Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (84)

Search Parameters:
Keywords = thermo-elastic characteristics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7240 KB  
Article
Finite Element Simulation of Thermal Sliding Friction and Wear in an FGPM-Coated Half-Plane
by Lingfeng Gao, Jing Liu, Jiajia Mao and Kaiwen Xiao
Mathematics 2025, 13(21), 3414; https://doi.org/10.3390/math13213414 - 27 Oct 2025
Viewed by 199
Abstract
This study investigates the thermoelastic frictional contact and wear behavior during reciprocating sliding of a conductive cylindrical punch on a functionally graded piezoelectric material (FGPM)-coated half-plane. The thermo-electro-elastic properties of the coating vary continuously along the thickness direction according to arbitrary gradient functions, [...] Read more.
This study investigates the thermoelastic frictional contact and wear behavior during reciprocating sliding of a conductive cylindrical punch on a functionally graded piezoelectric material (FGPM)-coated half-plane. The thermo-electro-elastic properties of the coating vary continuously along the thickness direction according to arbitrary gradient functions, with thermal parameters being temperature-dependence. A theoretical framework for the coupled thermo-electro-elastic frictional contact problem is developed and solved using the finite element method. A sequential coupling approach is employed to integrate thermoelastic frictional contact with piezoelectric effects. Furthermore, wear on the coating surface is modeled using an improved Archard formulation, accounting for its impact on thermal sliding frictional contact characteristics. Numerical simulations examine the influence of wear, cycle number, friction coefficient, gradient index and gradient form on the coupled thermo-electro-elastic response of the FGPM coating structure. The numerical results demonstrate the gradient index and gradient form can effectively mitigate thermo-electrical contact-induced damage and reduce friction and wear in piezoelectric materials. Full article
Show Figures

Figure 1

19 pages, 1856 KB  
Article
Multiscale Texture Fractal Analysis of Thermo-Mechanical Coupling in Micro-Asperity Contact Interfaces
by Jiafu Ruan, Xigui Wang, Yongmei Wang and Weiqiang Zou
Symmetry 2025, 17(11), 1799; https://doi.org/10.3390/sym17111799 - 25 Oct 2025
Viewed by 238
Abstract
The line contact behavior of multiscale meshing interfaces necessitates synergistic investigation spanning nano-to centimeter-scale ranges. When nominally smooth gear teeth surfaces come into contact, the mechanical–thermal coupling effect at the meshing interface actually occurs over a collection of microscale asperities (roughness peaks) exhibiting [...] Read more.
The line contact behavior of multiscale meshing interfaces necessitates synergistic investigation spanning nano-to centimeter-scale ranges. When nominally smooth gear teeth surfaces come into contact, the mechanical–thermal coupling effect at the meshing interface actually occurs over a collection of microscale asperities (roughness peaks) exhibiting hierarchical distribution characteristics. The emergent deformation phenomena across multiple asperity scales govern the self-organized evolution of interface conformity, thereby regulating both the load transfer efficiency and thermal transport properties within the contact zone. The fractal nature of the roughness topography on actual meshing interfaces calls for the development of a cross-scale theoretical framework that integrates micro-texture optimization with multi-physics coupling contact behavior. Conventional roughness characterization methods based on statistical parameters suffer from inherent limitations: their parameter values are highly dependent on measurement scale, lacking uniqueness under varying sampling intervals and instrument resolutions, and failing to capture the scale-invariant nature of meshing interface topography. A scale-independent parameter system grounded in fractal geometry theory enables essential feature extraction and quantitative characterization of three-dimensional interface morphology. This study establishes a progressive deformation theory for gear line contact interfaces with fractal geometric characteristics, encompassing elastic, elastoplastic transition, and perfectly plastic stages. By systematically investigating the force–thermal coupling mechanisms in textured meshing interfaces under multiscale conditions, the research provides a theoretical foundation and numerical implementation pathways for high-precision multiscale thermo-mechanical analysis of meshing interfaces. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

