Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,227)

Search Parameters:
Keywords = thermal-mechanical loadings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3100 KB  
Article
Modification of Octavinyl POSS and Its Effect on the Mechanical Properties and Thermal Stability of Silicone Rubber/POSS Composites
by Junjie Peng and Yong Zhang
Nanomaterials 2025, 15(22), 1706; https://doi.org/10.3390/nano15221706 - 12 Nov 2025
Abstract
Octavinyl polyhedral oligomeric silsesquioxane (POSS) can be used to improve the thermal stability of silicone rubber (SR). However, POSS nanoparticles tend to agglomerate in SR matrix, negatively affecting the reinforcement role of POSS for SR, and consequently limiting the practical application of SR/POSS [...] Read more.
Octavinyl polyhedral oligomeric silsesquioxane (POSS) can be used to improve the thermal stability of silicone rubber (SR). However, POSS nanoparticles tend to agglomerate in SR matrix, negatively affecting the reinforcement role of POSS for SR, and consequently limiting the practical application of SR/POSS composite. To address the issue, multifunctional POSS (m-POSS) was synthesized via a thiol-ene click reaction and used as a novel heat-resistant filler for SR. The results demonstrate that m-POSS containing both vinyl and siloxane groups was successfully synthesized, with the main product exhibiting a molecular weight of approximately 1587 g mol−1. At the POSS loading of 1.5 phr, SR/m-POSS (100/1.5) composite has much better mechanical properties and thermal stability than SR/POSS (100/1.5) composite. With increasing m-POSS loading from 1.5 to 4.5 phr, the thermal stability of SR/m-POSS becomes better, while the tensile strength decreases. SR composite filled with 1.5 phr m-POSS has an excellent balance in thermal stability and mechanical properties, with a tensile strength of 9.2 MPa and an elongation at break of 587%. To fill multifunctional polyhedral oligomeric silsesquioxane containing vinyl and siloxane groups into SR is an effective approach to producing composites with excellent properties. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

28 pages, 8862 KB  
Article
Experimental and Numerical Study on Fire Resistance and Residual Strength of Prefabricated Utility Tunnels
by Hongbo Li, Binlin Zhang, Zigen Li and Qi Yuan
Buildings 2025, 15(22), 4062; https://doi.org/10.3390/buildings15224062 - 11 Nov 2025
Abstract
Fire hazard presents a critical challenge to the structural reliability of underground modular infrastructure. This study examines the fire resistance performance of prefabricated monolithic utility tunnels featuring longitudinal threaded connections. A series of fire exposure tests was conducted on assembled utility tunnel specimens [...] Read more.
Fire hazard presents a critical challenge to the structural reliability of underground modular infrastructure. This study examines the fire resistance performance of prefabricated monolithic utility tunnels featuring longitudinal threaded connections. A series of fire exposure tests was conducted on assembled utility tunnel specimens using different bolt materials and thermal conditions, enabling evaluation of fire behavior, deformation behavior, and residual capacity. The observed thermal properties revealed significant temperature gradients across tunnel sections, with the peak internal–external differential reaching 536.8 °C. Post-fire mechanical degradation was evident in reduced stiffness and ductility, and the residual load-bearing capacity declined by up to 12.28% compared to unexposed specimens. Specimens using high-strength threaded bolts demonstrated superior performance compared to stainless steel bolt specimens, exhibiting a 4.67% higher residual capacity and 13.87% less residual deformation. A sequential thermal–mechanical finite element model was developed and calibrated based on experimental results, offering a reliable simulation framework for investigating fire-induced damage and residual strength in modular utility tunnel systems. These findings provide a quantitative basis for fire safety assessment. Full article
(This article belongs to the Special Issue Fire Science and Safety of Building Structure)
Show Figures

