Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (69)

Search Parameters:
Keywords = thermo-relaxation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1108 KiB  
Article
Three-Phase-Lag Effect on Rayleigh Waves in a Generalized Thermoelastic Diffusion Medium with Modified Couple Stress
by Emad K. Jaradat, Sayed M. Abo-Dahab, Rajneesh Kumar and Eslam S. Elidy
Crystals 2025, 15(7), 588; https://doi.org/10.3390/cryst15070588 - 22 Jun 2025
Viewed by 327
Abstract
This study examines the behavior of Rayleigh waves propagating through a homogeneous, isotropic material, analyzed using a three-phase-lag thermoelastic diffusion framework enhanced by modified couple stress theory. The mathematical model integrates coupled thermoelastic and diffusive effects, incorporating phase-lags associated with (1) temperature gradients, [...] Read more.
This study examines the behavior of Rayleigh waves propagating through a homogeneous, isotropic material, analyzed using a three-phase-lag thermoelastic diffusion framework enhanced by modified couple stress theory. The mathematical model integrates coupled thermoelastic and diffusive effects, incorporating phase-lags associated with (1) temperature gradients, (2) heat flux, and (3) thermal displacement gradients. By solving the derived governing equations analytically subject to stress-free, thermally insulated, and impermeable boundary conditions, we obtain the characteristic secular equation for Rayleigh wave propagation. Numerical simulations conducted on a copper medium evaluate how the secular equation’s determinant, wave velocity, and attenuation coefficient vary with angular frequency. The analysis focuses particularly on the influence of phase-lag parameters, including thermal and diffusion gradients and relaxation times. Results demonstrated that increasing the displacement gradient phase-lag elevated the secular determinant but reduced wave velocity and attenuation, while temperature gradient phase-lags exhibited the opposite trend. The study highlights the sensitivity of Rayleigh wave propagation to thermo-diffusive coupling and microstructural effects, offering insights applicable to seismic wave analysis, geophysical exploration, and material processing. Comparisons with prior theories underscore the model’s advancement in capturing size-dependent and memory-dependent phenomena. Full article
Show Figures

Figure 1

22 pages, 5617 KiB  
Article
Numerical Modeling of Micro-Mechanical Residual Stresses in Carbon–Epoxy Composites During the Curing Process
by Raffaele Verde, Alberto D’Amore and Luigi Grassia
Polymers 2025, 17(12), 1674; https://doi.org/10.3390/polym17121674 - 17 Jun 2025
Viewed by 366
Abstract
This article analyzes the residual stresses generated during the curing process of thermoset composites. Specifically, a numerical procedure is developed and implemented in Ansys 18.0 to evaluate, at the micromechanical level, the residual stresses in a carbon epoxy composite that undergoes the process [...] Read more.
This article analyzes the residual stresses generated during the curing process of thermoset composites. Specifically, a numerical procedure is developed and implemented in Ansys 18.0 to evaluate, at the micromechanical level, the residual stresses in a carbon epoxy composite that undergoes the process of curing. The viscoelastic behavior of the epoxy material is modeled using a formulation recently published by the same authors. It accounts for the concurrent effect of curing and structural relaxation on epoxy’s relaxation times, assuming thermo-rheological and thermo-chemical simplicities. The model validated for the neat epoxy matrix is now tested against the composite application. Various representative volume element (RVE) arrangements and fiber fractions are examined. The proposed procedure can predict the evolution of mechanical properties (apparent stiffness and creep compliance) and the residual stresses that develop in each composite constituent during the cure. It demonstrates that the residual stresses in the matrix are a consistent fraction of an epoxy’s nominal strength and significantly influence the transverse mechanical properties of the composite. Full article
(This article belongs to the Special Issue Epoxy Polymers and Composites)
Show Figures