23 pages, 4885 KB  
Article
Nonlinear Aero-Thermo-Elastic Analysis of Laminated Composite Beams with Surface-Bonded FGMs Layers Subjected to a Concentrated Harmonic Load
by Mehdi Alimoradzadeh, Francesco Tornabene and Rossana Dimitri
J. Compos. Sci. 2025, 9(10), 539; https://doi.org/10.3390/jcs9100539 - 2 Oct 2025
Viewed by 458
Abstract
In this study, the nonlinear forced vibration response of fiber-reinforced laminated composite beams coated with functionally graded materials (FGMs) is investigated under the combined action of aero-thermoelastic loads and a concentrated harmonic excitation. The mathematical formulation is established using the Euler–Bernoulli beam theory, [...] Read more.
In this study, the nonlinear forced vibration response of fiber-reinforced laminated composite beams coated with functionally graded materials (FGMs) is investigated under the combined action of aero-thermoelastic loads and a concentrated harmonic excitation. The mathematical formulation is established using the Euler–Bernoulli beam theory, where von Kármán geometric nonlinearities are taken into account, along with the modified third-order piston theory to represent aerodynamic effects. By neglecting axial inertia, the resulting set of nonlinear governing equations is simplified into a single equation. This equation is discretized through the Galerkin procedure, yielding a nonlinear ordinary differential equation. An analytical solution is, then, obtained by applying the method of multiple time scales (MTS). Furthermore, a comprehensive parametric analysis is carried out to evaluate how factors such as the power-law index, stacking sequence, temperature field, load amplitude and position, free-stream velocity, and Mach number influence both the lateral dynamic deflection and the frequency response characteristics (FRCs) of the beams, offering useful guidelines for structural design optimization. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Graphical abstract

49 pages, 9659 KB  
Article
Machine Learning Approach to Nonlinear Fluid-Induced Vibration of Pronged Nanotubes in a Thermal–Magnetic Environment
by Ahmed Yinusa, Ridwan Amokun, John Eke, Gbeminiyi Sobamowo, George Oguntala, Adegboyega Ehinmowo, Faruq Salami, Oluwatosin Osigwe, Adekunle Adelaja, Sunday Ojolo and Mohammed Usman
Vibration 2025, 8(3), 35; https://doi.org/10.3390/vibration8030035 - 27 Jun 2025
Viewed by 892
Abstract
Exploring the dynamics of nonlinear nanofluidic flow-induced vibrations, this work focuses on single-walled branched carbon nanotubes (SWCNTs) operating in a thermal–magnetic environment. Carbon nanotubes (CNTs), renowned for their exceptional strength, conductivity, and flexibility, are modeled using Euler–Bernoulli beam theory alongside Eringen’s nonlocal elasticity [...] Read more.
Exploring the dynamics of nonlinear nanofluidic flow-induced vibrations, this work focuses on single-walled branched carbon nanotubes (SWCNTs) operating in a thermal–magnetic environment. Carbon nanotubes (CNTs), renowned for their exceptional strength, conductivity, and flexibility, are modeled using Euler–Bernoulli beam theory alongside Eringen’s nonlocal elasticity to capture nanoscale effects for varying downstream angles. The intricate interactions between nanofluids and SWCNTs are analyzed using the Differential Transform Method (DTM) and validated through ANSYS simulations, where modal analysis reveals the vibrational characteristics of various geometries. To enhance predictive accuracy and system stability, machine learning algorithms, including XGBoost, CATBoost, Random Forest, and Artificial Neural Networks, are employed, offering a robust comparison for optimizing vibrational and thermo-magnetic performance. Key parameters such as nanotube geometry, magnetic flux density, and fluid flow dynamics are identified as critical to minimizing vibrational noise and improving structural stability. These insights advance applications in energy harvesting, biomedical devices like artificial muscles and nanosensors, and nanoscale fluid control systems. Overall, the study demonstrates the significant advantages of integrating machine learning with physics-based simulations for next-generation nanotechnology solutions. Full article
(This article belongs to the Special Issue Nonlinear Vibration of Mechanical Systems)
Show Figures

