Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (439)

Search Parameters:
Keywords = thermal column

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2507 KB  
Article
Analysis of Process Intensification Impact on Circular Economy in Levulinic Acid Purification Schemes
by Tania Itzel Serrano-Arévalo, Heriberto Alcocer-García, César Ramírez-Márquez and José María Ponce-Ortega
Processes 2025, 13(11), 3496; https://doi.org/10.3390/pr13113496 - 30 Oct 2025
Abstract
This study presents a comprehensive evaluation of levulinic acid purification schemes from a circular economy perspective, integrating resource-based indicators with economic and environmental metrics. Twelve alternatives, ranging from conventional distillation sequences to intensified hybrid systems, were assessed using indicators such as Relative Material [...] Read more.
This study presents a comprehensive evaluation of levulinic acid purification schemes from a circular economy perspective, integrating resource-based indicators with economic and environmental metrics. Twelve alternatives, ranging from conventional distillation sequences to intensified hybrid systems, were assessed using indicators such as Relative Material Impact, total annual cost, Eco-Indicator 99, fuel demand, and CO2 emissions. The novelty of this work lies in extending the assessment beyond purification infrastructure to include upstream systems that supply energy demand, such as fuel extraction and steam generation. The configurations considered incorporate thermal couplings, dividing wall columns, and decanters, which influence energy efficiency, process complexity, and resource depletion. Among these, the TDWS-D configuration (Thermally Coupled Double Dividing Wall Column System with Decanter) exhibits the highest values in DMR, TAC, and CO2 emissions, driven by its elevated energy demand and complex infrastructure. Conversely, the TCS2 configuration (Thermally Coupled Sequence, featuring selective heat integration between distillation columns) achieves the lowest impact across all metrics, demonstrating that selective and strategic intensification (rather than maximalist design) can yield superior sustainability outcomes. Across all scenarios, the boiler stage was identified as the main contributor to material depletion, followed by fuel extraction and purification equipment. Notably, some conventional designs proved superior to intensified ones in terms of circularity, challenging the assumption that intensification inherently guarantees sustainability. Overall, the integration of circular economy indicators enables a multidimensional evaluation framework that supports more responsible and resource-efficient process design. Full article
(This article belongs to the Special Issue Modeling, Simulation and Control in Energy Systems—2nd Edition)
Show Figures

Figure 1

16 pages, 4467 KB  
Article
Study on the Ablation of Slide Plate by Pantograph–Catenary Arc Based on Pantograph Slide Material
by Rui Tian, Shao-Jie Wang, Mai Lu and Jie Li
Infrastructures 2025, 10(10), 276; https://doi.org/10.3390/infrastructures10100276 - 15 Oct 2025
Viewed by 268
Abstract
The ablation of pantograph sliders caused by pantograph–catenary arcing is a critical issue in the operation of pantograph–catenary systems. The arc discharge induces localized high temperatures that lead to the melting and even evaporation of the slider material, resulting in material loss. This [...] Read more.
The ablation of pantograph sliders caused by pantograph–catenary arcing is a critical issue in the operation of pantograph–catenary systems. The arc discharge induces localized high temperatures that lead to the melting and even evaporation of the slider material, resulting in material loss. This phenomenon directly impacts the power supply safety and economic efficiency of trains. This study establishes a mathematical model of pantograph–catenary arcing based on Magneto Hydro Dynamics (MHD) theory, incorporating the physical parameters of the arc as well as electromagnetic, thermal, and radiative phenomena. Through secondary development using COMSOL 6.2 finite element software, the temperature distribution within the arc column region and on the surfaces of the electrode plates in pantograph–catenary arcing was simulated. The effects of the pantograph–catenary gap and slider material on arc ablation were investigated. The results show that with the increase in the distance between the pantograph and catenary, the arc shape lengthens gradually, and the high-temperature area inside the slider material shrinks gradually. When the arc duration is constant, the copper-impregnated carbon slider exhibits the best ablation resistance. Increasing the sublimation latent heat of the slider material enhances its anti-ablation performance. The findings of this study provide a valuable reference for understanding and mitigating surface arc erosion in pantograph–catenary systems. Full article
Show Figures

