Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = thermal admittance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 2460 KiB  
Review
A Survey on Design and Control Methodologies of High- Torque-Density Joints for Compliant Lower-Limb Exoskeleton
by Jingbo Xu, Silu Chen, Shupei Li, Yong Liu, Hongyu Wan, Zhuang Xu and Chi Zhang
Sensors 2025, 25(13), 4016; https://doi.org/10.3390/s25134016 - 27 Jun 2025
Viewed by 533
Abstract
The lower-limb assistance exoskeleton is increasingly being utilized in various fields due to its excellent performance in human body assistance. As a crucial component of robots, the joint is expected to be designed with a high-output torque to support hip and knee movement, [...] Read more.
The lower-limb assistance exoskeleton is increasingly being utilized in various fields due to its excellent performance in human body assistance. As a crucial component of robots, the joint is expected to be designed with a high-output torque to support hip and knee movement, and lightweight to enhance user experience. Contrasted with the elastic actuation with harmonic drive and other flexible transmission, the non-elastic quasi-direct actuation is more promising to be applied in exoskeleton due to its advanced dynamic performance and lightweight feature. Moreover, robot joints are commonly driven electrically, especially by a permanent magnet synchronous motor which is rapidly developed because of its compact structure and powerful output. Based on different topological structures, numerous research focus on torque density, ripple torque suppression, efficiency improvement, and thermal management to improve motor performance. Furthermore, the elaborated joint with powerful motors should be controlled compliantly to improve flexibility and interaction, and therefore, popular complaint control algorithms like impedance and admittance controls are discussed in this paper. Through the review and analysis of the integrated design from mechanism structure to control algorithm, it is expected to indicate developmental prospects of lower-limb assistance exoskeleton joints with optimized performance. Full article
Show Figures

Figure 1

40 pages, 10369 KiB  
Article
Thermoacoustic, Physical, and Mechanical Properties of Bio-Bricks from Agricultural Waste
by Haidee Yulady Jaramillo, Robin Zuluaga-Gallego, Alejandro Arango-Correa and Ricardo Andrés García-León
Buildings 2025, 15(13), 2183; https://doi.org/10.3390/buildings15132183 - 23 Jun 2025
Cited by 1 | Viewed by 615
Abstract
This study presents the development and characterization of sustainable bio-bricks incorporating agricultural residues—specifically coffee husks and bovine excreta—as partial substitutes for cement. A mixture design optimized through response surface methodology (RSM) identified the best-performing formulation, namely 960 g of cement, 225 g of [...] Read more.
This study presents the development and characterization of sustainable bio-bricks incorporating agricultural residues—specifically coffee husks and bovine excreta—as partial substitutes for cement. A mixture design optimized through response surface methodology (RSM) identified the best-performing formulation, namely 960 g of cement, 225 g of lignin (extracted from coffee husks), and 315 g of bovine excreta. Experimental evaluations included compressive and flexural strength, water absorption, density, thermal conductivity, transmittance, admittance, and acoustic transmission loss. The optimal mixture achieved a compressive strength of 1.70 MPa and a flexural strength of 0.56 MPa, meeting Colombian technical standards for non-structural masonry. Its thermal conductivity (~0.19 W/(m×K)) and transmittance (~0.20 W/(m2×K)) suggest good insulation performance. Field tests in three Colombian climate zones confirmed improved thermal comfort compared to traditional clay brick walls, with up to 8 °C internal temperature reduction. Acoustic analysis revealed higher sound attenuation in bio-bricks, especially at low frequencies. Chemical and morphological analyses (SEM-EDS, FTIR, and TGA) confirmed favorable thermal stability and the synergistic interaction of organic and inorganic components. The findings support bio-bricks’ potential as eco-efficient, low-carbon alternatives for sustainable building applications. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