Figure 1

18 pages, 1108 KB  
Article
Three-Phase-Lag Effect on Rayleigh Waves in a Generalized Thermoelastic Diffusion Medium with Modified Couple Stress
by Emad K. Jaradat, Sayed M. Abo-Dahab, Rajneesh Kumar and Eslam S. Elidy
Crystals 2025, 15(7), 588; https://doi.org/10.3390/cryst15070588 - 22 Jun 2025
Viewed by 543
Abstract
This study examines the behavior of Rayleigh waves propagating through a homogeneous, isotropic material, analyzed using a three-phase-lag thermoelastic diffusion framework enhanced by modified couple stress theory. The mathematical model integrates coupled thermoelastic and diffusive effects, incorporating phase-lags associated with (1) temperature gradients, [...] Read more.
This study examines the behavior of Rayleigh waves propagating through a homogeneous, isotropic material, analyzed using a three-phase-lag thermoelastic diffusion framework enhanced by modified couple stress theory. The mathematical model integrates coupled thermoelastic and diffusive effects, incorporating phase-lags associated with (1) temperature gradients, (2) heat flux, and (3) thermal displacement gradients. By solving the derived governing equations analytically subject to stress-free, thermally insulated, and impermeable boundary conditions, we obtain the characteristic secular equation for Rayleigh wave propagation. Numerical simulations conducted on a copper medium evaluate how the secular equation’s determinant, wave velocity, and attenuation coefficient vary with angular frequency. The analysis focuses particularly on the influence of phase-lag parameters, including thermal and diffusion gradients and relaxation times. Results demonstrated that increasing the displacement gradient phase-lag elevated the secular determinant but reduced wave velocity and attenuation, while temperature gradient phase-lags exhibited the opposite trend. The study highlights the sensitivity of Rayleigh wave propagation to thermo-diffusive coupling and microstructural effects, offering insights applicable to seismic wave analysis, geophysical exploration, and material processing. Comparisons with prior theories underscore the model’s advancement in capturing size-dependent and memory-dependent phenomena. Full article
Show Figures

Figure 1

30 pages, 13022 KB  
Article
Dynamic Mechanical Characteristics and Fracture Size Effect of Coal Sandstone Under High-Temperature and High-Strain Rate Coupling Action
by Ming Li, Fuqiang Zhu, Yiwen Mao, Fangwei Fan, Boyuan Wu and Jishuo Deng
Fractal Fract. 2025, 9(6), 381; https://doi.org/10.3390/fractalfract9060381 - 15 Jun 2025
Cited by 3 | Viewed by 731
Abstract
The deformation control of surrounding rock in the combustion air zone is crucial for the safety and efficiency of underground coal gasification (UCG) projects. Coal-bearing sandstone, a common surrounding rock in UCG chambers, features a brittle structure composed mainly of quartz, feldspar, and [...] Read more.
The deformation control of surrounding rock in the combustion air zone is crucial for the safety and efficiency of underground coal gasification (UCG) projects. Coal-bearing sandstone, a common surrounding rock in UCG chambers, features a brittle structure composed mainly of quartz, feldspar, and clay minerals. Its mechanical behavior under high-temperature and dynamic loading is complex and significantly affects rock stability. To investigate the deformation and failure mechanisms under thermal–dynamic coupling, this study conducted uniaxial impact compression tests using a high-temperature split Hopkinson pressure bar (HT-SHPB) system. The focus was on analyzing mechanical response, energy dissipation, and fragmentation characteristics under varying temperature and strain rate conditions. The results show that the dynamic elastic modulus, compressive strength, fractal dimension of fragments, energy dissipation density, and energy consumption rate all increase initially with temperature and then decrease, with inflection points observed at 400 °C. Conversely, dynamic peak strain first decreases and then increases with rising temperature, also showing a turning point at 400 °C. This indicates a shift in the deformation and failure mode of the material. The findings provide critical insights into the thermo-mechanical behavior of coal-bearing sandstone under extreme conditions and offer a theoretical basis for designing effective deformation control strategies in underground coal gasification projects. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