Figure 1

16 pages, 3999 KB  
Article
Study of RC Columns Subjected to Combined Thermal and Mechanical Loadings in Nuclear Power Plants: Experimental and Theoretical Analysis
by Jia Chang and Shen Wang
Appl. Sci. 2025, 15(20), 11044; https://doi.org/10.3390/app152011044 - 15 Oct 2025
Viewed by 214
Abstract
Calculating the thermal moment is of paramount importance in the design of nuclear power plants. In order to optimize the calculation method of the thermal moment acting on reinforced concrete (RC) columns in nuclear power plants, a theoretical calculation model for the thermal [...] Read more.
Calculating the thermal moment is of paramount importance in the design of nuclear power plants. In order to optimize the calculation method of the thermal moment acting on reinforced concrete (RC) columns in nuclear power plants, a theoretical calculation model for the thermal moment of RC columns during accidental thermal loading is proposed using theoretical analyses. In order to verify the validity of the theoretical calculation model, the bearing capacity of the RC columns under accidental thermal loading was tested, and the sample comprised 10 specimens with different parameters. Furthermore, nonlinear finite element modeling of the specimens was conducted and subsequently verified through a series of tests. The thermal moments of the specimens were also calculated using the method stipulated within ACI 307. Finally, a comparison and analysis of the results obtained from the finite elements, from the specification, and from the theoretical calculation model was undertaken. The findings of this paper indicate that the theoretical calculation model of the thermal moment acting on RC columns, developed in this study, is reliable. Full article
Show Figures

Figure 1

21 pages, 7653 KB  
Article
Efficacy of Hybrid Photovoltaic–Thermal and Geothermal Heat Pump System for Greenhouse Climate Control
by Chung Geon Lee, Geum Choon Kang, Jae Kyung Jang, Sung-Wook Yun, Jong Pil Moon, Hong-Seok Mun and Eddiemar Baguio Lagua
Energies 2025, 18(20), 5386; https://doi.org/10.3390/en18205386 - 13 Oct 2025
Viewed by 449
Abstract
This study evaluated the performance of a hybrid heat pump system integrating photovoltaic–thermal (PVT) panels with a standing column well (SCW) geothermal system in a strawberry greenhouse. The PVT panels, installed over 10% of the area of a 175 m3 greenhouse, stored [...] Read more.
This study evaluated the performance of a hybrid heat pump system integrating photovoltaic–thermal (PVT) panels with a standing column well (SCW) geothermal system in a strawberry greenhouse. The PVT panels, installed over 10% of the area of a 175 m3 greenhouse, stored excess solar heat in an aquifer to offset the reduced efficiency of the geothermal source during extended operation. The results showed that the hybrid system can supply 11,253 kWh of heat energy during the winter, maintaining the night time indoor temperature at 10 °C even when outdoor conditions dropped to −10.5 °C. The PVT system captured 11,125 kWh of solar heat during heating the off season, increasing the heat supply up to 22,378 kWh annually. Additionally, the system generated 3839 kWh of electricity, which significantly offset the 36.72% of the annual pump system electricity requirements, enhancing the system coefficient of performance (COP) of 3.38. Strawberry production increased by 4% with 78% heating cost saving compared to a kerosene boiler system. The results show that the PVT system effectively supports the geothermal system, improving heating performance and demonstrating the feasibility of hybrid renewable energy in smart farms to enhance efficiency, reduce fossil fuel use, and advance carbon neutrality. Full article
Show Figures

Figure 1

20 pages, 11873 KB  
Article
Axial Compressive Performance of Wood-Cored GFRP Sandwich Columns
by Yuping Kan, Yixin Feng, Zhongping Xiao, Wei Pan, Zhaoyan Cui and Lingfeng Zhang
Buildings 2025, 15(19), 3632; https://doi.org/10.3390/buildings15193632 - 9 Oct 2025
Viewed by 245
Abstract
Paulownia wood, as a fast-growing natural material, exhibits inherently low axial compressive strength. To improve the axial structural performance of Paulownia wood, wood-cored glass fiber-reinforced polymer (GFRP) sandwich Paulownia wood columns were developed in this study. Nevertheless, the behavior of such columns remained [...] Read more.
Paulownia wood, as a fast-growing natural material, exhibits inherently low axial compressive strength. To improve the axial structural performance of Paulownia wood, wood-cored glass fiber-reinforced polymer (GFRP) sandwich Paulownia wood columns were developed in this study. Nevertheless, the behavior of such columns remained largely unexplored—particularly under elevated temperatures and upon subsequent cooling. Consequently, an experimental program was conducted to characterize the influences of GFRP wrapping layers, steel hoop end confinement, high temperature, post-cooling strength recovery, and chamfer radius on the axial compressive performance of the columns. End crushing occurred in the absence of steel hoops, whereas mid-height fracture dominated when end confinement was provided. As the temperature rose from room temperature to 100 °C and 200 °C, the load-bearing capacity of the columns decreased by 38.26% and 54.05%, respectively, due to the softening of the GFRP composites. After cooling back to room temperature, the post-high-temperature specimens recovered approximately 95% of their original capacity, confirming that no significant thermal decomposition had been initiated. The load-bearing capacity also increased significantly with the number of GFRP layers, as the additional thickness provided both higher axial load capacity and enhanced lateral confinement of the wood core. Relative to a 4.76 mm chamfer, a 9.52 mm radius increased axial capacity by 14.07% by mitigating stress concentration. A theoretical model accounting for lateral confinement was successfully developed to predict the axial load-bearing capacity of the wood-cored GFRP sandwich columns. Full article
(This article belongs to the Special Issue Performance Analysis of Timber Composite Structures)
Show Figures

