Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = thermal abuse test

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 15854 KiB  
Article
Failure Analysis of Fire in Lithium-Ion Battery-Powered Heating Insoles: Case Study
by Rong Yuan, Sylvia Jin and Glen Stevick
Batteries 2025, 11(7), 271; https://doi.org/10.3390/batteries11070271 - 17 Jul 2025
Viewed by 400
Abstract
This study investigates a lithium-ion battery failure in heating insoles that ignited during normal walking while powered off. Through comprehensive material characterization, electrical testing, thermal analysis, and mechanical gait simulation, we systematically excluded electrical or thermal abuse as failure causes. X-ray/CT imaging localized [...] Read more.
This study investigates a lithium-ion battery failure in heating insoles that ignited during normal walking while powered off. Through comprehensive material characterization, electrical testing, thermal analysis, and mechanical gait simulation, we systematically excluded electrical or thermal abuse as failure causes. X-ray/CT imaging localized the ignition source to the lateral heel edge of the pouch cell, correlating precisely with peak mechanical stress identified through gait analysis. Remarkably, the cyclic load was less than 10% of the single crush load threshold specified in safety standards. Key findings reveal multiple contributing factors as follows: the uncoated polyethylene separator’s inability to prevent stress-induced internal short circuits, the circuit design’s lack of battery health monitoring functionality that permitted undetected degradation, and the hazardous placement inside clothing that exacerbated burn injuries. These findings necessitate a multi-level safety framework for lithium-ion battery products, encompassing enhanced cell design to prevent internal short circuit, improved circuit protection with health monitoring capabilities, optimized product integration to mitigate mechanical and environmental impact, and effective post-failure containment measures. This case study exposes a critical need for product-specific safety standards that address the unique demands of wearable lithium-ion batteries, where existing certification requirements fail to prevent real-use failure scenarios. Full article
(This article belongs to the Section Battery Performance, Ageing, Reliability and Safety)
Show Figures

Graphical abstract

27 pages, 7013 KiB  
Article
Detailed Characterization of Thermal Runaway Particle Emissions from a Prismatic NMC622 Lithium-Ion Battery
by Felix Elsner, Peter Gerhards, Gaël Berrier, Rémi Vincent, Sébastien Dubourg and Stefan Pischinger
Batteries 2025, 11(6), 225; https://doi.org/10.3390/batteries11060225 - 9 Jun 2025
Viewed by 847
Abstract
Particles ejected during thermal runaway (TR) of lithium-ion batteries carry a significant fraction of the total TR energy and can cause danger to other components in the battery system. The associated safety hazards should be addressed in the battery pack development process, which [...] Read more.
Particles ejected during thermal runaway (TR) of lithium-ion batteries carry a significant fraction of the total TR energy and can cause danger to other components in the battery system. The associated safety hazards should be addressed in the battery pack development process, which requires a deep understanding of TR particle characteristics. In this study, these characteristics are determined by applying several measurement techniques. Among them, dynamic image analysis and large particle image processing are applied to battery abuse particles for the first time, allowing their size and shape to be quantified in detail. Particles are collected from three overheating tests on a prismatic 51 Ah NMC622 cell under vacuum conditions in an autoclave environment. Battery abuse particles cover a wide size range, from micrometers to millimeters, with the largest particle reaching 51.4 mm. They are non-spherical, whereby sphericity, symmetry, and aspect ratio decrease for larger particles. Re-solidified copper droplets and intact separator pieces indicate particle temperatures of ~200–1100 °C at the time of cell ejection. Particles are partially combustible, with an exothermic onset at ~500 °C associated with graphite oxidation. Reactivity is non-linearly size dependent. Implications of these findings for battery system development are discussed. Full article
Show Figures