Figure 1

22 pages, 2478 KB  
Article
The Influence of Synthetic Reinforcing Fibers on Selected Properties of Asphalt Mixtures for Surface and Binder Layers
by Peter Gallo, Amira Ben Ameur and Jan Valentin
Infrastructures 2025, 10(11), 303; https://doi.org/10.3390/infrastructures10110303 - 11 Nov 2025
Abstract
Increasing traffic volumes, heavier axle loads, and the growing frequency of premature pavement distress pose major challenges for modern road infrastructure. In many regions, asphalt pavements experience early rutting, cracking, and moisture-induced damage, underscoring the need for improved material performance and longer service [...] Read more.
Increasing traffic volumes, heavier axle loads, and the growing frequency of premature pavement distress pose major challenges for modern road infrastructure. In many regions, asphalt pavements experience early rutting, cracking, and moisture-induced damage, underscoring the need for improved material performance and longer service life. Reinforcing fibres are increasingly used to enhance asphalt mixture properties, with aramid fibres recognised for their superior mechanical and thermal stability. This study evaluates the effect of FlexForce (FF) fibres on the mechanical and fracture behaviour of two dense-graded asphalt concretes, AC 16 surf and AC 16 bin, produced with different binders and fibre dosages (0.02% and 0.04% by mixture weight). Laboratory tests, including indirect tensile strength ratio (ITSR), indirect tensile stiffness modulus (IT-CY), crack propagation resistance, and dynamic modulus measurements, were performed to assess moisture susceptibility, stiffness, and viscoelastic behaviour. The results showed that fibre addition had little effect on compactability and stiffness under standard conditions but improved temperature stability and stiffness at elevated temperatures, particularly when used with polymer-modified binders. Moisture resistance decreased slightly, while fracture performance improved moderately at intermediate temperatures. Overall, low fibre dosages (~0.02%) provided the most balanced performance, indicating that the mechanical benefits of aramid reinforcement depend strongly on binder rheology, temperature, and interfacial compatibility. These findings contribute to optimising fibre dosage and binder selection for aramid-reinforced asphalt layers in practice. Full article
Show Figures

Figure 1

19 pages, 6518 KB  
Article
Influence of Zeolite-A Doping and Solvent Mixing Ratio for Electrospun PVDF-Based Membranes
by Ionut Procop, Viorica Mușat, Elena Maria Anghel, Nicolae Țigău, Felicia Stan, Irina Atkinson, Daniela Cristina Culiță, Alina Cantaragiu Ceoromila, Emanuela Elena Herbei, Radu-Robert Piticescu, Gabriela Ioniță and Alexandru Petrică
Molecules 2025, 30(22), 4353; https://doi.org/10.3390/molecules30224353 - 10 Nov 2025
Abstract
The current study evaluates the characteristics of electrospun PVDF-based membranes doped with zeolite-A in terms of their structural, morphological, thermal, mechanical, hydrophobic, optoelectrical, and adsorption properties. The effects of the DMF–acetone ratio on solvent and zeolite-doping concentration have been evaluated using SEM-EDX, BET, [...] Read more.
The current study evaluates the characteristics of electrospun PVDF-based membranes doped with zeolite-A in terms of their structural, morphological, thermal, mechanical, hydrophobic, optoelectrical, and adsorption properties. The effects of the DMF–acetone ratio on solvent and zeolite-doping concentration have been evaluated using SEM-EDX, BET, Raman, XRD, DSC-TGA, UV-VIS spectroscopy, contact angle measurements, and mechanical testing. The membranes prepared with solvents low in acetone and increased zeolite content exhibited a higher crystallinity degree exceeding 50%. Zeolite-enriched membranes have a slightly higher content in the α crystalline phase of PVDF when compared to zeolite-free membranes. Electrospinning processing decreased the sample’s subcooling, improving its thermal stability. Zeolite-doping reduced the band gap energy to 1.3 eV from a maximum of 2.7 eV in PVDF membranes. Membranes doped with 3 or 4 wt.% zeolite exhibit improved load-elongation values at break, reaching up to 4.2 N and 47 mm, respectively, and increased flexibility due to their porous structures and the ratio of crystalline to amorphous phases. The membranes adsorbed an MB equilibrium quantity up to 18.5 mg/g and obeyed the pseudo-second-order (PSO) kinetic model within the first 24 h. Thus, the synergistic effect of zeolite content and solvent ratio can effectively adjust the sample’s structure, texture, and properties. Full article
Show Figures