Figure 1

15 pages, 3711 KB  
Article
Consequences of the Construction of a Small Dam on the Water Quality of an Urban Stream in Southeastern Brazil
by Lucas Galli do Rosário, Ricardo Hideo Taniwaki and Luis César Schiesari
Limnol. Rev. 2025, 25(4), 48; https://doi.org/10.3390/limnolrev25040048 - 5 Oct 2025
Viewed by 460
Abstract
The growth of the human population, combined with climate change, has made the provisioning of water resources to human populations one of the greatest challenges of recent decades. One commonly adopted solution has been the construction of small dams and reservoirs close to [...] Read more.
The growth of the human population, combined with climate change, has made the provisioning of water resources to human populations one of the greatest challenges of recent decades. One commonly adopted solution has been the construction of small dams and reservoirs close to urban settlements. However, concerns have arisen that, despite their small size, small dams may have environmental impacts similar to those known for large dams. The severe water crisis observed between 2014 and 2015 led to the multiplication of small dams in southeastern Brazil, such as the one built on the Fetá stream at the Capivari River basin in the municipality of Louveira. This study aimed to contribute to the assessment of the impacts of small dam construction on water quality by monitoring basic parameters and nutrients during the filling and stabilization period of the Fetá reservoir. As expected, the interruption of water flow and the increase in water residence time led to increases in temperature, pH, electrical conductivity, dissolved oxygen and concentrations of dissolved carbon and nitrogen, as well as a reduction in turbidity. Consistent with the shallow depth of the water column, neither thermal nor chemical stratification was observed. Nevertheless, the water quality of surface and bottom layers was markedly different. Over time, water volume and water quality tended to stabilize. This research clearly demonstrates that small dams and reservoirs cause qualitatively similar environmental impacts to those of large-scale dams and reservoirs worldwide. Full article
(This article belongs to the Special Issue Functional Ecology of Urban Streams)
Show Figures

Figure 1

20 pages, 13754 KB  
Article
Understanding the Correlations Between the Formation of Columnar Structures and Suspension Properties for Suspension Plasma-Sprayed Thermal Barrier Coatings
by Yachen Feng, Wenhan Jiao, Pengyun Xu, Xiaomu Sui, Guijie Liu, Xianghua Zhan, Changfeng Fan and Mingli Lv
Coatings 2025, 15(10), 1132; https://doi.org/10.3390/coatings15101132 - 1 Oct 2025
Viewed by 358
Abstract
Columnar-structured thermal barrier coatings deposited via the suspension plasma spray process have attracted significant attention due to their long thermal cycling life and high cost-effectiveness. In this work, the effects of suspension properties, including solvent type, viscosity, and particle size, on the formation [...] Read more.
Columnar-structured thermal barrier coatings deposited via the suspension plasma spray process have attracted significant attention due to their long thermal cycling life and high cost-effectiveness. In this work, the effects of suspension properties, including solvent type, viscosity, and particle size, on the formation of different coating microstructures were investigated via a comparative study. Two different kinds of solvents (water and ethanol) and particles of different sizes (D50 = 0.45 μm and 1.2 μm) were used to prepare suspensions for coating deposition, respectively. When using suspensions containing small-sized particles as feedstock, coatings deposited from the ethanol-based suspension showed columnar microstructures with inter-column crevices, while the water-based suspension resulted in cracked–columnar microstructures, showing a mixture of columns and cracks. When the large-sized particles were used to prepare the suspension, both the ethanol-based suspension and the water-based suspension resulted in homogeneous coating microstructures. The formation mechanism of different microstructures was investigated by modelling the diverted plasma jet and the in-flight particle movement during the impingement period. Particles smaller than 2 μm were strongly affected by the diverted plasma gas, showing obvious oblique impinging trajectories, while particles larger than 3 μm kept their original trajectories and impinged on the substrate orthogonally. The formation mechanism of different microstructures was elaborated by analyzing the impinging trajectories of particles transitioning from different suspensions. Full article
Show Figures

