Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = three-dimensional (3D-LC) separation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2259 KiB  
Article
Charge Variants Characterization of Co-Formulated Antibodies by Three-Dimensional Liquid Chromatography–Mass Spectrometry
by Xiaoqing Jin, Luna Chen, Jianlin Chu and Bingfang He
Biomolecules 2024, 14(8), 999; https://doi.org/10.3390/biom14080999 - 13 Aug 2024
Viewed by 1365
Abstract
Co-formulated antibodies can bring clinical benefits to patients by combining two or more antibodies in a single dosage form. However, the quality analysis of co-formulated antibodies raises additional challenges, compared to individual antibodies, due to the need for accurate analysis of multiple antibodies [...] Read more.
Co-formulated antibodies can bring clinical benefits to patients by combining two or more antibodies in a single dosage form. However, the quality analysis of co-formulated antibodies raises additional challenges, compared to individual antibodies, due to the need for accurate analysis of multiple antibodies in one solution. It is extremely difficult to effectively separate the charge variants of the two co-formulated antibodies using one ion exchange chromatography (IEC) method because of their similar characteristics. In this study, a novel method was developed for the charge variants characterization of co-formulated antibodies using three-dimensional liquid chromatography–mass spectrometry (3D-LC-MS). Hydrophobic interaction chromatography (HIC) was used as the first dimension to separate and collect the two co-formulated antibodies. The two collections were then injected into the second-dimension IEC separately for charge variants separation and analysis. Subsequently, the separated charge variants underwent on-line desalting in the third-dimension reverse-phase chromatography (RPC) and subsequent mass spectroscopy analysis. The novel method could simultaneously provide a charge variants ratio and post-translational modification (PTM) data for the two co-formulated antibodies. Therefore, it could be used for release testing and stability studies of co-formulated antibodies, making up for the shortcomings of the existing approaches. It was the first time that charge variants of co-formulated antibodies were characterized by the 3D-LC-MS method, to the best of our knowledge. Full article
Show Figures

Figure 1

9 pages, 962 KiB  
Article
Two-Dimensional Thin-Layer Chromatography as an Accessible, Low-Cost Tool for Lipid-Class Profile Screening
by Zipora Tietel
Separations 2024, 11(6), 161; https://doi.org/10.3390/separations11060161 - 23 May 2024
Cited by 2 | Viewed by 2906
Abstract
The interest in lipid composition profiling is significantly increasing as research reveals the immense importance of lipids in medicine, plant science, food and agriculture. However, lipidomic analysis requires high-end specialty equipment. We used two-dimensional thin-layer chromatography (2D-TLC) as a readily available, low-cost tool [...] Read more.
The interest in lipid composition profiling is significantly increasing as research reveals the immense importance of lipids in medicine, plant science, food and agriculture. However, lipidomic analysis requires high-end specialty equipment. We used two-dimensional thin-layer chromatography (2D-TLC) as a readily available, low-cost tool for basic lipidomic profiling of lipid classes in algal samples in the models Chlamydomonas reinhardtii, Auxenochlorella protothecoides, and Euglena gracilis, validating lipid class identification using an LC-MS/MS analysis. Algal lipid extracts were separated on a 2D-TLC plate, and TLC analysis was followed by scraping individual TLC spots off the plate, and a subsequent liquid chromatography separation and tandem mass spectrometry (LC-MS/MS) analysis. For comparison, crude lipid extracts were also injected directly to the LC-MS/MS system. Lipid class annotation was achieved by a combination of accurate mass, retention time information, neutral loss and fragment ion analysis by MS2Analyzer, and by matching spectra to LipidBlast MS/MS library. Overall, we were able to identify 15 lipid classes, and to adequately profile the lipid classes in all three organisms. This TLC method is thus suggested as an accessible tool for lipid class profiling of algal, plant, and food lipids, alike, when a rapid and simple analysis is required, e.g., for screening purposes. Full article
(This article belongs to the Special Issue Chromatography for the Separation and Detection of Metabolites)
Show Figures