Figure 1

26 pages, 19703 KiB  
Article
Thermo-Mechanical Properties of Cis-1,4-Polyisoprene: Influence of Temperature and Strain Rate on Mechanical Properties by Molecular Dynamic Simulations
by Tannaz Alamfard and Cornelia Breitkopf
Polymers 2025, 17(9), 1179; https://doi.org/10.3390/polym17091179 - 26 Apr 2025
Viewed by 902
Abstract
Cis-1,4-polyisoprene is a widely used elastomer that demonstrates particular thermal and mechanical characteristics, in which the latter is influenced by temperature and strain rate. Molecular dynamic simulations were used to obtain thermal conductivities, glass transition temperatures (Tg), and tensile deformation. [...] Read more.
Cis-1,4-polyisoprene is a widely used elastomer that demonstrates particular thermal and mechanical characteristics, in which the latter is influenced by temperature and strain rate. Molecular dynamic simulations were used to obtain thermal conductivities, glass transition temperatures (Tg), and tensile deformation. Thermal conductivities were calculated by applying the Green–Kubo method, and a decrease in thermal conductivity was observed with increasing temperature. Density–temperature relations were used to calculate Tg, which indicates the transition from the glassy to the rubbery state of the material, and this temperature influences mechanical properties. Investigation of the mechanical properties under uniaxial tensile deformation for constant strain rates indicates an increase in the stiffness and strength of the material at lower temperatures, while increasing molecular mobility at higher temperatures results in reducing these properties. The influence of strain rates at constant temperature highlighted the viscoelastic nature of the structure; increasing strain rates resulted in increases in stiffness, strength, elongation at maximum strength, and elongation at break because of restricted molecular relaxation time. The united-atom force field contributes to higher computational efficiency, which is suitable for large-scale simulations. These results provide important information on the thermo-mechanical properties and tunability of cis-1,4-polyisoprene, which supports applications in the production of interactive fiber rubber composites. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

16 pages, 7457 KiB  
Article
Stress Determination by IHD in Additively Manufactured Austenitic Steel Samples: A Validation Study
by João Paulo Nobre, Maria José Marques and António Castanhola Batista
Metals 2025, 15(5), 485; https://doi.org/10.3390/met15050485 - 25 Apr 2025
Viewed by 376
Abstract
The present work aims to verify whether the incremental hole-drilling technique (IHD), a widely accepted technique, is suitable for determining residual stresses in AISI 316L samples obtained by selective laser melting (SLM). The thermo-mechanical effects of cutting during the application of this technique [...] Read more.
The present work aims to verify whether the incremental hole-drilling technique (IHD), a widely accepted technique, is suitable for determining residual stresses in AISI 316L samples obtained by selective laser melting (SLM). The thermo-mechanical effects of cutting during the application of this technique can induce unwanted residual stresses due to the relatively low thermal conductivity of this material, leading to erroneous results. To accomplish this aim, a hybrid experimental-numerical method was implemented to analyze the ability of IHD to determine an imposed stress state. Experimentally, samples were subjected to a tensile calibration stress using a horizontal tensile test machine. To eliminate pre-existing residual stress, the samples were subjected to differential loads, instead of absolute ones. In this way, experimental strain-depth relaxation curves related to the imposed calibration stress were obtained. Based on the experimental data, IHD was numerically simulated using the finite element method. Numerical strain-depth relaxation curves, related to the same calibration stress used in the experimental study, were obtained. The comparison between the experimental and numerical strain-depth relaxation curves, as well as the stresses calculated using the so-called integral method for determining stresses via IHD, shows that IHD is a suitable technique for measuring residual stresses in additively manufactured AISI 316L samples. Full article
Show Figures