22 pages, 9695 KiB  
Article
Thermal Hysteresis Effect and Its Compensation on Electro-Mechanical Impedance Monitoring of Concrete Structure Embedded with Piezoelectric Sensor
by Hedong Li, Demi Ai and Hongping Zhu
Buildings 2023, 13(10), 2564; https://doi.org/10.3390/buildings13102564 - 10 Oct 2023
Cited by 3 | Viewed by 1731
Abstract
Piezoelectric (PZT) sensors employed in the electro-mechanical impedance/admittance (EMI/EMA) technique are vulnerable to temperature variations when applied to concrete structural health monitoring (SHM). However, in practice, the ambient temperature transmitted from the air or surface to the concrete inner part is time-dependent during [...] Read more.
Piezoelectric (PZT) sensors employed in the electro-mechanical impedance/admittance (EMI/EMA) technique are vulnerable to temperature variations when applied to concrete structural health monitoring (SHM). However, in practice, the ambient temperature transmitted from the air or surface to the concrete inner part is time-dependent during its monitoring process, which inflicts a critical challenge to ensure accurate signal processing for PZT sensors embedded inside the concrete. This paper numerically and experimentally investigated the thermal hysteresis effect on EMA-based concrete structure monitoring via an embedded PZT sensor. In the numerical modeling, a 3D finite element model of a concrete cube embedded with a PZT sensor was generated, where thermal hysteresis in the concrete, adhesive coat, and sensor was fully incorporated by introducing a temperature gradient. In the experiment, an equal-sized concrete cube installed with a cement-embedded PZT (CEP) sensor was cast and heated for 180 min at four temperature regimes for EMA monitoring. Experimental results, as a cogent validation of the simulation, indicated that EMA characteristics were functionally correlated to the dual effect of both heat transfer and the temperature regime. Moreover, a new approach relying on the frequency/magnitude of the maximum resonance peak in the EMA spectrum was proposed to effectively compensate for the thermal hysteresis effect, which could be regarded as a promising alternative for future applications. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

13 pages, 7876 KiB  
Communication
Surface Roughness Effects on the Vibration Characteristics of AT-Cut Quartz Crystal Plate
by Mengjie Li, Peng Li, Nian Li, Dianzi Liu, Iren E. Kuznetsova and Zhenghua Qian
Sensors 2023, 23(11), 5168; https://doi.org/10.3390/s23115168 - 29 May 2023
Cited by 3 | Viewed by 2719
Abstract
With the miniaturization and high-frequency requirements of quartz crystal sensors, microscopic issues affecting operating performance, e.g., the surface roughness, are receiving more and more attention. In this study, the activity dip caused by surface roughness is revealed, with the physical mechanism clearly demonstrated. [...] Read more.
With the miniaturization and high-frequency requirements of quartz crystal sensors, microscopic issues affecting operating performance, e.g., the surface roughness, are receiving more and more attention. In this study, the activity dip caused by surface roughness is revealed, with the physical mechanism clearly demonstrated. Firstly, the surface roughness is considered as a Gaussian distribution, and the mode coupling properties of an AT-cut quartz crystal plate are systematically investigated under different temperature environments with the aid of two-dimensional thermal field equations. The resonant frequency, frequency–temperature curves, and mode shapes of the quartz crystal plate are obtained through the partial differential equation (PDE) module of COMSOL Multiphysics software for free vibration analysis. For forced vibration analysis, the admittance response and phase response curves of quartz crystal plate are calculated via the piezoelectric module. The results from both free and forced vibration analyses demonstrate that surface roughness reduces the resonant frequency of quartz crystal plate. Additionally, mode coupling is more likely to occur in a crystal plate with a surface roughness, leading to activity dip when temperature varies, which decreases the stability of quartz crystal sensors and should be avoided in device fabrication. Full article
Show Figures

Figure 1

11 pages, 869 KiB  
Article
Admittance to Wildlife Rehabilitation Centres Points to Adverse Effects of Climate Change on Insectivorous Bats
by Valeria B. Salinas-Ramos, Alessandra Tomassini, Fabiana Ferrari, Rita Boga and Danilo Russo
Biology 2023, 12(4), 543; https://doi.org/10.3390/biology12040543 - 3 Apr 2023
Cited by 11 | Viewed by 4246
Abstract
Climate change is exerting a broad range of (mostly adverse) effects on biodiversity, and more are expected under future scenarios. Impacts on species that deliver key ecosystem services, such as bats, are especially concerning, so their better understanding is key to preventing or [...] Read more.
Climate change is exerting a broad range of (mostly adverse) effects on biodiversity, and more are expected under future scenarios. Impacts on species that deliver key ecosystem services, such as bats, are especially concerning, so their better understanding is key to preventing or mitigating them. Due to their physiological requirements, bats are especially sensitive to environmental temperatures and water availability, and heatwave-related mortality has been reported for flying foxes and, more anecdotally, other bat species. For temperate regions, to date, no study has highlighted an association between temperature extremes and bat mortality, mostly due to the difficulty of relying on data series covering long timespans. Heatwaves may affect bats, causing thermal shock and acute dehydration so bats can fall from the roost and, in some cases, are rescued by the public and brought to wildlife rehabilitation centres (WRCs). In our work, we considered a dataset spanning over 20 years of bat admittance to Italian WRCs, covering 5842 bats, and hypothesised that in summer, the number of admitted bats will increase in hotter weeks and young bats will be more exposed to heat stress than adults. We confirmed our first hypothesis for both the overall sample and three out of five synurbic species for which data were available, whereas hot weeks affected both young and adults, pointing to an especially concerning effect on bat survival and reproduction. Although our study is correlative, the existence of a causative relationship between high temperatures and grounded bats is still the best explanation for the recorded patterns. We urge such a relationship to be explored via extensive monitoring of urban bat roosts to inform appropriate management of bat communities in such environments and preserve the precious ecosystem services such mammals provide, especially insectivory services. Full article
Show Figures