Figure 1

22 pages, 3179 KiB  
Article
Lithium-Ion Battery Thermal Runaway Suppression Using Water Spray Cooling
by Eric Huhn, Nicole Braxtan, Shen-En Chen, Anthony Bombik, Tiefu Zhao, Lin Ma, John Sherman and Soroush Roghani
Energies 2025, 18(11), 2709; https://doi.org/10.3390/en18112709 - 23 May 2025
Cited by 1 | Viewed by 1095
Abstract
Despite the commercial success of lithium-ion batteries (LIBs), the risk of thermal runaway, which can lead to dangerous fires, has become more concerning as LIB usage increases. Research has focused on understanding the causes of thermal runaway and how to prevent or detect [...] Read more.
Despite the commercial success of lithium-ion batteries (LIBs), the risk of thermal runaway, which can lead to dangerous fires, has become more concerning as LIB usage increases. Research has focused on understanding the causes of thermal runaway and how to prevent or detect it. Additionally, novel thermal runaway-resistant materials are being researched, as are different methods of constructing LIBs that better isolate thermal runaway and prevent it from propagating. However, field firefighters are using hundreds of thousands of liters of water to control large runaway thermal emergencies, highlighting the need to merge research with practical observations. To study battery fire, this study utilized a temperature abuse method to increase LIB temperature and investigated whether thermal runaway can be suppressed by applying external cooling during heating. The batteries used were pouch-type ones and subjected to high states of charge (SOC), which primed the thermal runaway during battery temperature increase. A water spray method was then devised and tested to reduce battery temperature. Results showed that, without cooling, a thermal runaway fire occurred every time during the thermal abuse. However, external cooling successfully prevented thermal runaway. This observation shows that using water as a temperature reducer is more effective than using it as a fire suppressant, which can substantially improve battery performance and increase public safety. Full article
Show Figures

Figure 1

15 pages, 2113 KiB  
Article
Form Factor and Chemistry Agnostic Battery Deactivation Using Electrically Conductive Gel for Safe Transportation
by Gordon Henry Waller, Connor Jacob, Annabelle Green, Rachel Ashmore Carter and Corey Thomas Love
Batteries 2025, 11(5), 201; https://doi.org/10.3390/batteries11050201 - 21 May 2025
Viewed by 760
Abstract
Removing residual energy from end-of-life batteries prior to transportation requires some method of deactivation. While many methods have been proposed, very few have been implemented due to limitations of cost, safety, and efficacy. In this work, multiple cell and battery types (e.g., lithium-polymer [...] Read more.
Removing residual energy from end-of-life batteries prior to transportation requires some method of deactivation. While many methods have been proposed, very few have been implemented due to limitations of cost, safety, and efficacy. In this work, multiple cell and battery types (e.g., lithium-polymer pouch cells, 18650 lithium-ion cell, alkaline batteries, and lithium-ion power-tool batteries) were deactivated using a low-cost and easily applied gel consisting of borax cross-linked polyvinyl alcohol and carbon. The PVA–carbon composite creates an external short-circuit pathway of moderate resistance that enables the complete discharge of batteries. Abusive testing conducted after deactivation demonstrates that hazards are largely eliminated, including a complete avoidance of thermal runaway from lithium-ion cells and a reduction in flammable and toxic gases by several orders of magnitude. Full article
(This article belongs to the Section Battery Processing, Manufacturing and Recycling)
Show Figures

Figure 1

15 pages, 4350 KiB  
Article
Investigation of Thermal Runaway in Prismatic Batteries with Dual-Parallel Jelly-Roll Architecture Under Thermal Abuse Conditions
by Jinmei Li, Dong Li, Xin Li, Ting Sun and Qiang Li
Batteries 2025, 11(5), 196; https://doi.org/10.3390/batteries11050196 - 16 May 2025
Viewed by 677
Abstract
In response to the increasingly serious global warming crisis, new energy batteries have progressively replaced highly polluting primary energy sources. Lithium-ion batteries (LIBs) are widely implemented due to their high safety and energy density. Although LIBs exhibit enhanced safety features, significant fire risks [...] Read more.
In response to the increasingly serious global warming crisis, new energy batteries have progressively replaced highly polluting primary energy sources. Lithium-ion batteries (LIBs) are widely implemented due to their high safety and energy density. Although LIBs exhibit enhanced safety features, significant fire risks persist during thermal runaway (TR) events occurring in charging/discharging processes. To elucidate dual-parallel jelly-roll architecture TR characteristics of LIBs under varied operational conditions, this study integrates theoretical analysis with experimental methods, conducting thermal abuse tests under four distinct working conditions: open circuit, constant-current charging, constant-voltage charging, and discharging. The results demonstrate substantial differences in TR characteristics across operational conditions. A thermodynamic equilibrium-based triggering model proved capable of qualitatively evaluating TR risk levels under these conditions. Furthermore, the established TR triggering model reveals that the intensified Joule heating and polarization effects during constant-current charging account for its elevated fire risk compared to other states. These findings provide operational guidelines for optimizing safety strategies in energy storage power stations. Full article
Show Figures