Figure 1

18 pages, 2194 KB  
Article
Sustainable Fire-Resistant Materials: Thermal, Physical, Mechanical, and Environmental Behavior of Walls with Waste from the Aquaculture Industry
by Begoña Peceño, Bernabé Alonso-Fariñas, Giovanna Vega, Daniel Carrizo and Carlos Leiva
Materials 2025, 18(22), 5086; https://doi.org/10.3390/ma18225086 - 9 Nov 2025
Viewed by 205
Abstract
The aquaculture industry generates large amounts of shell waste, with limited recycling options at the industrial scale. This study explores the feasibility of substituting 20% of gypsum with seashell waste to produce sustainable, fire-resistant panels for non-load-bearing walls on a semi-industrial scale (2.4 [...] Read more.
The aquaculture industry generates large amounts of shell waste, with limited recycling options at the industrial scale. This study explores the feasibility of substituting 20% of gypsum with seashell waste to produce sustainable, fire-resistant panels for non-load-bearing walls on a semi-industrial scale (2.4 × 2.2 × 0.1 m). The new composite exhibits high density (≈1500 kg/m3) and mechanical performance comparable to commercial gypsum. Thermal and fire tests confirmed its excellent insulation and stability: after 4 h of standard fire exposure, the non-exposed surface temperature remained below 80 °C, meeting European fire-resistance criteria. The incorporation of shell waste slightly reduced density and thermal conductivity (0.23 W/mK at 500 °C) without affecting strength or surface hardness. Environmental characterization revealed leaching and radionuclide levels well below regulatory limits, confirming its safety for building use. Overall, this work demonstrates, for the first time at a semi-industrial scale, the technical and environmental feasibility of reusing seashell waste as a gypsum substitute for fireproof materials. The proposed approach advances circular-economy strategies for aquaculture residues, providing an innovative pathway toward sustainable and low-impact construction products. Full article
(This article belongs to the Section Green Materials)
Show Figures

Figure 1

39 pages, 2886 KB  
Review
Sand-Based Thermal Storage System for Human-Powered Energy Generation: A Review
by Qirui Ding, Lili Zeng, Ying Zeng, Changhui Song, Liang Lei and Weicheng Cui
Energies 2025, 18(22), 5869; https://doi.org/10.3390/en18225869 - 7 Nov 2025
Viewed by 258
Abstract
Sand-based thermal energy storage systems represent a paradigm shift in sustainable energy solutions, leveraging Earth’s most abundant mineral resource through advanced nanocomposite engineering. This review examines sand-based phase change materials (PCM) systems with emphasis on integration with human-powered energy generation (HPEG). Silicon-based hierarchical [...] Read more.
Sand-based thermal energy storage systems represent a paradigm shift in sustainable energy solutions, leveraging Earth’s most abundant mineral resource through advanced nanocomposite engineering. This review examines sand-based phase change materials (PCM) systems with emphasis on integration with human-powered energy generation (HPEG). Silicon-based hierarchical pore structures provide multiscale thermal conduction pathways while achieving PCM loading capacities exceeding 90%. Carbon-based nanomaterial doping enhances thermal conductivity by up to 269%, reaching 3.1 W/m·K while maintaining phase change enthalpies above 130 J/g. This demonstrated cycling stability exceeds 1000 thermal cycles with <8% capacity degradation. Thermal energy storage costs reach ~$20 kWh−1—60% lower than lithium-ion systems when normalized by usable heat capacity. Integration with triboelectric nanogenerators achieves 55% peak mechanical-to-electrical conversion efficiency for direct pathways, while thermal-buffered systems provide 8–12% end-to-end efficiency with temporal decoupling between intermittent human power input and stable electrical output. Miniaturized systems target off-grid communities, offering 5–10× cost advantages over conventional batteries for resource-constrained deployments. Levelized storage costs remain competitive despite efficiency penalties versus lithium-ion alternatives. Critical challenges, including thermal cycling degradation, energy-power density trade-offs, and environmental adaptability, are systematically analyzed. Future directions explore biomimetic multi-level pore designs, intelligent responsive systems, and distributed microgrid implementations. Full article
Show Figures