16 pages, 5257 KB  
Article
Effects of Driving Current Ripple Fluctuations on the Liquefied Layer of the Armature–Rail Interface in Railguns
by Wen Tian, Gongwei Wang, Ying Zhao, Weikang Zhao, Weiqun Yuan and Ping Yan
Energies 2025, 18(10), 2596; https://doi.org/10.3390/en18102596 - 16 May 2025
Viewed by 489
Abstract
During the electromagnetic launching process, the actual current input into the launcher is obtained by controlling the discharge of the pulsed power supply. Generally, the waveform of the pulse current is determined by the discharge characteristics and discharge time of the pulse power [...] Read more.
During the electromagnetic launching process, the actual current input into the launcher is obtained by controlling the discharge of the pulsed power supply. Generally, the waveform of the pulse current is determined by the discharge characteristics and discharge time of the pulse power supply. Due to the limitation of control accuracy, the driving current is not an ideal trapezoidal wave, but there is a certain fluctuation (current ripple) in the flat top portion of the trapezoidal wave. The fluctuation of the current will affect the thickness of the liquefied layer at the armature–rail interface as well as the magnitude of the contact pressure, thereby inducing instability at the armature–rail interface and generating micro-arcs, which result in a reduction in the service life of the rails within the launcher. Consequently, it is imperative to conduct an in-depth analysis of the influence of current ripple on the liquefied layer during electromagnetic launching. In this paper, a thermoelastic magnetohydrodynamic model is constructed by coupling temperature, stress, and electromagnetic fields, which are predicated on the Reynolds equation of the metal liquefied layer at the armature–rail contact interface. The effects of current fluctuations on the melting rate of the surface of the armature, the thickness of the liquefied layer, and the hydraulic pressure of the liquefied layer under four different current ripple coefficients (RCs) were analyzed. The results show the following: (1) The thickness and the pressure of the liquefied layer at the armature–rail interface fluctuate with the fluctuation of the current, and, the larger the ripple coefficient, the greater the fluctuations in the thickness and pressure of the liquefied layer. (2) The falling edge of the current fluctuation leads to a decrease in the hydraulic pressure of the liquefied layer, which results in the instability of the liquefied layer between the armature and rails. (3) As the ripple coefficient increases, the time taken for the liquefied layer to reach a stable state increases. In addition, a launching experiment was also conducted in this paper, and the results showed that, at the falling edge of the current fluctuation, the liquefied layer is unstable, and a phenomenon such as the ejection of molten armature and transition may occur. The results of the experiment and simulations mutually confirm that the impact of current fluctuations on the armature–rail interface increases with increases in the ripple coefficient. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

26 pages, 8150 KB  
Article
Coefficients of Thermal Expansion in Aligned Carbon Staple Fiber-Reinforced Polymers: Experimental Characterization with Numerical Investigation
by Julian Kupski, Lucian Zweifel, Miriam Preinfalck, Stephan Baz, Mohammad Hajikazemi and Christian Brauner
Polymers 2025, 17(8), 1088; https://doi.org/10.3390/polym17081088 - 17 Apr 2025
Cited by 1 | Viewed by 1331
Abstract
Carbon staple fiber composites are materials reinforced with discrete-length carbon fibers processed using traditional textile technologies, offering moderate mechanical properties and flexibility in manufacturing. These composites can be produced from recycled carbon staple fibers, aligned into yarn and tape-like structures, providing a more [...] Read more.
Carbon staple fiber composites are materials reinforced with discrete-length carbon fibers processed using traditional textile technologies, offering moderate mechanical properties and flexibility in manufacturing. These composites can be produced from recycled carbon staple fibers, aligned into yarn and tape-like structures, providing a more sustainable alternative while balancing performance, cost-effectiveness, and environmental impact. Aligning staple fibers into tape-like structures enables similar applications to those of continuous-fiber-based products, while allowing control over fiber orientation distribution, fiber volume fraction, and length distribution, which are all critical factors influencing both mechanical and thermo-mechanical properties. This study focuses on the experimental characterization and numerical investigation of Coefficients of Thermal Expansion (CTEs) in aligned carbon staple fiber composites. The effects of fiber orientation and volume fraction on coefficients of thermal expansion under different fiber alignment parameters are analyzed, revealing distinct thermal expansion behavior compared to typical aligned unidirectional continuous carbon fiber composite laminates. Unlike continuous unidirectional laminates, which typically exhibit transversely isotropic behavior without tensile–shear coupling, staple fiber composites demonstrate different in-plane axial, transverse, and out-of-plane CTE characteristics. To explain these deviations, a modeling approach is introduced, incorporating detailed experimental information on fiber distributions and microstructural features rather than averaged fiber orientation values. This involves a multi-scale analysis based on a laminate analogy through which all composite thermo-elastic properties can be predicted, accounting for variations in fiber orientations, volume fractions, and tape thicknesses. It is shown that while the local variation of fiber volume fraction has a small effect on the homogenized value of the coefficients of thermal expansion, fiber misalignment, tape thickness, and asymmetry in fiber orientation distribution will significantly affect the measurements of CTEs. For the case of carbon staple fiber composites, the asymmetry in fiber orientation distribution significantly influences the measurements of axial CTE. Fiber orientation asymmetry causes tensile–shear coupling under mechanical and thermal loading, leading to an unbalanced laminate with in-plane shear–tensile deformation. This coupling disrupts uniform displacement, complicating strain measurements and the determination of composite properties. Full article
Show Figures