Figure 1

25 pages, 3739 KiB  
Article
Electrochemical–Thermal Modeling of Lithium-Ion Batteries: An Analysis of Thermal Runaway with Observation on Aging Effects
by Milad Tulabi and Roberto Bubbico
Batteries 2025, 11(5), 178; https://doi.org/10.3390/batteries11050178 - 2 May 2025
Viewed by 2460
Abstract
The increasing demand for energy storage solutions, particularly in electric vehicles and renewable energy systems, has intensified research on lithium-ion (Li-ion) battery safety and performance. A critical challenge is thermal runaway (TR), a highly exothermic sequence of reactions triggered by mechanical, electrical, or [...] Read more.
The increasing demand for energy storage solutions, particularly in electric vehicles and renewable energy systems, has intensified research on lithium-ion (Li-ion) battery safety and performance. A critical challenge is thermal runaway (TR), a highly exothermic sequence of reactions triggered by mechanical, electrical, or thermal abuse, which can lead to catastrophic failures. While most TR models focus on fresh cells, aging significantly impacts battery behavior and safety. This study develops an electrochemical–thermal coupled model that incorporates aging effects to better predict thermal behavior and TR initiation in cylindrical Li-ion batteries. The model is validated against experimental data for fresh NMC and aged NCA cells, and statistical analysis is conducted to identify key factors influencing TR (p < 0.05). A full factorial design evaluates the effects of internal resistance (10, 20, 30, and 40 mΩ), capacity (1, 2, 3, and 5 Ah), and current rate (1C, 3C, 6C, and 8C) on temperature evolution. Additionally, a machine learning algorithm (logistic regression) is employed to identify an internal resistance threshold, beyond which thermal runaway (TR) becomes highly probable, and to predict TR probability based on key battery parameters. The model achieved a high prediction accuracy of 95% on the test dataset. Results indicate that aging affects thermal stability in complex ways. The increased internal resistance exacerbates heating rates, while capacity fade reduces stored energy, mitigating TR risk. These findings provide a validated framework for enhancing battery thermal management and predictive safety mechanisms, which contributed to the development of safer, more reliable Li-ion energy storage systems. Full article
Show Figures