Figure 1

10 pages, 2055 KiB  
Article
Electrical and Structural Characterization of Few-Layer Graphene Sheets on Quartz
by Kazybek Aimaganbetov, Nurlan Almas, Bayan Kurbanova, Dauren Muratov, Abay Serikkanov, Zinetula Insepov and Nurlan Tokmoldin
Materials 2022, 15(15), 5330; https://doi.org/10.3390/ma15155330 - 3 Aug 2022
Cited by 3 | Viewed by 2145
Abstract
Despite the impressive performance and incredible promise for a variety of applications, the wide-scale commercialization of graphene is still behind its full potential. One of the main challenges is related to preserving graphene’s unique properties upon transfer onto practically desirable substrates. In this [...] Read more.
Despite the impressive performance and incredible promise for a variety of applications, the wide-scale commercialization of graphene is still behind its full potential. One of the main challenges is related to preserving graphene’s unique properties upon transfer onto practically desirable substrates. In this work, few-layer graphene sheets deposited via liquid-phase transfer from copper onto a quartz substrate have been studied using a suite of experimental techniques, including scanning electron microscopy (SEM), Raman spectroscopy, admittance spectroscopy, and four-point probe electrical measurements. SEM measurements suggest that the transfer of graphene from copper foil to quartz using the aqueous solution of ammonium persulfate was accompanied by unintentional etching of the entire surface of the quartz substrate and, as a result, the formation of microscopic facet structures covering the etched surface of the substrate. As revealed by Raman spectroscopy and the electrical measurements, the transfer process involving the etching of the copper foil in a 0.1 M solution of (NH4)2S2O8 resulted in its p-type doping. This was accompanied by the appearance of an electronic gap of 0.022 eV, as evidenced by the Arrhenius analysis. The observed increase in the conductance of the samples with temperature can be explained by thermally activated carrier transport, dominating the scattering processes. Full article
Show Figures

Figure 1

18 pages, 4445 KiB  
Article
Life Cycle Saving Analysis of an Earth-Coupled Building without and with Roof Evaporative Cooling for Energy Efficient Potato Storage Application
by Ramkishore Singh, Dharam Buddhi, Nikolai Ivanovich Vatin, Chander Prakash, Saurav Dixit, Gurbir Singh Khera, Sergei A. Solovev, Svetlana B. Ilyashenko and Vinod John
Energies 2022, 15(11), 4076; https://doi.org/10.3390/en15114076 - 1 Jun 2022
Cited by 7 | Viewed by 2252
Abstract
Preservation of potatoes in a controlled cool environment (i.e., in cold storage) consumes a substantial amount of energy. The specific energy consumption in Indian cold storage has been estimated to be between 9 and 26 kWh/ton/year. In this article, the potential for minimizing [...] Read more.
Preservation of potatoes in a controlled cool environment (i.e., in cold storage) consumes a substantial amount of energy. The specific energy consumption in Indian cold storage has been estimated to be between 9 and 26 kWh/ton/year. In this article, the potential for minimizing the energy consumption in the refrigeration process of cold storage through passive cooling concepts (i.e., roof evaporative cooling and the earth integration of the storage building) was explored. These passive concepts of cooling have shown significant potential for lowering the cooling loads and the energy consumption in different types of buildings. Therefore, a feasibility analysis for a potato storage building, considering the effect of the passive cooling concepts, was conducted for three different climatic conditions (i.e., hot–dry, warm–humid, and composite) in India. The energy saving potentials in the cold storage were assessed by quantifying the thermal energy exchange between the indoor and outdoor environments using the modified admittance method. The effect of heat transfer through the building envelope on total energy consumption was estimated for the building having various sunken volumes (buried depths) without and with roof evaporative cooling. Further, the economic feasibility of adopting passive concepts was assessed in terms of life cycle saving compared to the base case. Results indicate that earth coupling without and with evaporative cooling has substantial potential to reduce the cooling load and can produce significant savings. Full article
(This article belongs to the Special Issue Optimal Design of Energy System for Low-Energy Residential Buildings)
Show Figures