Figure 1

25 pages, 5194 KiB  
Article
Multi-Dimensional Liquid Chromatography of Pulse Triacylglycerols with Triple Parallel Mass Spectrometry
by William C. Byrdwell and Hari Kiran Kotapati
Separations 2023, 10(12), 594; https://doi.org/10.3390/separations10120594 - 5 Dec 2023
Cited by 1 | Viewed by 2449
Abstract
We analyzed ten pulses (the dried seeds of legumes), i.e., baby lima beans, black beans, black-eyed peas, butter beans, cranberry beans, garbanzo beans, green split peas, lentils, navy beans, and pinto beans, using three-dimensional liquid chromatography (3D-LC) with parallel second dimensions, LC × [...] Read more.
We analyzed ten pulses (the dried seeds of legumes), i.e., baby lima beans, black beans, black-eyed peas, butter beans, cranberry beans, garbanzo beans, green split peas, lentils, navy beans, and pinto beans, using three-dimensional liquid chromatography (3D-LC) with parallel second dimensions, LC × (LC + LC). We combined non-aqueous reversed-phase (NARP) chromatography as the first dimension separation, 1D, with argentation UHPLC for separation based on degree and location of unsaturation in the first second dimension, 2D(1), and multi-cycle NARP-UHPLC in the second second dimension, 2D(2). Pulses contained 1.9% to 2.7% lipids, except garbanzo beans, which contained 6.2% lipids. High-resolution, accurate-mass (HRAM) orbitrap mass spectrometry (MS) was used to perform lipidomic analysis of the 2D(2) and percent relative quantification, showing that the most abundant average triacylglycerol (TAG) molecular species across all pulses were PLL at 10.67% and PLLn at 10.45%. Common beans (Phaseolus vulgaris) were clustered together using principal component analysis (PCA), showing the highest levels of linolenic acid, C18:3, in molecular species such as PLnLn, LLnLn, and OLLn, with palmitic (P), C16:0, linoleic (L), 18:2, linolenic (Ln), 18:3, and oleic (O), 18:1, FAs. Calibration curves derived from interweaved sets of regioisomer standards allowed the absolute quantification of 1,2- and 1,3-regioisomers for a subset of TAGs. Full article
Show Figures

Graphical abstract

19 pages, 3457 KiB  
Article
Proteomic Profiling of Emiliania huxleyi Using a Three-Dimensional Separation Method Combined with Tandem Mass Spectrometry
by Goyeun Yun, Jong-Moon Park, Van-An Duong, Jeong-Hun Mok, Jongho Jeon, Onyou Nam, Joonwon Lee, EonSeon Jin and Hookeun Lee
Molecules 2020, 25(13), 3028; https://doi.org/10.3390/molecules25133028 - 2 Jul 2020
Cited by 9 | Viewed by 4222
Abstract
Emiliania huxleyi is one of the most abundant marine planktons, and it has a crucial feature in the carbon cycle. However, proteomic analyses of Emiliania huxleyi have not been done extensively. In this study, a three-dimensional liquid chromatography (3D-LC) system consisting of strong [...] Read more.
Emiliania huxleyi is one of the most abundant marine planktons, and it has a crucial feature in the carbon cycle. However, proteomic analyses of Emiliania huxleyi have not been done extensively. In this study, a three-dimensional liquid chromatography (3D-LC) system consisting of strong cation exchange, high- and low-pH reversed-phase liquid chromatography was established for in-depth proteomic profiling of Emiliania huxleyi. From tryptic proteome digest, 70 fractions were generated and analyzed using liquid chromatography-tandem mass spectrometry. In total, more than 84,000 unique peptides and 10,000 proteins groups were identified with a false discovery rate of ≤0.01. The physicochemical properties of the identified peptides were evaluated. Using ClueGO, approximately 700 gene ontology terms and 15 pathways were defined from the identified protein groups with p-value ≤0.05, covering a wide range of biological processes, cellular components, and molecular functions. Many biological processes associated with CO2 fixation, photosynthesis, biosynthesis, and metabolic process were identified. Various molecular functions relating to protein binding and enzyme activities were also found. The 3D-LC strategy is a powerful approach for comparative proteomic studies on Emiliania huxleyi to reveal changes in its protein level and related mechanism. Full article
(This article belongs to the Special Issue Advancements in Analytical Techniques for Proteomics)
Show Figures

Graphical abstract

12 pages, 3182 KiB  
Article
Bicontinuous Cubic and Hexagonal Columnar Liquid Crystalline Ion-Conductors at Room Temperature in Ion-Doped Dendritic Amphiphiles
by Thi Huyen Do, Ho-Joong Kim, Manh Linh Nguyen and Byoung-Ki Cho
Crystals 2020, 10(3), 193; https://doi.org/10.3390/cryst10030193 - 11 Mar 2020
Cited by 11 | Viewed by 4528
Abstract
A bicontinuous cubic (Cubbi) liquid crystalline (LC) phase consisting of three dimensional (3D) conducting networks is a promising structural platform for ion-conductors. For practical applications using this fascinating LC structure, it is necessary to suppress crystallization at room temperature (RT). Herein, [...] Read more.
A bicontinuous cubic (Cubbi) liquid crystalline (LC) phase consisting of three dimensional (3D) conducting networks is a promising structural platform for ion-conductors. For practical applications using this fascinating LC structure, it is necessary to suppress crystallization at room temperature (RT). Herein, we report the Cubbi structure at RT and the morphology–dependent conduction behavior in ionic samples of a non-crystallizable dendritic amphiphile. In the molecular design, branched alkyl chains were used as an ionophobic part instead of crystallizable linear alkyl chains. Two ionic samples with Cubbi and hexagonal columnar (Colhex) LC phases at RT were prepared by adding different amounts of lithium salt to the amphiphile. Impedance analysis demonstrated that the Cubbi phase contributed to the faster ion-conduction to a larger extent than the Colhex phase due to the 3D ionic networks of the Cubbi phase. In addition, the temperature–dependent impedance and electric modulus data provided information regarding the phase transition from microphase-separated phase to molecularly mixed liquid phase. Full article
(This article belongs to the Special Issue Liquid-Crystalline Ion Conductors)
Show Figures