Figure 1

15 pages, 283 KiB  
Article
Hygienic Quality of Air-Packed and Refrigerated or Frozen Stored Döner Kebab and Evaluation of the Growth of Intentionally Inoculated Listeria monocytogenes
by Francesca Coppola, Giada Ferluga, Lucilla Iacumin, Cristian Bernardi, Michela Pellegrini and Giuseppe Comi
Microorganisms 2025, 13(4), 701; https://doi.org/10.3390/microorganisms13040701 - 21 Mar 2025
Cited by 1 | Viewed by 660
Abstract
Döner kebab, a meat product of Middle-Eastern origin, has gained significant popularity and is now widely consumed across Europe. The recipe varies depending on the area, with beef, turkey, lamb, or chicken being used as main ingredients. The aim of this work was [...] Read more.
Döner kebab, a meat product of Middle-Eastern origin, has gained significant popularity and is now widely consumed across Europe. The recipe varies depending on the area, with beef, turkey, lamb, or chicken being used as main ingredients. The aim of this work was to assess the hygienic-sanitary quality of raw and cooked döner kebabs stored at 4 ± 2 °C for 10 days and at 8 ± 2 °C for the next 20 days or frozen (−18 °C) for one month. One additional aim was to determine the potential growth of Listeria monocytogenes intentionally inoculated in cooked döner kebab during storage at 4 ± 2 °C or freezing. The concentration of Total Viable Count (TVC) and the Enterobacteriaceae of the 100 samples of raw döner kebab were less than 7 log CFU/g and 4 log CFU/g, respectively. Consequently, the samples can be considered acceptable and similar to traditional raw meat. The cooked döner kebab can be considered safe for a period of 30 days, especially from a microbiological point of view, when stored under refrigerated conditions, also taking into account possible thermal abuse. Coagulase Positive Cocci (CPC), Clostridium H2S+, Salmonella spp., and Listeria monocytogenes were never found in any of the samples. After 30 days, the TVC was at the level of 6 log CFU/g and Enterobacteriaceae at less than 4 log CFU/g. The main concern was related to microbial or tissue activity, resulting in an increase in total volatile basic nitrogen (TVB-N) content. However, in the cooked samples, the TVB-N content remained below 40 mg N/100 g at the end of the shelf-life period (32.5 mg N/100 g), which is still considered an acceptable value. In addition, the level of Malondialdehyde (MDA) was found to be within acceptable limits, with a reading of 1.4 nmol/g attained after 30 days. The same product, when frozen and stored at −18 °C, can be considered stable for a minimum of 6 months, both from a microbiological and a physico-chemical point of view. No microbial growth was observed. The TVB-N and the MDA levels increased, but after 6 months, their levels were still acceptable, with values of 19.1 mg N/100 g and 1.2 nmol/g, respectively. These observations demonstrate low protein degradation and lipid oxidation during the shelf-life period. The challenge test showed that Listeria monocytogenes did not grow in döner kebab either when stored at 4 ± 2 °C for 10 days and 8 ± 2 °C for 20 days or when stored at −18 °C for 6 months. The concentration of L. monocytogenes was found to be 5.4 log CFU/g in the refrigerated products and 4.9 log CFU/g in the frozen products. At the end of the shelf-life period, the L. monocytogenes load in both products was lower than the initial concentration that had been added. Finally, the use of air-packaging has been proven to be beneficial to the preservation of the product and maintained its microbiological and physico-chemical properties intact. Despite these good results, future directions could be to investigate different plastic films and packaging such as Modified Atmosphere (MAP), Vacuum (VP), and Sous Vide packaging (SVP). Full article
(This article belongs to the Special Issue Feature Papers in Food Microbiology)
52 pages, 36644 KiB  
Article
Influence of the Layout of Cells in a Traction Battery on the Evolution of a Fire in the Event of a Failure
by Ana Olona and Luis Castejón
Processes 2025, 13(3), 889; https://doi.org/10.3390/pr13030889 - 18 Mar 2025
Viewed by 473
Abstract
Research on the safety and impact of lithium-ion battery failure has focused on individual cells as lithium-ion batteries began to be used in small devices. However, large and complex battery packs need to be considered, and how the failure of a single cell [...] Read more.
Research on the safety and impact of lithium-ion battery failure has focused on individual cells as lithium-ion batteries began to be used in small devices. However, large and complex battery packs need to be considered, and how the failure of a single cell can affect the system needs to be analyzed. This initial failure at the level of a single cell can lead to thermal runaway of other cells within the pack, resulting in increased risk. This article focuses on tests of mechanical abuse (perforation of cylindrical cells), overcharge (pouch cells), and heating (cylindrical cells with different arrangements and types of connection) to analyse how various parameters influence the mechanism of thermal runaway (TR) propagation. Parameters such as SoC (State of Charge), environment, arrangement, and type of connection are thoroughly evaluated. The tests also analyse the final state of the post-mortem cells and measure the internal resistance of the cells before and after testing. The novelty of this study lies in its analysis of the behavior of different types of cells at room temperature, since the behavior of lithium-ion batteries under adverse circumstances has been extensively studied and is well understood, failures can also occur under normal operating conditions. This study concludes that temperature is a crucial parameter, as overheating of the battery can cause an exothermic reaction and destroy the battery completely. Also, overcharging the cell can compromise its internal structure, which underlines the importance of a well-functioning battery management system (BMS). Full article
Show Figures

