Show Figures

Figure 1

13 pages, 6583 KiB  
Article
Optimization of Apex Shape for Mounting to the Bead Bundle Using FEM
by Peter Palička, Róbert Huňady, Martin Hagara and Pavol Lengvarský
Materials 2023, 16(1), 377; https://doi.org/10.3390/ma16010377 - 30 Dec 2022
Cited by 2 | Viewed by 2752
Abstract
Tires are one of the most basic and important components of vehicles, including bicycles, cars, trucks, and aircraft. They consist of several layers that provide complex and dynamically changing functions. This work aims to optimize the mounting process of the tire apex to [...] Read more.
Tires are one of the most basic and important components of vehicles, including bicycles, cars, trucks, and aircraft. They consist of several layers that provide complex and dynamically changing functions. This work aims to optimize the mounting process of the tire apex to the bead. The bead locks the tire to the rim and helps minimize the risk of rim slip, and the apex provides dynamic stiffness, stress distribution, and driving stability. In mounting the apex onto the bead, air can be trapped between the apex and bead, which is an undesirable and significant problem in tire manufacturing. An FE model was created to simulate and optimize this process. After modifying the apex dimensions, the air was displaced from the space between the apex and the bead. Based on the simulation results, a set of recommendations for producing suitable apex shapes is provided. Full article
(This article belongs to the Special Issue Modern Numerical and Experimental Methods for Mechanics of Material)
Show Figures

Figure 1

Back to TopTop