Figure 1

21 pages, 4005 KB  
Article
A Novel Lightweight Mechanical Metamaterial with a Tunable Thermal Expansion Coefficient
by Zhedong Xie, Bing Tian, Yingbo Li, Chao Zhang, Yuxuan Liu and Hongyu Guo
Materials 2025, 18(8), 1761; https://doi.org/10.3390/ma18081761 - 11 Apr 2025
Viewed by 807
Abstract
In natural materials, thermal expansion is typically positive, and negative thermal expansion is rarely observed. The tunable thermal expansion properties of mechanical metamaterials offer a promising solution to challenges caused by rapid temperature fluctuations. Therefore, this study proposes a dual-material double-trapezoidal hexagonal mechanical [...] Read more.
In natural materials, thermal expansion is typically positive, and negative thermal expansion is rarely observed. The tunable thermal expansion properties of mechanical metamaterials offer a promising solution to challenges caused by rapid temperature fluctuations. Therefore, this study proposes a dual-material double-trapezoidal hexagonal mechanical metamaterial (DTH), and derives the thermoelastic equations that build the relationship between temperature, external force, and displacement. Through theoretical analysis and numerical simulation, the intrinsic mechanism between the CTE and geometric parameters of DTH is revealed. Through the synergistic effect of dual materials and structural design, this metamaterial not only achieves thermal expansion regulation but also enhanced lightweight performance. The results show that by controlling the geometric parameters of DTH, the adjustment of effective CTE and elastic modulus can be realized, and the metamaterial composed of positive CTE materials can achieve a range of thermal expansion behaviors, including near-zero CTE and negative CTE. The tunable thermal expansion range extends from +39.92 ppm/°C to −3640.6191 ppm/°C. The metamaterials proposed in this study are not only superior to traditional materials in terms of thermal expansion performance but also have the characteristics of light weight and simple structure. This multifunctional material achieves higher performance and adaptability in applications. Full article
Show Figures

Figure 1

31 pages, 993 KB  
Article
Integral Representation for Three-Dimensional Steady-State Couple-Stress Size-Dependent Thermoelasticity
by Ali R. Hadjesfandiari, Arezoo Hajesfandiari and Gary F. Dargush
Mathematics 2025, 13(4), 638; https://doi.org/10.3390/math13040638 - 15 Feb 2025
Viewed by 676
Abstract
Boundary element methods provide powerful techniques for the analysis of problems involving coupled multi-physical response. This paper presents the integral equation formulation for the size-dependent thermoelastic response of solids under steady-state conditions in three dimensions. The formulation is based upon consistent couple stress [...] Read more.
Boundary element methods provide powerful techniques for the analysis of problems involving coupled multi-physical response. This paper presents the integral equation formulation for the size-dependent thermoelastic response of solids under steady-state conditions in three dimensions. The formulation is based upon consistent couple stress theory, which features a skew-symmetric couple-stress pseudo-tensor. For general anisotropic thermoelastic material, there is not only thermal strain deformation, but also thermal mean curvature deformation. Interestingly, in this size-dependent multi-physics model, the thermal governing equation is independent of the deformation. However, the mechanical governing equations depend on the temperature field. First, thermal and mechanical weak forms and reciprocal theorems are developed for this theory. Then, an integral equation formulation for three-dimensional size-dependent thermoelastic isotropic materials is derived, along with the corresponding singular infinite-space fundamental solutions or kernel functions. For isotropic materials, there is no thermal mean curvature deformation, and the thermoelastic effect is solely the result of thermal strain deformation. As a result, the size-dependent behavior is specified entirely by a single characteristic length scale parameter l, while the thermal coupling is defined in terms of the thermal expansion coefficient α, as in the classical theory of steady-state isotropic thermoelasticity. Full article
Show Figures