Figure 1

16 pages, 4424 KiB  
Article
First Look at Safety and Performance Evaluation of Commercial Sodium-Ion Batteries
by Rachel Carter, Gordon H. Waller, Connor Jacob, Dillon Hayman, Patrick J. West and Corey T. Love
Energies 2025, 18(3), 661; https://doi.org/10.3390/en18030661 - 31 Jan 2025
Cited by 4 | Viewed by 2458
Abstract
Herein, we investigate the performance and safety of four of the early-stage, commercial Na-ion batteries available in 2024, representing the most popular cathode types across research and commercialization: polyanion (Na-VPF), layered metal oxide (Na-NMF), and a Prussian blue analog (Na-tmCN). The cells deliver [...] Read more.
Herein, we investigate the performance and safety of four of the early-stage, commercial Na-ion batteries available in 2024, representing the most popular cathode types across research and commercialization: polyanion (Na-VPF), layered metal oxide (Na-NMF), and a Prussian blue analog (Na-tmCN). The cells deliver a wide range of energy density with Na-tmCN delivering the least (23 Wh/kg) and Na-NMF delivering the most (127 Wh/kg). The Na-VPF cell was in between (47 Wg/kg). Capacity retention under specified cycling conditions and with periodic 0 V excursions was the most robust for the Na-tmCN cells in both cases. Accelerating rate calorimetry (ARC) and nail penetration testing finds that Na-NMF cells do undergo thermal runaway in response to abuse, while the Na-VPF and Na-tmCN exhibit only low self-heating rates (<1 °C/min). During these safety tests, all cells exhibited off-gassing, so we conducted in-line FTIR equipped with a heated gas cell to detect CO, CO2, CH4, toxic acid gases (HCN, HF, NH3), and typical electrolyte components (carbonate ester solvents). Gases similar to those detected during Li-ion failures were found in addition to HCN for the Na-tmCN cell. Our work compares different types of commercial Na-ion batteries for the first time, allowing for a more holistic comparison of the safety and performance tradeoffs for different Na-ion cathode types emerging in 2024. Full article
(This article belongs to the Special Issue Advanced Characterization of Na-Ion Batteries)
Show Figures

Graphical abstract

14 pages, 12791 KiB  
Article
Experimental Investigation of the Mechanical and Electrical Failure of the Electrode Tab of Lithium-Ion Pouch Cells Under Quasi-Static Mechanical Load
by Patrick Höschele, Simon Franz Heindl and Christian Ellersdorfer
Batteries 2024, 10(12), 444; https://doi.org/10.3390/batteries10120444 - 15 Dec 2024
Viewed by 1724
Abstract
The electrode tabs of pouch cells are rigidly joined to the bus bar in a battery module to achieve an electric connection. The effect of abusive mechanical loads arising from crash-related deformation or the possible movement of battery cells caused by operation-dependent thickness [...] Read more.
The electrode tabs of pouch cells are rigidly joined to the bus bar in a battery module to achieve an electric connection. The effect of abusive mechanical loads arising from crash-related deformation or the possible movement of battery cells caused by operation-dependent thickness variations has so far never been investigated. Three quasi-static abuse tests for the anode and cathode electrode tabs were conducted with pouch cells at 100% SOC. Tensile tests on the anode, cathode and pouch foil were performed in order to explain differences between the anode and cathode in the abuse tests. The experiments revealed different failure mechanisms for the anode and cathode electrode tabs. The cathode failed at an average maximum load of 940.3 N through an external rupture of the electrode tab. The anode failed at an average maximum load of 868.9 N through a rupture of the single electrode sheets and the opening of the pouch foil. No thermal runaway occurred for either cathode or anode. The results of this study reveal a more critical failure behavior for the anode electrode tab, which can be addressed in the future by adding a predetermined breaking point and adapting the geometry of the anode electrode tab. Full article
(This article belongs to the Special Issue Battery Safety: Recent Advances and Perspective)
Show Figures