Figure 1

29 pages, 15539 KB  
Article
Multifunctional Performance of Bacterial Cellulose Membranes in Saline and Oily Emulsion Filtration
by Alexandre D’Lamare Maia de Medeiros, Cláudio José Galdino da Silva Junior, Yasmim de Farias Cavalcanti, Matheus Henrique Castanha Cavalcanti, Maryana Rogéria dos Santos, Ana Helena Mendonça Resende, Ivison Amaro da Silva, Julia Didier Pedrosa de Amorim, Andréa Fernanda de Santana Costa and Leonie Asfora Sarubbo
Fermentation 2025, 11(11), 635; https://doi.org/10.3390/fermentation11110635 - 7 Nov 2025
Viewed by 298
Abstract
The separation of oil-in-water emulsions from industrial wastewater remains a significant challenge, particularly under saline conditions. This study evaluated bacterial cellulose (BC) membranes from Komagataeibacter hansenii for filtering synthetic effluents with high oil content (ES1) and saline oil-in-water emulsions (ES2). FTIR confirmed the [...] Read more.
The separation of oil-in-water emulsions from industrial wastewater remains a significant challenge, particularly under saline conditions. This study evaluated bacterial cellulose (BC) membranes from Komagataeibacter hansenii for filtering synthetic effluents with high oil content (ES1) and saline oil-in-water emulsions (ES2). FTIR confirmed the incorporation of lipophilic compounds into the BC matrix. Crystallinity decreased from 78.8% to 40% following ES1 filtration, while a new peak at 2θ ≈ 31.8° appeared in ES2, indicating salt deposition. TGA revealed increased mass loss in the oil-saturated membrane (BCO), whereas the saline-exposed membrane (BCOS) exhibited higher thermal stability. SEM showed fiber compaction and localized deposition of oil and salt, corroborated by EDS, which identified Na, Cl, Ca, and elevated oxygen levels. Mechanical testing indicated that oil acted as a plasticizer, increasing the elongation at break of BCO, while salt crystallization enhanced BCOS stiffness. The membranes removed up to 98% of organic load (BOD and COD), 69% of oils and greases, and reduced turbidity and apparent color by 92%. Partial salt retention (~23%) and a significant decrease in dissolved oxygen were also observed. These results demonstrate the potential of BC membranes as an effective and sustainable solution for the treatment of complex oily and saline wastewater. Full article
(This article belongs to the Section Industrial Fermentation)
Show Figures

Figure 1

25 pages, 717 KB  
Review
A Review of the Research and Development of Brayton Cycle Technology in Nuclear Power Applications with a Focus on Compressor Technology
by Aidan Rigby, Logan Williams, Václav Novotný, Tyler Westover, Rami Saeed and Junyung Kim
Energies 2025, 18(22), 5870; https://doi.org/10.3390/en18225870 - 7 Nov 2025
Viewed by 225
Abstract
This study reviews the integration of Brayton Cycle (BC) systems in nuclear power generation, emphasizing their potential to enhance thermal efficiency and operational flexibility over traditional Rankine Cycle (RC) systems. Key working fluids, such as helium (He), supercritical carbon dioxide (sCO2), [...] Read more.
This study reviews the integration of Brayton Cycle (BC) systems in nuclear power generation, emphasizing their potential to enhance thermal efficiency and operational flexibility over traditional Rankine Cycle (RC) systems. Key working fluids, such as helium (He), supercritical carbon dioxide (sCO2), nitrogen (N2), and air, are evaluated for their performance, efficiency, and compatibility with nuclear systems. He is recognized for its high thermal conductivity and inertness at elevated temperatures, while sCO2 demonstrates advantages in compactness and efficiency in midrange temperatures. This article also highlights the importance of compressor designs in optimizing BC performance and reviews, available compressor technologies. Axial and centrifugal compressor designs enable efficient gas compression while managing the thermal and mechanical stresses associated with high-pressure operations in nuclear systems. Combined with variable geometry components and advanced materials, these technologies address the challenges posed by varying load conditions. Despite the promising features of BC systems, several challenges persist, including high leakage rates and material degradation under extreme conditions, which necessitate robust sealing technologies and thorough testing. The insights gained from operational experiences at facilities, such as the Oberhausen II plant and the High-Temperature He Test Facility (HHV), underscore the complexities involved in designing high-temperature gas turbines for nuclear applications. This review concludes that as the nuclear industry evolves, BC systems hold significant promise for contributing to a sustainable energy future, particularly in the context of small modular reactors (SMRs) and microreactors. Further exploration of combined cycle configurations that combine BCs with RCs may enhance overall efficiency and flexibility in power generation. Full article
Show Figures