Figure 1

21 pages, 1575 KB  
Article
Non-Thermal UV-C Processing as an Alternative to Pasteurisation in Fermented Dairy Beverages: Ayran and Kefir
by Azize Atik
Fermentation 2025, 11(10), 557; https://doi.org/10.3390/fermentation11100557 - 27 Sep 2025
Viewed by 514
Abstract
This study investigated the microbiological, physicochemical, textural, and sensory characteristics of ayran and kefir samples produced from milk treated with different doses of UV-C radiation. For this purpose, raw milk was passed through a UV-C column at three different flow rates (15, 30, [...] Read more.
This study investigated the microbiological, physicochemical, textural, and sensory characteristics of ayran and kefir samples produced from milk treated with different doses of UV-C radiation. For this purpose, raw milk was passed through a UV-C column at three different flow rates (15, 30, and 45 mL/min), and irradiated with doses of 72, 36, and 24 J/mL, respectively, corresponding to the flow rate. Samples produced from milk pasteurised by thermal treatment were used as the control group. This research indicated that UV-C treatment effectively reduced the microbial load in milk to a level comparable to that achieved through conventional pasteurisation. A reduction of 2.15 log cfu/mL in total aerobic mesophilic bacteria count was achieved, while total coliform group bacteria counts were decreased to an undetectable level. Samples produced from milk treated with UV-C showed lower pH and higher titration acidity (% lactic acid). Furthermore, the organic acid content was higher in these samples. Lactic acid, the main organic acid, levels in the ayran and kefir samples were measured at their highest as 11,951.51 mg/kg and 12,989.34 mg/kg, respectively, in the UV45 sample with a radiation dose of 24 J/mL. The treatment of UV-C resulted in a minor change in the colour and textural properties of the samples. Nonetheless, this change was not significant enough to influence consumer acceptance. The application of UV-C to raw milk, depending on the radiation level used, can enhance the fermentation process in the production of ayran and kefir. This study showed that the application of UV-C has improved the quality of drinkable fermented milk products. This research has shown that, while reducing nutritional losses caused by thermal processing, microbial safety is obtained at an approximate value similar to pasteurisation. As a result, UV-C application decreases the loss of dietary compounds and provides an alternative method for microbial inactivation. Full article
(This article belongs to the Special Issue Advances in Fermented Foods and Beverages)
Show Figures

Figure 1

18 pages, 2442 KB  
Article
Rapid Screening of 20 Pesticide Residues in Tea by Thermal-Assisted Plasma Ionization–Time-of-Flight Mass Spectrometry
by Jiangsheng Mao, Weiqing Zhang, Chao Zhu, Wenjun Zhang, Mengmeng Yan, Hongxia Du, Hongwei Qin and Hui Li
Foods 2025, 14(19), 3310; https://doi.org/10.3390/foods14193310 - 24 Sep 2025
Viewed by 653
Abstract
To achieve rapid screening and semi-quantitative analysis of pesticide residues in mobile laboratories and on-site tea testing, a novel method based on thermal-assisted plasma ionization–time-of-flight mass spectrometry (TAPI-TOF/MS) has been developed for the detection of 20 pesticide residues, including insecticides and fungicides, in [...] Read more.
To achieve rapid screening and semi-quantitative analysis of pesticide residues in mobile laboratories and on-site tea testing, a novel method based on thermal-assisted plasma ionization–time-of-flight mass spectrometry (TAPI-TOF/MS) has been developed for the detection of 20 pesticide residues, including insecticides and fungicides, in tea. This method eliminates the need for liquid chromatography, or column connections. Instead, it utilizes the high temperature of the sample inlet and stage to fully volatilize and inject the sample. By integrating TAPI-TOF/MS with an automated pesticide residue pretreatment instrument, the entire sample extraction process can be performed automatically. The analysis time for each sample has been reduced to 1.5 min, allowing for the processing of 60 samples per batch. An accurate mass spectrometry database has been established for screening and confirmation purposes. The software automatically matches the mass spectrometry database by analyzing the measured ion mass deviation, ion abundance ratio, and the relative contribution weight of each ion, generating a qualitative score ranging from 0 to 100. The lowest concentration yielding a qualitative score of ≥75 was defined as the screening limit, which ranged from 0.10 to 5.00 mg/kg for the 20 pesticides. Within their respective linear ranges, the method demonstrated good linearity with correlation coefficients (R2) ranging from 0.983 to 0.999. The average recovery rates (n = 5) of the target pesticides ranged from 70.6% to 117.0% at the set standard concentrations, with relative standard deviations (RSD) ranging from 1.7% to 13.1%. Using this method, 15 tea samples purchased from the Rizhao market in China were analyzed. Ten samples were found to contain residues of metalaxyl or pyraclostrobin, yielding a detection rate of 66.7%. This technology provides technical support for the rapid detection and quality control of multiple pesticide residues in tea, meeting the requirements for high-throughput and on-site analysis. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