Graphical abstract

54 pages, 1932 KiB  
Article
Fokker–Planck Model-Based Central Moment Lattice Boltzmann Method for Effective Simulations of Thermal Convective Flows
by William Schupbach and Kannan Premnath
Energies 2025, 18(8), 1890; https://doi.org/10.3390/en18081890 - 8 Apr 2025
Viewed by 425
Abstract
The Fokker–Planck (FP) equation represents the drift and diffusive processes in kinetic models. It can also be regarded as a model for the collision integral of the Boltzmann-type equation to represent thermo-hydrodynamic processes in fluids. The lattice Boltzmann method (LBM) is a drastically [...] Read more.
The Fokker–Planck (FP) equation represents the drift and diffusive processes in kinetic models. It can also be regarded as a model for the collision integral of the Boltzmann-type equation to represent thermo-hydrodynamic processes in fluids. The lattice Boltzmann method (LBM) is a drastically simplified discretization of the Boltzmann equation for simulating complex fluid motions and beyond. We construct new two FP-based LBMs, one for recovering the Navier–Stokes equations for fluid dynamics and the other for simulating the energy equation, where, in each case, the effect of collisions is represented as relaxations of different central moments to their respective attractors. Such attractors are obtained by matching the changes in various discrete central moments due to collision with the continuous central moments prescribed by the FP model. As such, the resulting central moment attractors depend on the lower-order moments and the diffusion tensor parameters, and significantly differ from those based on the Maxwell distribution. The diffusion tensor parameters for evolving higher moments in simulating fluid motions at relatively low viscosities are chosen based on a renormalization principle. Moreover, since the number of collision invariants of the FP-based LBMs for fluid motions and energy transport are different, the forms of the respective attractors are quite distinct. The use of such central moment formulations in modeling the collision step offers significant improvements in numerical stability, especially for simulations of thermal convective flows under a wide range of variations in the transport coefficients of the fluid. We develop new FP central moment LBMs for thermo-hydrodynamics in both two and three dimensions, and demonstrate the ability of our approach to simulate various cases involving thermal convective buoyancy-driven flows especially at high Rayleigh numbers with good quantitative accuracy. Moreover, we show significant improvements in the numerical stability of our FP central moment LBMs when compared to other existing central moment LBMs using the Maxwell distribution in achieving high Peclet numbers for mixed convection flows involving shear effects. Full article
(This article belongs to the Special Issue Numerical Heat Transfer and Fluid Flow 2024)
Show Figures

Figure 1

15 pages, 3596 KiB  
Article
Structural and Dynamic Properties of Flame-Retardant Phosphorylated-Polycarbonate/Polycarbonate Blends
by Wissawat Sakulsaknimitr, Chompunut Wongsamut and Pornpen Atorngitjawat
Int. J. Mol. Sci. 2025, 26(7), 3241; https://doi.org/10.3390/ijms26073241 - 31 Mar 2025
Viewed by 604
Abstract
The eco-friendly flame retardancy of polycarbonate (PC) was achieved by blending with phosphorylated-PC in the range of 1–5% w/w. Dynamic properties were characterized using broadband dielectric relaxation spectroscopy (DRS), while structural and thermal properties were investigated using Fourier transform infrared spectroscopy, wide-angle X-ray [...] Read more.
The eco-friendly flame retardancy of polycarbonate (PC) was achieved by blending with phosphorylated-PC in the range of 1–5% w/w. Dynamic properties were characterized using broadband dielectric relaxation spectroscopy (DRS), while structural and thermal properties were investigated using Fourier transform infrared spectroscopy, wide-angle X-ray diffraction, small-angle X-ray scattering, differential scanning calorimetry, and thermogravimetric analysis. A reduction in the single glass transition temperature with increasing phosphorylated-PC content was observed, indicating that the blends were miscible. No crystalline phases were detected in any of the samples. The thermo-oxidative stability and UL-94 ratings of flame-retardant polycarbonates (FRPCs) improved compared to neat PC, with char residue increasing as the phosphorylated-PC content rose. DRS analysis revealed the formation of a well-defined local (β) relaxation in the FRPC samples, originating from the motion of phosphorylated branches. All samples exhibited the segmental (α) relaxation of PC chains above the glass transition temperature. The size of the cooperatively rearranging domain played a significant role in the dynamic fragility of the rigid FRPCs. Additionally, DRS analysis highlighted the presence of physical crosslinks from nanoclusters of phosphorylated polar groups, approximately 14 nm in size. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Figure 1