Figure 1

19 pages, 3621 KB  
Article
CFD Analysis of Natural Convection Performance of a MMRTG Model Under Martian Atmospheric Conditions
by Rafael Bardera-Mora, Ángel Rodríguez-Sevillano, Juan Carlos Matías-García, Estela Barroso-Barderas and Jaime Fernández-Antón
Appl. Sci. 2025, 15(21), 11825; https://doi.org/10.3390/app152111825 - 6 Nov 2025
Viewed by 220
Abstract
Understanding the thermal behaviour of radioisotope generators under Martian conditions is essential for the safe and efficient operation of planetary exploration rovers. This study investigates the heat transfer and flow mechanisms around a simplified full-scale model of the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) [...] Read more.
Understanding the thermal behaviour of radioisotope generators under Martian conditions is essential for the safe and efficient operation of planetary exploration rovers. This study investigates the heat transfer and flow mechanisms around a simplified full-scale model of the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) by means of Computational Fluid Dynamics (CFD) simulations performed with ANSYS Fluent 2023 R1. The model consists of a central cylindrical core and eight radial fins, operating under pure CO2 at a pressure of approximately 600 Pa, representative of the Martian atmosphere. Four cases were simulated, varying both the reactor surface temperature (373–453 K) and the ambient temperature (248 to 173 K) to reproduce typical diurnal and seasonal scenarios on Mars. The results show the formation of a buoyancy-driven plume rising above the generator, with peak velocities between 1 and 3.5 m/s depending on the thermal load. Temperature fields reveal that the fins generate multiple localized hot spots that merge into a single vertical plume at higher elevations. The calculated dimensionless numbers (Grashof ≈ 105, Rayleigh ≈ 105, Reynolds ≈ 102, Prandtl ≈ 0.7, Nusselt ≈ 4) satisfy the expected range for natural convection in low-density CO2 atmospheres, confirming the laminar regime. These results contribute to a better understanding of heat dissipation processes in Martian environments and may guide future design improvements of thermoelectric generators and passive thermal management systems for space missions. Full article
Show Figures