Figure 1

20 pages, 15802 KiB  
Article
Analysis of the Thermal Runaway Mitigation Performances of Dielectric Fluids During Overcharge Abuse Tests of Lithium-Ion Cells with Lithium Titanate Oxide Anodes
by Carla Menale, Antonio Nicolò Mancino, Francesco Vitiello, Vincenzo Sglavo, Francesco Vellucci, Laura Caiazzo and Roberto Bubbico
World Electr. Veh. J. 2024, 15(12), 554; https://doi.org/10.3390/wevj15120554 - 27 Nov 2024
Cited by 2 | Viewed by 1978
Abstract
Lithium titanate oxide cells are gaining attention in electric vehicle applications due to their ability to support high-current charging and their enhanced thermal stability. However, despite these advantages, safety concerns, particularly thermal runaway, pose significant challenges during abuse conditions such as overcharging. In [...] Read more.
Lithium titanate oxide cells are gaining attention in electric vehicle applications due to their ability to support high-current charging and their enhanced thermal stability. However, despite these advantages, safety concerns, particularly thermal runaway, pose significant challenges during abuse conditions such as overcharging. In this study, we investigated the effectiveness of various dielectric fluids in mitigating thermal runaway during overcharge abuse tests of cylindrical LTO cells with a capacity of 10 Ah. The experimental campaign focused on overcharging fully charged cells (starting at 100% State of Charge) at a current of 40A (4C). The tests were conducted under two conditions: the first benchmark test involved a cell exposed to air, while the subsequent tests involved cells submerged in different dielectric fluids. These fluids included two perfluoropolyether fluorinated fluids (PFPEs) with boiling points of 170 °C and 270 °C, respectively, a synthetic ester, and a silicone oil. The results were analyzed to determine the fluids’ ability to delay possible thermal runaway and prevent catastrophic failures. The findings demonstrate that some dielectric fluids can delay thermal runaway, with one fluid showing superior performance with respect to the others in preventing fire during thermal runaway. The top-performing fluid was further evaluated in a simulated battery pack environment, confirming its ability to mitigate thermal runaway risks. These results provide important insights for improving the safety of battery systems in electric vehicles. Full article
(This article belongs to the Special Issue Research Progress in Power-Oriented Solid-State Lithium-Ion Batteries)
Show Figures

Figure 1

17 pages, 4775 KiB  
Article
Performance of Protection Devices Integrated into Lithium-Ion Cells during Overcharge Abuse Test
by Carla Menale, Francesco Vitiello, Antonio Nicolò Mancino, Antonio Scotini, Livia Della Seta, Francesco Vellucci and Roberto Bubbico
Energies 2024, 17(19), 4785; https://doi.org/10.3390/en17194785 - 25 Sep 2024
Viewed by 1255
Abstract
Lithium-ion batteries currently represent the most suitable technology for energy storage in various applications, such as hybrid and electric vehicles (HEVs and BEVs), portable electronics and energy storage systems. Their wide adoption in recent years is due to their characteristics of high energy [...] Read more.
Lithium-ion batteries currently represent the most suitable technology for energy storage in various applications, such as hybrid and electric vehicles (HEVs and BEVs), portable electronics and energy storage systems. Their wide adoption in recent years is due to their characteristics of high energy density, high power density and long life cycle. On the other hand, they still face challenges from a safety point of view for the possible faults that could generate several problems, ranging from simple malfunctioning to a dangerous thermal runaway. Overcharge is one of the most critical types of faults, and, depending on the level of abuse, it may trigger a thermal runaway. To prevent high levels of overcharge abuse, some cells include integrated protection devices that cut off the circuit when a critical condition is met. In this paper, the performance of these protection devices is evaluated to assess their effectiveness. The cells were tested at different ambient temperatures and current levels. In the worst-case scenarios, the maximum cell temperature slightly exceeded 70 °C and the State of Charge (SOC) reached a peak of 127% when the Current Interruption Device (CID) was activated. These conditions were not critical, so serious events such as thermal runaway were not triggered. These outcomes confirm the effectiveness of the CID, which always intervenes in maintaining a safe state. However, since it never intervened in the overcharge abuse tests, a specific set up was also used to investigate the operation of the other protection device, the Positive Temperature Coefficient. Full article
(This article belongs to the Special Issue Current Advances in Fuel Cell and Batteries)
Show Figures

Figure 1

25 pages, 4877 KiB  
Review
Review of Lithium-Ion Battery Internal Changes Due to Mechanical Loading
by Maria Cortada-Torbellino, David Garcia Elvira, Abdelali El Aroudi and Hugo Valderrama-Blavi
Batteries 2024, 10(7), 258; https://doi.org/10.3390/batteries10070258 - 22 Jul 2024
Cited by 4 | Viewed by 4450
Abstract
The growth of electric vehicles (EVs) has prompted the need to enhance the technology of lithium-ion batteries (LIBs) in order to improve their response when subjected to external factors that can alter their performance, thereby affecting their safety and efficiency. Mechanical abuse has [...] Read more.
The growth of electric vehicles (EVs) has prompted the need to enhance the technology of lithium-ion batteries (LIBs) in order to improve their response when subjected to external factors that can alter their performance, thereby affecting their safety and efficiency. Mechanical abuse has been considered one of the major sources of LIB failure due to the changes it provokes in the structural integrity of cells. Therefore, this article aims to review the main factors that aggravate the effects of mechanical loading based on the results of different laboratory tests that subjected LIBs to abusive testing. The results of different cell types tested under different mechanical loadings have been gathered in order to assess the changes in LIB properties and the main mechanisms responsible for their failure and permanent damage. The main consequences of mechanical abuse are the increase in LIB degradation and the formation of events such as internal short circuits (ISCs) and thermal runways (TRs). Then, a set of standards and regulations that evaluate the LIB under mechanical abuse conditions are also reviewed. Full article
(This article belongs to the Section Battery Performance, Ageing, Reliability and Safety)
Show Figures