19 pages, 2058 KiB  
Article
A Compact Device Model for a Piezoelectric Nano-Transistor
by L. Neil McCartney, Louise E. Crocker, Louise Wright and Ivan Rungger
Micromachines 2025, 16(2), 114; https://doi.org/10.3390/mi16020114 - 21 Jan 2025
Viewed by 802
Abstract
An approximate compact model was developed to provide a convenient method of exploring the initial design space when investigating the performance of micro-electronic devices such as nano-scaled piezoelectronic transistors, where fast ball-park estimates can be very helpful. First of all, the compact model [...] Read more.
An approximate compact model was developed to provide a convenient method of exploring the initial design space when investigating the performance of micro-electronic devices such as nano-scaled piezoelectronic transistors, where fast ball-park estimates can be very helpful. First of all, the compact model was verified by comparing its predictions with those of accurate axi-symmetric finite element analysis (FEA) using special boundary and interface conditions that enable the replication of the analytical model behaviour. Verification is achieved for a radio frequency (RF) switch and a smaller very-large-scale integrated (VLSI) device, where percentage differences between the compact and FEA model predictions are of the order 10−4 for the RF switch and 10−5 for the VLSI device. This confirms the consistency of complex property data (especially electro-thermo-elastic constants) and geometrical parameter input to both types of models and convincingly demonstrates that the analytical models and FEA for the two devices have been implemented correctly. A second type of boundary and interface condition is also used that is designed to replicate the actual behaviour of the devices in practice. The boundary and interface constraints applied for the verification procedure are relaxed so that there is perfect interface bonding between layers. For this unconstrained case, the resulting deformation is very complex, involving both bending effects and edge effects arising from property mismatches between neighbouring layers. The results for the RF switch show surprisingly good agreement between the predictions of the analytical and FEA results, provided the thickness of the piezoelectric layer is not too thick, implying that the analytical model should help to reduce the parameter design space for such devices. However, for the VLSI device, our results indicate that the compact model leads to much larger errors. For such systems, the compact model is unlikely to be able to reliably reduce the parameter design space, implying that accurate FEA will then need to be used. Full article
(This article belongs to the Special Issue Piezoelectric Devices and System in Micromachines)
Show Figures

Figure 1

16 pages, 22059 KiB  
Article
Influence of Scanning Strategy on Residual Stresses in Laser-Based Powder Bed Fusion Manufactured Alloy 718: Modeling and Experiments
by Carl-Johan Hassila, Andreas Malmelöv, Carl Andersson, Johan Hektor, Martin Fisk, Andreas Lundbäck and Urban Wiklund
Materials 2024, 17(24), 6265; https://doi.org/10.3390/ma17246265 - 21 Dec 2024
Viewed by 1150
Abstract
In additive manufacturing, the presence of residual stresses in produced parts is a well-recognized phenomenon. These residual stresses not only elevate the risk of crack formation but also impose limitations on in-service performance. Moreover, it can distort printed parts if released, or in [...] Read more.
In additive manufacturing, the presence of residual stresses in produced parts is a well-recognized phenomenon. These residual stresses not only elevate the risk of crack formation but also impose limitations on in-service performance. Moreover, it can distort printed parts if released, or in the worst case even cause a build to fail due to collision with the powder scraper. This study introduces a thermo-mechanical finite element model designed to predict the impact of various scanning strategies in order to mitigate the aforementioned unwanted outcomes. The investigation focuses on the deformation and residual stresses of two geometries manufactured by laser-based powder bed fusion (PBF-LB). To account for relaxation effects during the process, a mechanism-based material model has been implemented and used. Additionally, a purely mechanical model, based on the inherent strain method, has been calibrated to account for different scanning strategies. To assess the predicted residual stresses, high-energy synchrotron measurements have been used to obtain values for comparison. The predictions of the models are evaluated, and their accuracy is discussed in terms of the physical aspects of the PBF-LB process. Both the thermo-mechanical models and the inherent strain method capture the trend of experimentally measured residual stress fields. While deformations are also adequately captured, there is an overall underprediction of their magnitude. This work contributes to advancing our understanding of the thermo-mechanical behavior in PBF-LB and provides valuable insights for optimizing scanning strategies in additive manufacturing processes. Full article
(This article belongs to the Special Issue Current and Future Trends in Additive Manufacturing)
Show Figures