Figure 1

24 pages, 3586 KB  
Article
Valorization of Brewer’s Yeast Waste as a Low-Cost Biofiller for Polylactide: Analysis of Processing, Mechanical, and Thermal Properties
by Krzysztof Moraczewski, Małgorzata Łazarska, Magdalena Stepczyńska, Bartłomiej Jagodziński, Tomasz Karasiewicz and Cezary Gozdecki
Materials 2025, 18(21), 5052; https://doi.org/10.3390/ma18215052 - 6 Nov 2025
Viewed by 277
Abstract
The aim of this study was the valorization of brewer’s yeast waste as a low-cost, biodegradable filler for polylactide (PLA) and the evaluation of the effect of yeast biomass on the processing, mechanical, thermal properties, and biodegradation of the resulting composites. The materials [...] Read more.
The aim of this study was the valorization of brewer’s yeast waste as a low-cost, biodegradable filler for polylactide (PLA) and the evaluation of the effect of yeast biomass on the processing, mechanical, thermal properties, and biodegradation of the resulting composites. The materials were prepared using extrusion and injection molding techniques, with the addition of brewer’s yeast (Saccharomyces cerevisiae) in amounts ranging from 5 to 30 wt%. Fourier-transform infrared spectroscopy (FTIR) analysis revealed the absence of strong interfacial chemical interactions, indicating physical dispersion of the filler within the matrix. The addition of biomass significantly modified the properties of PLA. The results demonstrated increased melt flowability (melt flow rate increased from 18.8 to 39.8 g/10 min) and stiffness (a 13% increase in Young’s modulus for 20 wt%), accompanied by a considerable reduction in tensile strength (from 63.2 to 20.2 MPa) and impact strength (from 22.8 to 6.2 kJ/m2). Thermal analyses showed a systematic decrease in the glass transition temperature by approximately 5 °C and a dual effect of the filler on crystallization behavior. At low concentrations, the waste acted as a nucleating agent, while at higher loadings it limited crystallinity, leading to an amorphous structure. Thermal stability decreased with increasing biomass content (from 329.3 °C to 266.8 °C). Industrial composting tests indicated that at a 30 wt% yeast content, the mass loss (27.5%) was higher than that of neat PLA (25.5%), suggesting accelerated biodegradation. Despite the deterioration of mechanical performance, the developed biocomposites represent a promising material for single-use applications, combining low cost, easy processability, and an environmentally favorable profile consistent with the principles of the circular economy. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

23 pages, 3845 KB  
Article
A Spatiotemporal Forecasting Method for Cooling Load of Chillers Based on Patch-Specific Dynamic Filtering
by Jie Li, Zhengri Jin and Tao Wu
Sustainability 2025, 17(21), 9883; https://doi.org/10.3390/su17219883 - 5 Nov 2025
Viewed by 196
Abstract
Accurate cooling load forecasting in chiller units is critical for building energy optimization, yet remains challenging due to non-stationary nonlinear dynamics driven by coupled external weather variability (solar radiation, ambient temperature) and internal thermal loads. Conventional models fail to capture the spatiotemporal coupling [...] Read more.
Accurate cooling load forecasting in chiller units is critical for building energy optimization, yet remains challenging due to non-stationary nonlinear dynamics driven by coupled external weather variability (solar radiation, ambient temperature) and internal thermal loads. Conventional models fail to capture the spatiotemporal coupling inherent in load time series, violating their stationarity assumptions. To address this, this research proposes OptiNet, a spatiotemporal forecasting framework integrating patch-specific dynamic filtering with graph neural networks. OptiNet partitions multi-sensor data into non-overlapping time patches to develop a dynamic spatiotemporal graph. A learnable routing mechanism then performs adaptive dependency filtering to capture time-varying temporal–spatial correlations, followed by graph convolution for load prediction. Validated on long-term industrial logs (52,075 multi-sensor samples at 20 min; district cooling plant in Zhangjiang, Shanghai, with multiple chillers, towers, pumps, building meters, and a weather station), OptiNet achieves consistently lower MAE and MSE than Graph WaveNet across 6–144-step horizons and sampling frequencies of 20–60 min; among 30 set-tings it leads in 26, with MSE reductions up to 27.8% (60 min, 72-step) and typical long-horizon (72–144 steps) gains of ≈2–18% MSE and ≈1–15% MAE. Crucially, the model provides interpretable spatial-temporal dependencies (e.g., “Zone B solar radiation influences Unit 2 load with 4-h lag”), enabling data-driven chiller sequencing strategies that reduce electricity consumption by 12.7% in real-world deployments—directly advancing energy-efficient building operations. Full article
Show Figures