Figure 1

18 pages, 3395 KiB  
Article
A Study on the Influence of the Next Generation Colored Inorganic Geopolymer Material Paint on the Insulation Measurement of Concrete Building Shell
by Yeou-Fong Li, Ya-Xuan Xie, Jin-Yuan Syu, Chih-Hong Huang, Hsin-Hua Tsai, Ta-Wui Cheng, Yen-Chun Chen and Wei-Hao Lee
Sustainability 2022, 14(1), 164; https://doi.org/10.3390/su14010164 - 24 Dec 2021
Cited by 4 | Viewed by 3427
Abstract
Many studies have shown that paint with reflective heat can effectively reduce the temperature of the building envelope and reduce the future energy consumption of the building. This study inspired the next-generation inorganic geopolymer material (IGM) color paint without volatile matter, which could [...] Read more.
Many studies have shown that paint with reflective heat can effectively reduce the temperature of the building envelope and reduce the future energy consumption of the building. This study inspired the next-generation inorganic geopolymer material (IGM) color paint without volatile matter, which could be applied on concrete surfaces to reduce energy consumption in warm seasons. In this study, a total of five insulating IGM paints, white, red, green, blue, and yellow, were applied to a 50 cm × 50 cm × 12 cm concrete slab top surface. The highest average light reflectance of all the paints was 87.5% of white IGM paint, which was higher than plain concrete (36.4%). The heat flux and surface temperature were examined in the laboratory, and those test results were verified outdoor. The results showed that the IGM paints could effectively reduce the surface temperature and heat flux of the upper and lower surfaces of concrete slabs, and the white colored IGM paint was the best performer among all five colors, whereas the heat storage coefficient (Sf) of red, white, yellow, blue, and green IGM painted concrete slabs were 0.57, 0.53, 3.62, 2.95, and 1.91 W·m−2·K−1, respectively, lower than plain concrete (24.40 W·m−2·K−1). This coefficient was presented to externalize the thermal admittance. The overall measurement results showed that the concrete slab with colored IGM paints had better heat insulation ability than the plain concrete slab, especially in white IGM paint. Full article
Show Figures

Figure 1

26 pages, 9276 KiB  
Article
Water-Covered Roof Versus Inverted Flat Roof on the Mediterranean Coast: A Comparative Study of Thermal and Energy Behavior
by Almudena Espinosa-Fernández, Víctor Echarri-Iribarren and Claudio A. Sáez
Appl. Sci. 2020, 10(7), 2288; https://doi.org/10.3390/app10072288 - 27 Mar 2020
Cited by 6 | Viewed by 3992
Abstract
Reservoir, or water-collecting roofs present greater thermal inertia than inverted flat roofs due to the mass of water they contain. This feature gives them better thermal performance and leads to greater stability in the indoor air temperature Ti and the wall surface [...] Read more.
Reservoir, or water-collecting roofs present greater thermal inertia than inverted flat roofs due to the mass of water they contain. This feature gives them better thermal performance and leads to greater stability in the indoor air temperature Ti and the wall surface temperatures. In the summer, they can dampen the effect of solar radiation and regulate external thermal loads thanks to their greater effusivity and thermal capacity. This research compares the thermal behavior of the roofs of two buildings located in Alicante on the Spanish Mediterranean coast: a loft flat in the city center and a water-covered roof in the Museum of the University of Alicante (MUA). Values for effusivity, diffusivity, thermal capacity, decrement factor, time lag and internal, as well as external thermal admittance were obtained. After monitoring both roofs during 2014, behavior simulations were performed in Design Builder using 6 different scenarios reflecting different combinations in both buildings of water-covered, inverted and conventional roofs and marble or terrazzo paving. The water-covered roof led to a higher decrement factor and time lag, as well as to a reduction of annual energy demands between 8.86% and 9.03%. Full article
(This article belongs to the Special Issue Efficiency and Optimization of Buildings Energy Consumption)
Show Figures