Figure 1

19 pages, 1394 KiB  
Review
Review of Three-Dimensional Liquid Chromatography Platforms for Bottom-Up Proteomics
by Van-An Duong, Jong-Moon Park and Hookeun Lee
Int. J. Mol. Sci. 2020, 21(4), 1524; https://doi.org/10.3390/ijms21041524 - 23 Feb 2020
Cited by 67 | Viewed by 7418
Abstract
Proteomics is a large-scale study of proteins, aiming at the description and characterization of all expressed proteins in biological systems. The expressed proteins are typically highly complex and large in abundance range. To fulfill high accuracy and sensitivity of proteome analysis, the hybrid [...] Read more.
Proteomics is a large-scale study of proteins, aiming at the description and characterization of all expressed proteins in biological systems. The expressed proteins are typically highly complex and large in abundance range. To fulfill high accuracy and sensitivity of proteome analysis, the hybrid platforms of multidimensional (MD) separations and mass spectrometry have provided the most powerful solution. Multidimensional separations provide enhanced peak capacity and reduce sample complexity, which enables mass spectrometry to analyze more proteins with high sensitivity. Although two-dimensional (2D) separations have been widely used since the early period of proteomics, three-dimensional (3D) separation was barely used by low reproducibility of separation, increased analysis time in mass spectrometry. With developments of novel microscale techniques such as nano-UPLC and improvements of mass spectrometry, the 3D separation becomes a reliable and practical selection. This review summarizes existing offline and online 3D-LC platforms developed for proteomics and their applications. In detail, setups and implementation of those systems as well as their advances are outlined. The performance of those platforms is also discussed and compared with the state-of-the-art 2D-LC. In addition, we provide some perspectives on the future developments and applications of 3D-LC in proteomics. Full article
(This article belongs to the Special Issue Advances in Proteomic Research)
Show Figures

Figure 1

25 pages, 8192 KiB  
Article
Characterization of Danaparoid Complex Extractive Drug by an Orthogonal Analytical Approach
by Cristina Gardini, Elena Urso, Marco Guerrini, René Van Herpen, Pauline De Wit and Annamaria Naggi
Molecules 2017, 22(7), 1116; https://doi.org/10.3390/molecules22071116 - 5 Jul 2017
Cited by 13 | Viewed by 6830
Abstract
Danaparoid sodium salt, is the active component of ORGARAN, an anticoagulant and antithrombotic drug constituted of three glycosaminoglycans (GAGs) obtained from porcine intestinal mucosa extracts. Heparan sulfate is the major component, dermatan sulfate and chondroitin sulfate being the minor ones. Currently dermatan sulfate [...] Read more.
Danaparoid sodium salt, is the active component of ORGARAN, an anticoagulant and antithrombotic drug constituted of three glycosaminoglycans (GAGs) obtained from porcine intestinal mucosa extracts. Heparan sulfate is the major component, dermatan sulfate and chondroitin sulfate being the minor ones. Currently dermatan sulfate and chondroitin sulfate are quantified by UV detection of their unsaturated disaccharides obtained by enzymatic depolymerization. Due to the complexity of danaparoid biopolymers and the presence of shared components, an orthogonal approach has been applied using more advanced tools and methods. To integrate the analytical profile, 2D heteronuclear single quantum coherence (HSQC) NMR spectroscopy was applied and found effective to identify and quantify GAG component signals as well as those of some process signatures of danaparoid active pharmaceutical ingredient (API) batches. Analyses of components of both API samples and size separated fractions proceeded through the determination and distribution of the molecular weight (Mw) by high performance size exclusion chromatographic triple detector array (HP-SEC-TDA), chain mapping by LC/MS, and mono- (1H and 13C) and bi-dimensional (HSQC) NMR spectroscopy. Finally, large scale chromatographic isolation and depolymerization of each GAG followed by LC/MS and 2D-NMR analysis, allowed the sequences to be defined and components to be evaluated of each GAG including oxidized residues of hexosamines and uronic acids at the reducing ends. Full article
Show Figures