Figure 1

13 pages, 3048 KiB  
Article
Thermal Quenching of Intrinsic Photoluminescence in Amorphous and Monoclinic HfO2 Nanotubes
by Artem Shilov, Sergey Savchenko, Alexander Vokhmintsev, Kanat Zhusupov and Ilya Weinstein
Materials 2024, 17(22), 5587; https://doi.org/10.3390/ma17225587 - 15 Nov 2024
Cited by 1 | Viewed by 861
Abstract
Nanotubular hafnia arrays hold significant promise for advanced opto- and nanoelectronic applications. However, the known studies concern mostly the luminescent properties of doped HfO2-based nanostructures, while the optical properties of nominally pure hafnia with optically active centers of intrinsic origin are [...] Read more.
Nanotubular hafnia arrays hold significant promise for advanced opto- and nanoelectronic applications. However, the known studies concern mostly the luminescent properties of doped HfO2-based nanostructures, while the optical properties of nominally pure hafnia with optically active centers of intrinsic origin are far from being sufficiently investigated. In this work, for the first time we have conducted research on the wide-range temperature effects in the photoluminescence processes of anion-defective hafnia nanotubes with an amorphous and monoclinic structure, synthesized by the electrochemical oxidation method. It is shown that the spectral parameters, such as the position of the maximum and half-width of the band, remain almost unchanged in the range of 7–296 K. The experimental data obtained for the photoluminescence temperature quenching are quantitatively analyzed under the assumption made for two independent channels of non-radiative relaxation of excitations with calculating the appropriate energies of activation barriers—9 and 39 meV for amorphous hafnia nanotubes, 15 and 141 meV for monoclinic ones. The similar temperature behavior of photoluminescence spectra indicates close values of short-range order parameters in the local atomic surrounding of the active emission centers in hafnium dioxide with amorphous and monoclinic structure. Anion vacancies VO and VO2 appeared in the positions of three-coordinated oxygen and could be the main contributors to the spectral features of emission response and observed thermally stimulated processes. The recognized and clarified mechanisms occurring during thermal quenching of photoluminescence could be useful for the development of light-emitting devices and thermo-optical sensors with functional media based on oxygen-deficient hafnia nanotubes. Full article
(This article belongs to the Special Issue Advances in Luminescent Materials)
Show Figures