Figure 1

28 pages, 6329 KB  
Article
Analytical and Experimental Research of Lubrication Load-Bearing Characteristics of Microtextured Meshing Interface
by Xigui Wang, Jiafu Ruan, Yongmei Wang and Weiqiang Zou
Materials 2025, 18(4), 845; https://doi.org/10.3390/ma18040845 - 14 Feb 2025
Cited by 5 | Viewed by 681
Abstract
The excellent lubrication and load-bearing synergistic modulation of the meshing interface has been well recognized, as the microtextured tooth surface seems to be a punished area in deep-sea gear thermal elastohydrodynamic lubrication (TEHL). This is mainly because of the traditional perception of the [...] Read more.
The excellent lubrication and load-bearing synergistic modulation of the meshing interface has been well recognized, as the microtextured tooth surface seems to be a punished area in deep-sea gear thermal elastohydrodynamic lubrication (TEHL). This is mainly because of the traditional perception of the anti-scuffing load-bearing capacity (ASLBC) and the similarity of the interfacial microelement configurations. Microtextured contact can be applied to the meshing interface to adjust the time-varying TEHL characteristics and enhance the meshing load-bearing performance. In this study, the analytical homogeneous equivalent micro-hydrodynamic contact multiscale parameters are determined, and the dispersed micro-flow real distribution area of the texturing interface is indicated, revealing the TEHL friction characteristics of the rolling–sliding line contact microelement, which is regarded as a bridge connecting the micro-dynamic pressure discrete contact friction behavior and the TEHL textured interface meshed-gear load-bearing. The contact model mentioned theoretically predicts the evolutionary time-varying characteristics of the micro-thermoelastic lubrication behavior of the textured contact interface under hydrodynamic conditions and demonstrates that the microtextured configuration parameters of the molecular scale meshing interface are the most influential structural parameters for the load-bearing problem of the homogeneous flow pressure film layer between the gear pair tooth surfaces, especially for deep-sea gear meshing load-bearing reliability under limited lubrication space. Full article
Show Figures

Figure 1

17 pages, 7807 KB  
Article
Methodological Impact on Curing Kinetics of Bone Cement Based on Poly (Styrene-co-Methyl Methacrylate)–2D Nanofiller Nanocomposites
by Mohan Raj Krishnan and Edreese Housni Alsharaeh
Polymers 2025, 17(1), 116; https://doi.org/10.3390/polym17010116 - 5 Jan 2025
Cited by 1 | Viewed by 1214
Abstract
Herein, we report the methodological impact on the curing kinetics of bone cement based on polymer nanocomposites prepared using different methods. Poly (styrene-co-methylmethacrylate)–2D nanofiller nanocomposites (P(S-MMA)–2D Nanofiller) were prepared using bulk and suspension polymerization methods to study the effect of the [...] Read more.
Herein, we report the methodological impact on the curing kinetics of bone cement based on polymer nanocomposites prepared using different methods. Poly (styrene-co-methylmethacrylate)–2D nanofiller nanocomposites (P(S-MMA)–2D Nanofiller) were prepared using bulk and suspension polymerization methods to study the effect of the different methods. The prepared nanocomposites were well-characterized for chemical, thermal, mechanical, and structural characteristics using Fourier Transform Infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), nano-indentation, and scanning electron microscopy (SEM) techniques, respectively. The FT-IR results confirmed the successful formation of the polymer nanocomposites. The DSC results showed that the prepared nanocomposites have higher thermal stabilities than their copolymer counterparts. The nano-indentation results revealed that the elastic modulus of the copolymer nanocomposites (bulk polymerization) was as high as 7.89 GPa, and the hardness was 0.219 GPa. Incorporating the 2D nanofiller in the copolymer matrix synergistically enhances the thermo-mechanical properties of the bone cement samples. The polymer nanocomposites prepared using the suspension polymerization method exhibit faster-curing kinetics (15 min) than those prepared using the bulk polymerization (120–240 min) method. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

15 pages, 5488 KB  
Article
Analysis of Vibration Energy Harvesting Performance of Thermo-Electro-Elastic Microscale Devices Based on Generalized Thermoelasticity
by Ailing He, Tianhu He, Bingdong Gu and Yuan Li
Actuators 2024, 13(12), 533; https://doi.org/10.3390/act13120533 - 23 Dec 2024
Cited by 2 | Viewed by 4408
Abstract
Piezoelectric material structures with an excellent mechatronic coupling property effectively promote self-power energy harvesting in micro-/nano-electro-mechanical systems (MEMS/NEMS). Therein, the characteristics of the microscale and multi-physical aspects effect significant influence on performance, such as attaining a fast response and high power density. It [...] Read more.
Piezoelectric material structures with an excellent mechatronic coupling property effectively promote self-power energy harvesting in micro-/nano-electro-mechanical systems (MEMS/NEMS). Therein, the characteristics of the microscale and multi-physical aspects effect significant influence on performance, such as attaining a fast response and high power density. It is difficult to use the classical mechanical and heat conduction models to effectively explain and analyze microscale physical field coupling behaviors. The purpose of this study is to develop the piezoelectric thermoelastic theoretical model, firstly considering the non-uniform physical field. The generalized equations governing thermo-electro-elastic vibration energy harvesting in a microbeam model were obtained based on Hamilton’s principle and the generalized thermoelastic theory was developed by considering thermopolarization and thermal hysteresis behavior. After that, the explicit expressions for voltage and output power were derived using the assumed-modes method; meanwhile, effects such as the piezo-flexoelectric aspect, size dependence, etc. are discussed in detail. It was found that thermal and microscale effects significantly promote the voltage and output power. The research is also helpful for the design and optimization of self-powered and high-performance micro/nano devices and systems. Full article
(This article belongs to the Section Miniaturized and Micro Actuators)
Show Figures