Figure 1

17 pages, 1682 KiB  
Article
Using UPLC-MS/MS for Characterization of Active Components in Extracts of Yupingfeng and Application to a Comparative Pharmacokinetic Study in Rat Plasma after Oral Administration
by Meng-Qi Jia, Ye-Juan Xiong, Yun Xue, Yan Wang and Chao Yan
Molecules 2017, 22(5), 810; https://doi.org/10.3390/molecules22050810 - 17 May 2017
Cited by 27 | Viewed by 6050
Abstract
Yupingfeng (YPF), a famous traditional Chinese medicine, which contains a large array of compounds, has been effectually used in health protection. A two-dimensional liquid chromatography (2D-LC) combined with quadrupole time-of-flight mass spectrometry (QTOF-MS) method was firstly established to separate and identify [...] Read more.
Yupingfeng (YPF), a famous traditional Chinese medicine, which contains a large array of compounds, has been effectually used in health protection. A two-dimensional liquid chromatography (2D-LC) combined with quadrupole time-of-flight mass spectrometry (QTOF-MS) method was firstly established to separate and identify chemical components in YPF. A total of 33 compounds were identified, including 15 constituents (flavonoids and saponins) in Astragali radix; seven constituents (sesquiterpenoids and polysaccharide) in Atractylodis rhizoma; and 11 constituents (chromone and coumarins) in Saposhnikoviae radix. The corresponding fragmentation pathway of typical substances was investigated. Then, seven active constituents (astragaloside, calycosin, formononetin, cimicifugoside, 4-O-beta-d-glucosyl-5-O-methylvisamminol, sec-O-glucosylhamaudol, and atractylenolide II) derived from three medicinal plants were chosen to further investigate the pharmacokinetic behavior of YPF formula using ultrahigh-performance liquid chromatography with triple quadrupole mass spectrometry system. The method was sensitive, accurate and reliable. We also used the area under the plasma concentration–time curve from zero to infinity (AUC0−∞) as weighting factor to make an integrated pharmacokinetic curve. Results show that the constituents of Saposhnikoviae radix have the best absorption and pharmacokinetic behavior and may play important role in leading to the changes of overall therapeutic effects of YPF. Further study is needed to confirm the association between them. Full article
Show Figures

Figure 1

26 pages, 880 KiB  
Article
Flowering as the Most Highly Sensitive Period of Grapevine (Vitis vinifera L. cv Mourvèdre) to the Botryosphaeria Dieback Agents Neofusicoccum parvum and Diplodia seriata Infection
by Alessandro Spagnolo, Philippe Larignon, Maryline Magnin-Robert, Agnès Hovasse, Clara Cilindre, Alain Van Dorsselaer, Christophe Clément, Christine Schaeffer-Reiss and Florence Fontaine
Int. J. Mol. Sci. 2014, 15(6), 9644-9669; https://doi.org/10.3390/ijms15069644 - 30 May 2014
Cited by 33 | Viewed by 10662
Abstract
Botryosphaeria dieback is a fungal grapevine trunk disease that currently represents a threat for viticulture worldwide because of the important economical losses due to reduced yield of affected plants and their premature death. Neofusicoccum parvum and Diplodia seriata are among the causal agents. [...] Read more.
Botryosphaeria dieback is a fungal grapevine trunk disease that currently represents a threat for viticulture worldwide because of the important economical losses due to reduced yield of affected plants and their premature death. Neofusicoccum parvum and Diplodia seriata are among the causal agents. Vine green stems were artificially infected with N. parvum or D. seriata at the onset of three different phenological stages (G stage (separated clusters), flowering and veraison). Highest mean lesion lengths were recorded at flowering. Major proteome changes associated to artificial infections during the three different phenological stages were also reported using two dimensional gel electrophoresis (2D)-based analysis. Twenty (G stage), 15 (flowering) and 13 (veraison) differentially expressed protein spots were subjected to nanoLC-MS/MS and a total of 247, 54 and 25 proteins were respectively identified. At flowering, a weaker response to the infection was likely activated as compared to the other stages, and some defense-related proteins were even down regulated (e.g., superoxide dismutase, major latex-like protein, and pathogenesis related protein 10). Globally, the flowering period seemed to represent the period of highest sensitivity of grapevine to Botryosphaeria dieback agent infection, possibly being related to the high metabolic activity in the inflorescences. Full article
(This article belongs to the Special Issue Advances in Proteomic Research)
Show Figures

Figure 1

Back to TopTop