Graphical abstract

21 pages, 8119 KiB  
Article
Updates on an Even More Compact Precision NMR Spectrometer and a Wider Range V-T Probe, for General Purpose NMR and for NMR Cryoporometric Nano- to Micro-Pore Measurements
by John Beausire Wyatt Webber
Micro 2024, 4(3), 509-529; https://doi.org/10.3390/micro4030032 - 13 Sep 2024
Cited by 1 | Viewed by 1514
Abstract
There is an increasing need for compact low-cost NMR apparatus that can be used on the laboratory bench and in the field. There are four main usage variants of usage: (a) time-domain apparatus, particularly for physical measurements; (b) frequency-domain apparatus, particularly for chemical [...] Read more.
There is an increasing need for compact low-cost NMR apparatus that can be used on the laboratory bench and in the field. There are four main usage variants of usage: (a) time-domain apparatus, particularly for physical measurements; (b) frequency-domain apparatus, particularly for chemical analysis, (c) NMR Cryoporometry apparatus for measuring pore-size distributions; and (d) MRI apparatus for imaging. For all of these, variable temperature capability may be vital. We have developed compact low-cost apparatus targeted at these applications. We discuss a hand-held NMR Spectrometer, and three different holdable NMR magnets, with sufficiently large internal bores for the Lab-Tools compact Peltier thermo-electric cooled variable-temperature probes. Currently, the NMR Spectrometer is very suitable for (a) NMR time-domain relaxation and (c) NMR Cryoporometry. With a suitable high-homogeneity magnet, it is also appropriate for simple use (b), spectral analysis, or, with a suitable gradient set, (d) MRI. Together, the NMR Spectrometer, one of the NMR variable-temperature probes, and any of these NMR magnets make excellent NMR Cryoporometers, as demonstrated by this paper and previously published research. Equally, they make versatile general-purpose variable-temperature NMR systems for materials science. Full article
(This article belongs to the Section Analysis Methods and Instruments)
Show Figures

Figure 1

15 pages, 9151 KiB  
Article
Investigating Enhanced Microwave Absorption of CNTs@Nd0.15-BaM/PE Plate via Low-Temperature Sintering and High-Energy Ball Milling
by Chengying Wang, Xiaohua Feng, Chengwu Yu, Lixia Zhang, Shengguo Zhou, Yi Liu, Jing Huang and Hua Li
Materials 2024, 17(14), 3433; https://doi.org/10.3390/ma17143433 - 11 Jul 2024
Cited by 1 | Viewed by 1133
Abstract
Composite plates comprising a blend of rare earth neodymium-(Nd) doped M-type barium ferrite (BaM) with CNTs (carbon nanotubes) and polyethylene WERE synthesized through a self-propagating reaction and hot-pressing treatment. The plates’ microscopic characteristics were analyzed utilizing X-ray diffraction (XRD), Fourier transform infrared spectrophotometry [...] Read more.
Composite plates comprising a blend of rare earth neodymium-(Nd) doped M-type barium ferrite (BaM) with CNTs (carbon nanotubes) and polyethylene WERE synthesized through a self-propagating reaction and hot-pressing treatment. The plates’ microscopic characteristics were analyzed utilizing X-ray diffraction (XRD), Fourier transform infrared spectrophotometry (FTIR), thermo–gravimetric analysis (TGA), Raman, and scanning electron microscopy (SEM) analytical techniques. Their microwave absorption performance within the frequency range of 8.2 to 18 GHz was assessed using a vector network analyzer. It showed that CNTs formed a conductive network on the surface of the Nd-BaM absorber, significantly enhancing absorption performance and widening the absorption bandwidth. Furthermore, dielectric polarization relaxation was investigated using the Debye theory, analyzing the Cole–Cole semicircle. It was observed that the sample exhibiting the best absorbing performance displayed the most semicircles, indicating that the dielectric polarization relaxation phenomenon can increase the dielectric relaxation loss of the sample. These findings provide valuable data support for the lightweight preparation of BaM-based absorbing materials. Full article
Show Figures