14 pages, 2414 KB  
Article
An Integrated Analytical and Extended Ponchon–Savarit Graphical Method for Determining Actual and Minimum Boil-Up Ratios in Binary Distillation
by Oualid Hamdaoui
Processes 2025, 13(10), 3031; https://doi.org/10.3390/pr13103031 - 23 Sep 2025
Viewed by 553
Abstract
A rigorous framework for determining actual and minimum boil-up ratios in binary distillation combining analytical mass and energy balances with an extended Ponchon–Savarit graphical approach was implemented. First, global balances across the enriching and stripping sections yield a closed-form expression of the boil-up [...] Read more.
A rigorous framework for determining actual and minimum boil-up ratios in binary distillation combining analytical mass and energy balances with an extended Ponchon–Savarit graphical approach was implemented. First, global balances across the enriching and stripping sections yield a closed-form expression of the boil-up ratio (VB) based on enthalpy differences. Second, the VB was directly determined from an enthalpy–composition diagram by measuring the enthalpy segments between the saturated liquid, vapor, and heat-duty points. Applying this method to high-stage columns confirms that the two methods converge on identical VB values. Based on these findings, a unified graphical methodology was developed to determine the minimum boil-up ratio (VBmin). VBmin can be determined on the same diagram by locating the intersections of the extremal tie lines in both the enriching and exhausting sections, analogous to the reflux-pinch points. This procedure was systematically validated across the five canonical feed thermal states. The implemented method is a graphical approach based on the Ponchon–Savarit technique, developed for binary systems. Full article
(This article belongs to the Section Separation Processes)
Show Figures

Figure 1

32 pages, 6938 KB  
Article
Modeling the Fire Response of Reactive Powder Concrete Columns with Due Consideration of Transient Thermal Strain
by Qin Rong, Zeyu Chang, Zhihao Lyu and Xiaomeng Hou
Buildings 2025, 15(18), 3287; https://doi.org/10.3390/buildings15183287 - 11 Sep 2025
Viewed by 322
Abstract
Transient thermal strain (TS) is a unique compressive strain that reactive powder concrete (RPC) experiences during temperature rise. RPC has a more rapid TS development than normal concrete (NC) during temperatures of 300 °C~800 °C, and under the same load level, the TS [...] Read more.
Transient thermal strain (TS) is a unique compressive strain that reactive powder concrete (RPC) experiences during temperature rise. RPC has a more rapid TS development than normal concrete (NC) during temperatures of 300 °C~800 °C, and under the same load level, the TS of RPC is 40% to 60% higher than that of NC. However, while TS is known to be significant in RPC, its quantitative influence on the structural fire response and ultimate fire resistance of RPC columns remains insufficiently understood and inadequately modeled, posing a potential risk to fire safety design. In this study, a method for modelling the fire response of RPC columns with due consideration to TS was developed using ABAQUS. The Drucker–Prager model was applied to assess the impact of TS on the fire resistance of RPC columns. The results indicate that ignoring the effect of TS could lead to unsafe fire resistance predictions for RPC columns. The influence of TS on the fire resistance performance of RPC columns increases with the increase in cross-sectional dimensions. When the cross-sectional dimension of RPC columns increases from 305 mm to 500 mm, the influence of TS on the fire resistance of RPC columns increases from 22% to 43%. Under the same load, the influence of TS on the fire resistance of RPC columns is 31.3%, which is greater than that on NC columns. When the hydrocarbon heating curve is used, if the influence of TS is not considered, the fire resistance will be overestimated by 18.2% and 37.7%. Under fire, the existence of TS will lead to a further increase in the compressive stress of the RPC element in the relatively low temperature region, resulting in a greater stress redistribution, and accelerating the RPC column to reach the fire resistance. Therefore, it is crucial to clearly consider TS for the accurate fire resistance prediction and safe fire protection design of RPC columns. Crucially, these findings have direct significance for the fire protection design of actual projects, such as liquefied petroleum stations. Full article
(This article belongs to the Special Issue Fire Science and Safety of Building Structure)
Show Figures