Figure 1

21 pages, 4394 KB  
Article
Experimental Investigation of Nanodiamond Reinforcement in PU for Enhancing Mechanical, Scratch, Rheological, Thermal, and Shape-Memory Properties
by Markapudi Bhanu Prasad, Nashmi H. Alrasheedi, P. S. Rama Sreekanth, Borhen Louhichi, Santosh Kumar Sahu and Nitesh Dhar Badgayan
Polymers 2025, 17(21), 2947; https://doi.org/10.3390/polym17212947 - 4 Nov 2025
Viewed by 491
Abstract
Shape-memory polymers (SMPs) are a unique class of smart materials capable of recovering their original shape upon external stimuli, with thermoresponsive polyurethane (PU) being one of the most widely studied systems. However, the relatively low mechanical strength, thermal stability, and durability of PU [...] Read more.
Shape-memory polymers (SMPs) are a unique class of smart materials capable of recovering their original shape upon external stimuli, with thermoresponsive polyurethane (PU) being one of the most widely studied systems. However, the relatively low mechanical strength, thermal stability, and durability of PU limit its broader functional applications. PU/ND composites containing 0.1–0.5 wt.% ND were fabricated via melt blending and injection molding method. The objective was to evaluate the effect of ND reinforcement on the mechanical, scratch, thermal, rheological, and shape-memory properties. Results show that tensile strength increased up to 114% and Young’s modulus by 11% at 0.5 wt.% ND, while elongation at break decreased due to restricted chain mobility. Hardness improved by 21%, and scratch resistance was significantly enhanced, with the coefficient of friction reduced by 56% at low loads. Thermal stability was improved, with the maximum degradation temperature shifting from 350 °C (pure PU) to 362 °C (0.5 wt.% PU/ND) and char yield increasing by 34%. DSC revealed an increase in glass transition temperature from 65 °C to 68.6 °C. Rheological analysis showed an 89% reduction in damping factor (tan δ), indicating enhanced elasticity. Shape-memory tests confirmed notable improvements in both shape fixity and recovery ratios across successive cycles compared to neat PU, with the highest enhancements observed for the 0.5 wt.% PU/ND nanocomposite—showing up to 7.6% higher fixity and 32% higher recovery than pure PU. These results demonstrate that ND reinforcement effectively strengthens PU while preserving and improving its shape-memory behavior, making the composites promising candidates for high-performance smart materials in sensors, actuators, and aerospace applications. Full article
(This article belongs to the Special Issue Polyurethane Composites: Properties and Applications)
Show Figures

Figure 1

22 pages, 5383 KB  
Article
Thermo-Mechanical Coupling Model for Energy Piles: Dynamic Interface Behavior and Sustainable Design Implications
by Chunyu Cui, Zhongren Liu, Jinghang Liu and Yang You
Buildings 2025, 15(21), 3984; https://doi.org/10.3390/buildings15213984 - 4 Nov 2025
Viewed by 259
Abstract
This study introduces an advanced temperature variation model for the pile–soil interface of single energy piles, developed through extensive numerical simulations across diverse operating conditions. Unlike existing models, it explicitly accounts for thermal interactions at the interface by adopting uniform material properties and [...] Read more.
This study introduces an advanced temperature variation model for the pile–soil interface of single energy piles, developed through extensive numerical simulations across diverse operating conditions. Unlike existing models, it explicitly accounts for thermal interactions at the interface by adopting uniform material properties and initial temperatures, enabling precise heat transfer predictions. An iterative algorithm based on the load transfer method quantifies the pile’s thermo-mechanical response to temperature fluctuations, demonstrating significantly improved accuracy in settlement prediction compared to conventional methods. Validation against two field case studies demonstrates the model’s robustness across varied geotechnical contexts. Parameter analysis identifies soil thermal conductivity and load transfer characteristics as critical factors influencing pile behavior, thereby facilitating design optimization. This approach enhances energy pile efficiency by up to 20%, promoting the utilization of renewable geothermal energy and reducing carbon emissions in infrastructure projects, thus contributing to sustainable geotechnical engineering practices. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