Figure 1

18 pages, 9163 KiB  
Article
Soil Water Content Diachronic Mapping: An FFT Frequency Analysis of a Temperature–Vegetation Index
by Fulvio Capodici, Carmelo Cammalleri, Antonio Francipane, Giuseppe Ciraolo, Goffredo La Loggia and Antonino Maltese
Geosciences 2020, 10(1), 23; https://doi.org/10.3390/geosciences10010023 - 10 Jan 2020
Cited by 12 | Viewed by 4229
Abstract
Among the indirect estimation approaches of soil water content in the upper layer of the soil, the “triangle method” is one of the most common that relies on the simple relationship between the optical and thermal features sensed via Earth Observation. These features [...] Read more.
Among the indirect estimation approaches of soil water content in the upper layer of the soil, the “triangle method” is one of the most common that relies on the simple relationship between the optical and thermal features sensed via Earth Observation. These features are controlled by water content at the surface and within the root zone but also by meteorological forcing including air temperature and humidity, as well as solar radiation. Night- and day-time MODIS composites of land-surface temperature (LST) allowed applying a version of the triangle method that takes into account the temporal admittance of the soil. In this study, it has been applied to a long time-series of pair images to analyze the seasonal influence of the meteorological forcing on a triangle method index (or temperature–vegetation index, TVX), as well as to discuss extra challenges of the diachronic approach including seasonality effects and the variability of environmental forcing. The Imera Meridionale basin (Sicily, Italy) has been chosen to analyze the method over a time-series of 12 years. The analysis reveals that, under these specific environmental and climatic conditions (strong seasonality and rainfall out of phase with vegetation growth), Normalized Difference Vegetation Index (NDVI) and LST pairs move circularly in time within the optical vs. thermal feature space. Concordantly, the boundaries of the triangle move during the seasons. Results showed a strong correlation between TVX and rainfall normalized amplitudes of the power spectra (r2 ~0.8) over the range of frequencies of the main harmonics. Full article
(This article belongs to the Special Issue Remote Sensing used in Environmental Hydrology)
Show Figures

Figure 1

10 pages, 5024 KiB  
Article
Analysis of High-Efficiency Mo-Based Solar Selective Absorber by Admittance Locus Method
by Hung-Pin Chen, Chao-Te Lee, Wei-Bo Liao, Ya-Chen Chang, Yu-Sheng Chen, Meng-Chi Li, Cheng-Chung Lee and Chien-Cheng Kuo
Coatings 2019, 9(4), 256; https://doi.org/10.3390/coatings9040256 - 17 Apr 2019
Cited by 7 | Viewed by 4084
Abstract
High absorptivity and low emissivity are characteristics needed in an ideal solar selective absorber. In high-temperature applications, such as a solar concentration power system in which the solar surface works under a long-term high temperature (about 400 to 800 °C), the absorber material [...] Read more.
High absorptivity and low emissivity are characteristics needed in an ideal solar selective absorber. In high-temperature applications, such as a solar concentration power system in which the solar surface works under a long-term high temperature (about 400 to 800 °C), the absorber material has to maintain high absorption in the visible region, high reflectance in the infrared region, and excellent thermal stability at high temperature. In this research, the design of a molybdenum-based (Mo-based) solar selective absorber was analyzed by the admittance locus method, and the films were deposited by magnetron sputtering. The ratio of the extinction coefficient to the refractive index of the Mo layer was close to 1, so that the Mo-based solar selective absorber had a broad absorption band, high absorption, and good solar selectivity. Its average reflectance in the visible region was less than 0.4%. The experimental absorption was 97.1% (simulated absorption was 98%) and the emissivity was from 13% to 20% (simulated emissivity was 8% to 26%) as the temperature increased from 400 to 800 °C. Full article
(This article belongs to the Special Issue Design, Manufacturing and Measurement of Optical Film Coatings)
Show Figures