Figure 1

22 pages, 5925 KB  
Article
Research on Energy Dissipation Mechanism of Cobweb-like Disk Resonator Gyroscope
by Huang Yi, Bo Fan, Feng Bu, Fang Chen and Xiao-Qing Luo
Micromachines 2024, 15(11), 1380; https://doi.org/10.3390/mi15111380 - 15 Nov 2024
Cited by 2 | Viewed by 2268
Abstract
The micro disk resonator gyroscope is a micro-mechanical device with potential for navigation-grade applications, where the performance is significantly influenced by the quality factor, which is determined by various energy dissipation mechanisms within the micro resonant structure. To enhance the quality factor, these [...] Read more.
The micro disk resonator gyroscope is a micro-mechanical device with potential for navigation-grade applications, where the performance is significantly influenced by the quality factor, which is determined by various energy dissipation mechanisms within the micro resonant structure. To enhance the quality factor, these gyroscopes are typically enclosed in high-vacuum packaging. This paper investigates a wafer-level high-vacuum-packaged (<0.1 Pa) cobweb-like disk resonator gyroscope, presenting a systematic and comprehensive theoretical analysis of the energy dissipation mechanisms, including air damping, thermoelastic damping, anchor loss, and other factors. Air damping is analyzed using both a continuous fluid model and an energy transfer model. The analysis results are validated through quality factor testing on batch samples and temperature characteristic testing on individual samples. The theoretical results obtained using the energy transfer model closely match the experimental measurements, with a maximum error in the temperature coefficient of less than 2%. The findings indicate that air damping and thermoelastic damping are the predominant energy dissipation mechanisms in the cobweb-like disk resonant gyroscope under high-vacuum conditions. Consequently, optimizing the resonator to minimize thermoelastic and air damping is crucial for designing high-performance gyroscopes. Full article
(This article belongs to the Special Issue Advances in MEMS Inertial Sensors)
Show Figures

Figure 1

28 pages, 578 KB  
Article
Homogenization of a Thermoelastic Bristly Structure Immersed in a Thermofluid
by Sergey Sazhenkov and Elena Sazhenkova
Axioms 2024, 13(11), 731; https://doi.org/10.3390/axioms13110731 - 22 Oct 2024
Viewed by 772
Abstract
The article considers the mathematical model describing the joint motion of a viscous compressible heat-conducting fluid and a thermoelastic plate with a fine two-level thermoelastic bristly microstructure attached to it. The bristly microstructure consists of a great amount of taller and shorter bristles, [...] Read more.
The article considers the mathematical model describing the joint motion of a viscous compressible heat-conducting fluid and a thermoelastic plate with a fine two-level thermoelastic bristly microstructure attached to it. The bristly microstructure consists of a great amount of taller and shorter bristles, which are periodically located on the surface of the plate, and the model under consideration incorporates a small parameter, which is the ratio of the characteristic lengths of the microstructure and the entire plate. Using classical methods in the theory of partial differential equations, we prove that the initial-boundary value problem for the considered model is well-posed. After this, we fulfill the homogenization procedure, i.e., we pass to the limit as the small parameter tends to zero, and, as a result, we derive the effective macroscopic model in which the dynamics of the interaction of the ‘liquid–bristly structure’ is described by equations of two homogeneous thermoviscoelastic layers with memory effects. The homogenization procedure is rigorously justified by means of the Allaire–Briane three-scale convergence method. The developed effective macroscopic model can potentially find application in further mathematical modeling in biotechnology and bionics taking account of heat transfer. Full article
(This article belongs to the Special Issue Mathematical Modelling of Fluid Dynamics)
Show Figures

Figure 1

Back to TopTop