Graphical abstract

20 pages, 17799 KiB  
Article
Single-Use Vape Batteries: Investigating Their Potential as Ignition Sources in Waste and Recycling Streams
by Andrew Gausden and Burak Can Cerik
Batteries 2024, 10(7), 236; https://doi.org/10.3390/batteries10070236 - 1 Jul 2024
Viewed by 3336
Abstract
This study investigates the potential link between the increasing prevalence of single-use vapes (SUVs) and the rising frequency of waste and recycling fires in the UK. Incorrectly discarded Li-ion cells from SUVs can suffer mechanical damage, potentially leading to thermal runaway (TR) depending [...] Read more.
This study investigates the potential link between the increasing prevalence of single-use vapes (SUVs) and the rising frequency of waste and recycling fires in the UK. Incorrectly discarded Li-ion cells from SUVs can suffer mechanical damage, potentially leading to thermal runaway (TR) depending on the cells’ state of charge (SOC). Industry-standard abuse tests (short-circuit and nail test) and novel impact and crush tests, simulating damage during waste management processes, were conducted on Li-ion cells from two market-leading SUVs. The novel tests created internal short circuits, generating higher temperatures than the short-circuit test required for product safety. The cells in used SUVs had an average SOC ≤ 50% and reached a maximum temperature of 131 °C, below the minimum ignition temperature of common waste materials. The high temperatures were short-lived and had limited heat transfer to adjacent materials. The study concludes that Li-ion cells in used SUVs at ≤50% SOC cannot generate sufficient heat and temperature to ignite common waste and recycling materials. These findings have implications for understanding the fire risk associated with discarded SUVs in waste management facilities. Full article
(This article belongs to the Section Battery Processing, Manufacturing and Recycling)
Show Figures

Figure 1

24 pages, 5255 KiB  
Article
Lithium-Ion Batteries (LIBs) Immersed in Fire Prevention Material for Fire Safety and Heat Management
by Junho Bae, Yunseok Choi and Youngsik Kim
Energies 2024, 17(10), 2418; https://doi.org/10.3390/en17102418 - 17 May 2024
Cited by 6 | Viewed by 3367
Abstract
Lithium-ion batteries (LIBs) have emerged as the most commercialized rechargeable battery technology. However, their inherent property, called thermal runaway, poses a high risk of fire. This article introduces the “Battery Immersed in Fire Prevention Material (BIF)”, the immersion-type battery in which all of [...] Read more.
Lithium-ion batteries (LIBs) have emerged as the most commercialized rechargeable battery technology. However, their inherent property, called thermal runaway, poses a high risk of fire. This article introduces the “Battery Immersed in Fire Prevention Material (BIF)”, the immersion-type battery in which all of the LIB cells are surrounded by a liquid agent. This structure and the agent enable active battery fire suppression under abusive conditions while facilitating improved thermal management during normal operation. Abuse tests involving a battery revealed that the LIB module experienced fire, explosions, and burnouts with the target cell reaching temperatures of 1405 °C and the side reaching 796 °C. Conversely, the BIF module exhibited a complete lack of fire propagation, with temperatures lower than those of LIBs, particularly 285 and 17 °C, respectively. Under normal operating conditions, the BIF module exhibited an average temperature rise ~8.6 times lower than that of a normal LIB. Furthermore, it reduced the uneven thermal deviation between the cells by ~5.3 times more than LIB. This study provides a detailed exploration of the BIF and covers everything from components to practical applications. With further improvements, this technology can significantly enhance fire safety and prevent the thermal degradation of batteries in the real world. Full article
(This article belongs to the Special Issue Advances in Battery Energy Storage Systems)
Show Figures

Figure 1

Back to TopTop