Figure 1

14 pages, 3124 KiB  
Article
Impact of Insulation Type and Thickness on the Dynamic Thermal Characteristics of an External Wall Structure
by Jihui Yuan
Sustainability 2018, 10(8), 2835; https://doi.org/10.3390/su10082835 - 9 Aug 2018
Cited by 28 | Viewed by 9533
Abstract
The dynamic thermal characteristics of external wall structures are directly related to indoor thermal comfort and energy savings in buildings; they are also complicated and worth investigating. Thermal insulation in external wall structures has become a popular topic of investigation in the domain [...] Read more.
The dynamic thermal characteristics of external wall structures are directly related to indoor thermal comfort and energy savings in buildings; they are also complicated and worth investigating. Thermal insulation in external wall structures has become a popular topic of investigation in the domain of building energy efficiency. This study aims to find the impact of insulation type and thickness on the dynamic thermal characteristics of external wall structures using a homogeneous multi-layer building external wall structure and three types of insulation materials that are widely used in Japan. The impact of insulation type and thickness on seven thermal characteristics of external walls, including thermal transmittance, decrement factor or amplitude attenuation, time lag, thermal admittance, time lead for thermal admittance, surface factor, and thermal capacity, was evaluated by numerical methods in this study. It was shown that insulation type and thickness would have a significant effect on thermal transmittance, decrement factor and time lag, but yield no significant change in thermal admittance, time lead for thermal admittance, surface factor, and the thermal capacity of external wall structures. Full article
Show Figures

Figure 1

20 pages, 4424 KiB  
Article
Soil Water Content Assessment: Critical Issues Concerning the Operational Application of the Triangle Method
by Antonino Maltese, Fulvio Capodici, Giuseppe Ciraolo and Goffredo La Loggia
Sensors 2015, 15(3), 6699-6718; https://doi.org/10.3390/s150306699 - 19 Mar 2015
Cited by 29 | Viewed by 6729
Abstract
Knowledge of soil water content plays a key role in water management efforts to improve irrigation efficiency. Among the indirect estimation methods of soil water content via Earth Observation data is the triangle method, used to analyze optical and thermal features because these [...] Read more.
Knowledge of soil water content plays a key role in water management efforts to improve irrigation efficiency. Among the indirect estimation methods of soil water content via Earth Observation data is the triangle method, used to analyze optical and thermal features because these are primarily controlled by water content within the near-surface evaporation layer and root zone in bare and vegetated soils. Although the soil-vegetation-atmosphere transfer theory describes the ongoing processes, theoretical models reveal limits for operational use. When applying simplified empirical formulations, meteorological forcing could be replaced with alternative variables when the above-canopy temperature is unknown, to mitigate the effects of calibration inaccuracies or to account for the temporal admittance of the soil. However, if applied over a limited area, a characterization of both dry and wet edges could not be properly achieved; thus, a multi-temporal analysis can be exploited to include outer extremes in soil water content. A diachronic empirical approach introduces the need to assume a constancy of other meteorological forcing variables that control thermal features. Airborne images were acquired on a Sicilian vineyard during most of an entire irrigation period (fruit-set to ripening stages, vintage 2008), during which in situ soil water content was measured to set up the triangle method. Within this framework, we tested the triangle method by employing alternative thermal forcing. The results were inaccurate when air temperature at airborne acquisition was employed. Sonic and aerodynamic air temperatures confirmed and partially explained the limits of simultaneous meteorological forcing, and the use of proxy variables improved model accuracy. The analysis indicates that high spatial resolution does not necessarily imply higher accuracies. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Graphical abstract

15 pages, 904 KiB  
Article
Performance Evaluation of Modern Building Thermal Envelope Designs in the Semi-Arid Continental Climate of Tehran
by Shaghayegh Mohammad and Andrew Shea
Buildings 2013, 3(4), 674-688; https://doi.org/10.3390/buildings3040674 - 4 Oct 2013
Cited by 47 | Viewed by 8901
Abstract
In this paper we evaluate the thermal performance of a range of modern wall constructions used in the residential buildings of Tehran in order to find the most appropriate alternative to the traditional un-fired clay and brick materials, which are increasingly being replaced [...] Read more.
In this paper we evaluate the thermal performance of a range of modern wall constructions used in the residential buildings of Tehran in order to find the most appropriate alternative to the traditional un-fired clay and brick materials, which are increasingly being replaced in favor of more slender wall constructions employing hollow clay, autoclaved aerated concrete or light expanded clay aggregate blocks. The importance of improving the building envelope through estimating the potential for energy saving due to the application of the most energy-efficient wall type is presented and the wall constructions currently erected in Tehran are introduced along with their dynamic and steady-state thermal properties. The application of a dynamic simulation tool is explained and the output of the thermal simulation model is compared with the dynamic thermal properties of the wall constructions to assess their performance in summer and in winter. Finally, the best and worst wall type in terms of their cyclic thermal performance and their ability to moderate outdoor conditions is identified through comparison of the predicted indoor temperature and a target comfort temperature. Full article
(This article belongs to the Special Issue Building Performance Analysis and Simulation)
Show Figures

Figure 1

Back to TopTop