Figure 1

18 pages, 6423 KiB  
Article
A Numerical Model to Predict the Relaxation Phenomena in Thermoset Polymers and Their Effects on Residual Stress during Curing—Part I: A Theoretical Formulation and Numerical Evaluation of Relaxation Phenomena
by Raffaele Verde, Alberto D’Amore and Luigi Grassia
Polymers 2024, 16(10), 1433; https://doi.org/10.3390/polym16101433 - 18 May 2024
Cited by 3 | Viewed by 1718
Abstract
This paper analyzes the effect of crosslinking reactions on a thermoset polymer’s viscoelastic properties. In particular, a numerical model to predict the evolution of epoxy’s mechanical properties during the curing process is proposed and implemented in an Ansys APDL environment. A linear viscoelastic [...] Read more.
This paper analyzes the effect of crosslinking reactions on a thermoset polymer’s viscoelastic properties. In particular, a numerical model to predict the evolution of epoxy’s mechanical properties during the curing process is proposed and implemented in an Ansys APDL environment. A linear viscoelastic behavior is assumed, and the scaling of viscoelastic properties in terms of the temperature and degree of conversion is modeled using a modified version of the TNM (Tool–Narayanaswamy–Mohynian) model. The effects of the degree of conversion and structural relaxation on epoxy’s relaxation times are simultaneously examined for the first time. This formulation is based on the thermo-rheological and chemo-rheological simplicities hypothesis and can predict the evolution of epoxy’s relaxation phenomena. The thermal–kinetic reactions of curing are implemented in a homemade routine written in APDL language, and the structural module of Ansys is used to predict the polymer’s creep and stress relaxation curves at different temperatures and degrees of conversion. Full article
(This article belongs to the Special Issue Relaxation Phenomena in Polymers)
Show Figures

Figure 1

23 pages, 2677 KiB  
Article
A Spontaneous In Situ Thiol-Ene Crosslinking Hydrogel with Thermo-Responsive Mechanical Properties
by Andreas Aerts, Maxim Vovchenko, Seyed Ali Elahi, Rocío Castro Viñuelas, Tess De Maeseneer, Martin Purino, Richard Hoogenboom, Hans Van Oosterwyck, Ilse Jonkers, Ruth Cardinaels and Mario Smet
Polymers 2024, 16(9), 1264; https://doi.org/10.3390/polym16091264 - 1 May 2024
Cited by 2 | Viewed by 2732
Abstract
The thermo-responsive behavior of Poly(N-isopropylacrylamide) makes it an ideal candidate to easily embed cells and allows the polymer mixture to be injected. However, P(NiPAAm) hydrogels possess minor mechanical properties. To increase the mechanical properties, a covalent bond is introduced into the P(NIPAAm) network [...] Read more.
The thermo-responsive behavior of Poly(N-isopropylacrylamide) makes it an ideal candidate to easily embed cells and allows the polymer mixture to be injected. However, P(NiPAAm) hydrogels possess minor mechanical properties. To increase the mechanical properties, a covalent bond is introduced into the P(NIPAAm) network through a biocompatible thiol-ene click-reaction by mixing two polymer solutions. Co-polymers with variable thiol or acrylate groups to thermo-responsive co-monomer ratios, ranging from 1% to 10%, were synthesized. Precise control of the crosslink density allowed customization of the hydrogel’s mechanical properties to match different tissue stiffness levels. Increasing the temperature of the hydrogel above its transition temperature of 31 °C induced the formation of additional physical interactions. These additional interactions both further increased the stiffness of the material and impacted its relaxation behavior. The developed optimized hydrogels reach stiffnesses more than ten times higher compared to the state of the art using similar polymers. Furthermore, when adding cells to the precursor polymer solutions, homogeneous thermo-responsive hydrogels with good cell viability were created upon mixing. In future work, the influence of the mechanical micro-environment on the cell’s behavior can be studied in vitro in a continuous manner by changing the incubation temperature. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