Figure 1

6 pages, 1559 KB  
Proceeding Paper
Validating TIR-Derived Total Column Water Vapor Using Sun Photometers and GPS Measurements
by Ilias Agathangelidis, Yifang Ban, Constantinos Cartalis and Konstantinos Philippopoulos
Environ. Earth Sci. Proc. 2025, 35(1), 6; https://doi.org/10.3390/eesp2025035006 - 8 Sep 2025
Viewed by 1351
Abstract
Total column water vapor (TCWV) is essential for assessing Earth’s radiation budget and hydrological cycle and plays a crucial role in accurate Land Surface Temperature (LST) retrieval from thermal infrared (TIR) imagery. Although TCWV is commonly estimated using near-infrared or microwave observations, TIR-based [...] Read more.
Total column water vapor (TCWV) is essential for assessing Earth’s radiation budget and hydrological cycle and plays a crucial role in accurate Land Surface Temperature (LST) retrieval from thermal infrared (TIR) imagery. Although TCWV is commonly estimated using near-infrared or microwave observations, TIR-based methods offer an efficient alternative; however, their long-term validation remains limited. This study evaluates TCWV retrieval from Landsat 8/9 Thermal Infrared Sensor (TIRS) using an updated version of the Modified Split-Window Covariance-Variance Ratio (MSWCVR) method, implemented on the Google Earth Engine platform, across Europe. Validation is conducted using AERONET sun photometer measurements (2013–2024) and GPS-based TCWV estimates enhanced with meteorological inputs (2020). Retrieval accuracy is evaluated analyzed in relation to seasonal variations, surface characteristics (e.g., land cover, altitude) and background climate. Results demonstrate robust performance of the TIR-based method, with an average Mean Absolute Error (MAE) of 0.6 gr/cm2 across stations and datasets, supporting its applicability for LST retrieval and broader environmental monitoring applications. Full article
Show Figures

Figure 1

29 pages, 4433 KB  
Article
Influence of Boundary Conditions and Heating Modes on the Onset of Columnar Convection in Rotating Spherical Shells
by William Seeley, Francesca Coke, Radostin D. Simitev and Robert J. Teed
Fluids 2025, 10(9), 237; https://doi.org/10.3390/fluids10090237 - 5 Sep 2025
Viewed by 567
Abstract
We investigate the linear onset of thermal convection in rotating spherical shells with a focus on the influence of mechanical boundary conditions and thermal driving modes. Using a spectral method, we determine critical Rayleigh numbers, azimuthal wavenumbers, and oscillation frequencies over a wide [...] Read more.
We investigate the linear onset of thermal convection in rotating spherical shells with a focus on the influence of mechanical boundary conditions and thermal driving modes. Using a spectral method, we determine critical Rayleigh numbers, azimuthal wavenumbers, and oscillation frequencies over a wide range of Prandtl numbers and shell aspect ratios at moderate Ekman numbers. We show that the preferred boundary condition for convective onset depends systematically on both aspect ratio and Prandtl number: for sufficiently thick shells or for large Pr, the Ekman boundary layer at the outer boundary becomes destabilising, so that no-slip boundaries yield a lower Rac than stress-free boundaries. Comparing differential and internal heating, we find that internal heating generally raises Rac, shifts the onset to larger wavenumbers and frequencies, and relocates the critical column away from the tangent cylinder. Mixed boundary conditions with no-slip on the inner boundary behave similarly to purely stress-free boundaries, confirming the dominant influence of the outer surface. These results demonstrate that boundary conditions and heating mechanisms play a central role in controlling the onset of convection and should be carefully considered in models of planetary and stellar interiors. Full article
(This article belongs to the Collection Challenges and Advances in Heat and Mass Transfer)
Show Figures