19 pages, 6054 KB  
Article
Chitosan Enhanced Polymers for Active Packaging: Intelligent Moisture Regulation and Non-Invasive Assessment
by Jesús R. Villegas Méndez, María Maura Téllez Rosas, Rafael Aguirre Flores, Felipe Avalos Belmontes, Francisco J. González and Mario Hoyos
Appl. Sci. 2025, 15(21), 11744; https://doi.org/10.3390/app152111744 - 4 Nov 2025
Viewed by 287
Abstract
This work presents the non-destructive assessment of polymeric composites based on synthetic matrices low-density polyethylene (LDPE) and polystyrene (PS) enhanced with chitosan (CS) biopolymer for use in active packaging systems for moisture control. Composites were prepared by incorporating CS at different contents (1, [...] Read more.
This work presents the non-destructive assessment of polymeric composites based on synthetic matrices low-density polyethylene (LDPE) and polystyrene (PS) enhanced with chitosan (CS) biopolymer for use in active packaging systems for moisture control. Composites were prepared by incorporating CS at different contents (1, 3 and 5 phr) into LDPE and PS matrices. To evaluate the structural and thermal alterations induced by biopolymer loading, the materials were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). The composites’ water-regulating properties—specifically, moisture absorption, retention, diffusion, and water vapor transmission rate—were quantitively tracked. Furthermore, the mechanical integrity of both dried and water-exposed systems was assessed via Shore D hardness testing. The results reveal a direct correlation between CS concentrations and enhanced hydrophilic behavior and water absorption, primarily attributed to the polar hydroxyl and amine groups within its molecular structure. The composites maintained adequate mechanical strength even after water exposure, confirming their structural stability for practical applications. This study demonstrates that the incorporation of CS into non-polar synthetic matrices significantly improves water affinity without requiring chemical compatibilizers, representing a cost-effective route to develop responsive packaging. The promise of these composites as responsive materials for real-time environmental interaction is highlighted by the successful non-destructive monitoring of their performance. This research establishes the feasibility and efficacy of non-destructive monitoring techniques in developing active packaging technologies, accelerating the progress of polymer-based systems with integrated and tunable moisture regulation capabilities. Full article
Show Figures

Figure 1

20 pages, 4301 KB  
Article
Chestnut Burr as a Multifunctional Filler for PLA-Based Bio-Composites: Processing, Characterization, and Antioxidant Functionality
by Tommaso Olmastroni, Simone Pepi, Milad Sarwari, Eugenio Paccagnini, Alfonso Trezza, Anna Visibelli, Pietro Lupetti, Agnese Magnani, Valter Travagli, Michela Geminiani and Annalisa Santucci
Appl. Sci. 2025, 15(21), 11743; https://doi.org/10.3390/app152111743 - 4 Nov 2025
Viewed by 329
Abstract
This study explores the valorization of chestnut burrs (Castanea sativa), an abundant agro-industrial residue, as a natural filler for polylactic acid (PLA)-based biocomposites with potential applications in additive manufacturing. PLA/chestnut burr composite filaments were prepared by melt extrusion with filler contents [...] Read more.
This study explores the valorization of chestnut burrs (Castanea sativa), an abundant agro-industrial residue, as a natural filler for polylactic acid (PLA)-based biocomposites with potential applications in additive manufacturing. PLA/chestnut burr composite filaments were prepared by melt extrusion with filler contents of 2.5%, 5%, 10%, and 15% w/w, and their chemical, thermal, morphological, and mechanical properties were systematically characterized. ATR-FTIR confirmed the absence of major chemical modifications of the PLA matrix. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), the latter performed on both the extruded filaments and the material after fused deposition modeling (FDM) 3D printing, revealed a slight decrease in thermal stability with increasing filler content, coupled with enhanced crystallinity. Mechanical properties analysis showed that the addition of chestnut burrs did not negatively impact the viscoelastic behavior of the filaments. Scanning electron microscopy (SEM) highlighted good filler dispersion up to 5% loading, while higher percentages led to increased surface roughness and microvoids. Importantly, antioxidant activity assays (DPPH, ABTS, FRAP, and Folin–Ciocâlteu) demonstrated that the incorporation of chestnut burr significantly enhanced the radical-scavenging capacity, reducing power, and total phenolic content (TPC) of PLA. These functionalities were preserved, and in some cases amplified, after FDM 3D printing, indicating that the processing conditions did not degrade the bioactive constituents. Overall, chestnut burrs are confirmed as an effective multifunctional filler for PLA, improving its antioxidant activity while maintaining structural and thermal performance, supporting the development of sustainable biocomposites for emerging applications. Full article
Show Figures

Figure 1

Back to TopTop