22 pages, 3215 KiB  
Article
Thermo-Structural Characterization of Phase Transitions in Amorphous Griseofulvin: From Sub-Tg Relaxation and Crystal Growth to High-Temperature Decomposition
by Roman Svoboda and Kateřina Kozlová
Molecules 2024, 29(7), 1516; https://doi.org/10.3390/molecules29071516 - 28 Mar 2024
Cited by 7 | Viewed by 1334
Abstract
The processes of structural relaxation, crystal growth, and thermal decomposition were studied for amorphous griseofulvin (GSF) by means of thermo-analytical, microscopic, spectroscopic, and diffraction techniques. The activation energy of ~395 kJ·mol−1 can be attributed to the structural relaxation motions described in terms [...] Read more.
The processes of structural relaxation, crystal growth, and thermal decomposition were studied for amorphous griseofulvin (GSF) by means of thermo-analytical, microscopic, spectroscopic, and diffraction techniques. The activation energy of ~395 kJ·mol−1 can be attributed to the structural relaxation motions described in terms of the Tool–Narayanaswamy–Moynihan model. Whereas the bulk amorphous GSF is very stable, the presence of mechanical defects and micro-cracks results in partial crystallization initiated by the transition from the glassy to the under-cooled liquid state (at ~80 °C). A key aspect of this crystal growth mode is the presence of a sufficiently nucleated vicinity of the disrupted amorphous phase; the crystal growth itself is a rate-determining step. The main macroscopic (calorimetrically observed) crystallization process occurs in amorphous GSF at 115–135 °C. In both cases, the common polymorph I is dominantly formed. Whereas the macroscopic crystallization of coarse GSF powder exhibits similar activation energy (~235 kJ·mol−1) as that of microscopically observed growth in bulk material, the activation energy of the fine GSF powder macroscopic crystallization gradually changes (as temperature and/or heating rate increase) from the activation energy of microscopic surface growth (~105 kJ·mol−1) to that observed for the growth in bulk GSF. The macroscopic crystal growth kinetics can be accurately described in terms of the complex mechanism, utilizing two independent autocatalytic Šesták–Berggren processes. Thermal decomposition of GSF proceeds identically in N2 and in air atmospheres with the activation energy of ~105 kJ·mol−1. The coincidence of the GSF melting temperature and the onset of decomposition (both at 200 °C) indicates that evaporation may initiate or compete with the decomposition process. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

14 pages, 4076 KiB  
Article
Effect of Thermal Aging on Viscoelastic Behavior of Thermosetting Polymers under Mechanical and Cyclic Temperature Impact
by Maxim Mishnev, Alexander Korolev and Alexander Zadorin
Polymers 2024, 16(3), 391; https://doi.org/10.3390/polym16030391 - 31 Jan 2024
Cited by 3 | Viewed by 1910
Abstract
Development of load-bearing fiber reinforced plastic (hereinafter referred to as FRP) composite structures in civil engineering, exploited under high temperatures, such as industrial chimneys and gas ducts, requires the knowledge of their long-term behavior under constant and cyclic mechanical and temperature loads. Such [...] Read more.
Development of load-bearing fiber reinforced plastic (hereinafter referred to as FRP) composite structures in civil engineering, exploited under high temperatures, such as industrial chimneys and gas ducts, requires the knowledge of their long-term behavior under constant and cyclic mechanical and temperature loads. Such conditions mean that the viscoelasticity of FRP should be considered along with the thermal aging effect. This research is devoted to the effects of thermal aging on the viscoelastic behavior of polymers. Two sets of experiments were conducted: creep tensile tests and cyclic heating in a constrained state. The Kelvin–Voigt viscoelasticity model was used to determine the rheological parameters of binder from experimental creep curves. Cyclic heating was used to compare the behavior of normal and thermally aged binders and to evaluate the possibility of temperature stress accumulation. Fourier-transform infrared spectroscopy was used for polymer’s structural changes investigation. Both tests showed that non-aged glassed polymer (hereinafter referred to as GP) was prone to viscoelastic behavior, while the thermally aged GP lost viscosity and worked almost perfectly elastic. It was assumed that long heat treatment had caused changes in the inner structure of the GP, reducing the number of weak bonds and increasing the number of elastic ones. Therefore, the results show that the designing of FRP structures, exploited under thermomechanical load, requires using the elastic model while taking into account the properties of FRP after long-term heat treatment. Full article
(This article belongs to the Special Issue Study of the Mechanical and Rheological Behavior of Polymer Materials)
Show Figures

Figure 1

Back to TopTop