Figure 1

23 pages, 5034 KB  
Article
Study on Early Warning of Stiffness Degradation and Collapse of Steel Frame Under Fire
by Ming Xie, Fangbo Xu, Xiangdong Wu, Zhangdong Wang, Li’e Yin, Mengqi Xu and Xiang Li
Buildings 2025, 15(17), 3146; https://doi.org/10.3390/buildings15173146 - 2 Sep 2025
Viewed by 622
Abstract
Frequent building fires seriously threaten the safety of steel structures. According to the data, fire accidents account for about 35% of the total number of production safety accidents. The collapse of steel structures accounted for 42% of the total collapse. The early warning [...] Read more.
Frequent building fires seriously threaten the safety of steel structures. According to the data, fire accidents account for about 35% of the total number of production safety accidents. The collapse of steel structures accounted for 42% of the total collapse. The early warning problem of steel structure fire collapse is imminent. This study aims to address this challenge by establishing a novel early warning framework, which is used to quantify the critical early warning threshold of steel frames based on elastic modulus degradation and its correlation with ultrasonic wave velocity under different collapse modes. The sequential thermal–mechanical coupling numerical method is used in the study. Firstly, Pyrosim is used to simulate the high-fidelity fire to obtain the real temperature field distribution, and then it is mapped to the Abaqus finite element model as the temperature load for nonlinear static analysis. The critical point of structural instability is identified by monitoring the mutation characteristics of the displacement and the change rate of the key nodes in real time. The results show that when the steel frame collapses inward as a whole, the three-level early warning elastic modulus thresholds of the beam are 153.6 GPa, 78.6 GPa, and 57.5 GPa, respectively. The column is 168.7 GPa, 122.4 GPa, and 72.6 GPa. Then the three-level warning threshold of transverse and longitudinal wave velocity is obtained. The three-stage shear wave velocity warning thresholds of the fire column are 2828~2843 m/s, 2409~2434 m/s, and 1855~1874 m/s, and the three-stage longitudinal wave velocity warning thresholds are 5742~5799 m/s, 4892~4941 m/s, and 3804~3767 m/s. The core innovation of this study is to quantitatively determine a three-level early warning threshold system, which corresponds to the three stages of significant degradation initiation, local failure, and critical collapse. Based on the theoretical relationship, these elastic modulus thresholds are converted into corresponding ultrasonic wave velocity thresholds. The research results provide a direct and reliable scientific basis for the development of new early warning technology based on acoustic emission real-time monitoring and fill the gap between the mechanism research and engineering application of steel structure fire resistance design. Full article
Show Figures

Figure 1

17 pages, 6770 KB  
Article
Research on Impact Resistance of Steel Frame Beam-Column Structure Under Fire
by Zhi Li, Yu-Tong Feng and Tian-Qi Xue
Buildings 2025, 15(17), 3144; https://doi.org/10.3390/buildings15173144 - 2 Sep 2025
Viewed by 652
Abstract
In this study, the impact resistance of WUF-B steel frame beam–column joints under fire was investigated using ABAQUS finite element software through a sequential thermal–mechanical coupling approach. By integrating a room-temperature impact model with a single-sided fire field applied to the lower flange [...] Read more.
In this study, the impact resistance of WUF-B steel frame beam–column joints under fire was investigated using ABAQUS finite element software through a sequential thermal–mechanical coupling approach. By integrating a room-temperature impact model with a single-sided fire field applied to the lower flange of the steel beam, the multi-parameter influence mechanisms—including temperature (150–750 °C), fire area distribution, and impact momentum—were systematically analyzed. Results indicate that elevated temperatures significantly degrade structural impact resistance. At 750 °C, the peak impact force decreases by 73.3% compared to room temperature, while the mid-span bending moment increases by 63.3%. When the fire zone is near the impact point, localized thermal softening further reduces the peak impact force. Under constant impact energy, lower momentum (i.e., higher velocity) accelerates the rebound of the falling mass, revealing the role of momentum transfer efficiency in governing the transient response of high-temperature structures. Additionally, an analytical prediction model based on Timoshenko beam theory and thermo-mechanical stiffness degradation is developed. By introducing a segmented temperature reduction function, the model significantly enhances the accuracy of mid-span displacement predictions for steel structures under fire. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

Back to TopTop