Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (55,894)

Search Parameters:
Keywords = testing activities

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3703 KB  
Article
Pd-Modified CoP and CoFeP Catalysts as Efficient Bifunctional Catalysts for Water Splitting
by Huma Amber, Aldona Balčiūnaitė, Virginija Kepenienė, Giedrius Stalnionis, Zenius Mockus, Loreta Tamašauskaitė-Tamašiūnaitė and Eugenijus Norkus
Catalysts 2025, 15(11), 1035; https://doi.org/10.3390/catal15111035 (registering DOI) - 2 Nov 2025
Abstract
Developing highly efficient and stable electrocatalysts from inexpensive and earth-abundant elements represents a significant advancement in overall water splitting (OWS). This study focuses on the synthesis and evaluation of palladium-modified cobalt–phosphorus (PdCoP) and cobalt–iron–phosphorus (PdCoFeP) coatings for use as electrocatalysts in hydrogen evolution [...] Read more.
Developing highly efficient and stable electrocatalysts from inexpensive and earth-abundant elements represents a significant advancement in overall water splitting (OWS). This study focuses on the synthesis and evaluation of palladium-modified cobalt–phosphorus (PdCoP) and cobalt–iron–phosphorus (PdCoFeP) coatings for use as electrocatalysts in hydrogen evolution (HER), oxygen evolution (OER) and overall water splitting (OWS) in alkaline media. A facile electroless plating method is adopted to deposit the CoP and CoFeP coatings onto a copper surface (Cu sheet), with sodium hypophosphite (NaH2PO2) acting as the reducing agent. Pd crystallites were incorporated on CoP and CoFeP coatings using the galvanic displacement method. This study details morphological characterization (using SEM, EDX, and XRD), as well as electrochemical activity testing, for both HER and OER using linear sweep voltammetry (LSV) at different temperatures. The stability of the catalysts for HER was evaluated using chronoamperometry (CA) and chronopotentiometry (CP). The results show that the Pd-modified CoFeP and CoP catalysts exhibited lower overpotentials of 207 and 227 mV, respectively, for HER and 396 mV for OER at a current density of 10 mA cm−2 compared to the unmodified CoFeP and CoP catalysts. The innovation achieved in this study lies in combining a facile, low-cost deposition method (electroless plating followed by galvanic displacement) with a novel, highly effective ternary composition (PdCoFeP) that exploits synergistic electronic and morphological effects to achieve superior bifunctional performance for alkaline OWS, achieving a low cell voltage of 1.69 V at a current density of 10 mA cm−2. Overall, this research demonstrates that these synthesized materials are promising candidates for sustainable and economical hydrogen production. Full article
(This article belongs to the Special Issue Recent Advances in Energy-Related Materials in Catalysts, 3rd Edition)
Show Figures

Figure 1

20 pages, 1332 KB  
Article
Bioenergy Potential of Anaerobic Co-Digestion of Aquaponics Effluent and Cattle Manure
by Alexia de Sousa Gomes, Juliana Lobo Paes, Daiane Cecchin, Regina Menino, Igor Ferreira Oliva, João Paulo Barreto Cunha and Flavia Lucila Tonani
AgriEngineering 2025, 7(11), 363; https://doi.org/10.3390/agriengineering7110363 (registering DOI) - 1 Nov 2025
Abstract
Mathematical modeling is a key tool for describing and predicting the dynamic behavior of anaerobic digestion. Studies combining the co-digestion of aquaponics effluent (AE) and cattle manure (CM) with kinetic modeling remain scarce, particularly regarding the estimation of the apparent kinetic constant of [...] Read more.
Mathematical modeling is a key tool for describing and predicting the dynamic behavior of anaerobic digestion. Studies combining the co-digestion of aquaponics effluent (AE) and cattle manure (CM) with kinetic modeling remain scarce, particularly regarding the estimation of the apparent kinetic constant of hydrolysis constants and energy conversion indicators. Accordingly, this study aimed to evaluate the bioenergy potential of co-digesting aquaponics effluent (AE) and cattle manure (CM), with an emphasis on kinetic modeling and energy conversion. The experiments were carried out in a bench-scale Indian-type anaerobic biodigester. Different AE, CM, and water (W) (0:1, 1:0, 1:1, 1:3, 3:1 W:CM, and 1:1, 1:3, and 3:1 AE:CM) ratios were tested to identify the most efficient substrate combination for biogas production. The 1:3 AE:CM ratio achieved the best performance, with the Gompertz model providing the best fit for cumulative production and the first-order model accurately estimating k. This ratio yielded the highest cumulative biogas production (72.2 L kg−1 substrate), shorter lag phase, higher production rate, and greater energy conversion efficiency. Comparative analysis revealed that 1:3 AE:CM outperformed both 1:3 A:CM and CM alone, highlighting the positive influence of aquaponics effluent on microbial activity and process stability. These results demonstrate that anaerobic co-digestion of AE and CM, particularly at the 1:3 ratio, is a viable and efficient strategy for renewable energy generation in rural areas, while promoting waste valorization and enhancing environmental and energy sustainability. Full article
(This article belongs to the Section Sustainable Bioresource and Bioprocess Engineering)
Show Figures

Graphical abstract

19 pages, 4892 KB  
Article
Development of Variable Elastic Band with Adjustable Elasticities for Semi-Passive Exosuits
by Jaewook Ryu, Gyeongmo Kim and Giuk Lee
Biomimetics 2025, 10(11), 734; https://doi.org/10.3390/biomimetics10110734 (registering DOI) - 1 Nov 2025
Abstract
Active exosuits provide various assistive force profiles but are limited by battery life, weight, and complex maintenance requirements. Passive exosuits, by contrast, are economical and lightweight while also offering unlimited usage times; however, due to their fixed stiffness levels, they can provide only [...] Read more.
Active exosuits provide various assistive force profiles but are limited by battery life, weight, and complex maintenance requirements. Passive exosuits, by contrast, are economical and lightweight while also offering unlimited usage times; however, due to their fixed stiffness levels, they can provide only a limited set of optimized assistive force profiles for different movements. To address these issues, this paper proposes a new variable elastic band for semi-passive exosuits. It comprises rubber bands and webbings connected in parallel, with the elongation of the rubber bands restricted according to the webbing length. By connecting these segments in series, a range of elasticities can be generated. Experimental results confirmed that the band could generate different stiffness levels, which were accurately predicted with an average coefficient of determination (R2) of 0.9985 and an average root mean square error of 0.8993. Additionally, based on tests involving participants wearing the device, the variable elastic band effectively modulated the assistive force profile. These findings overcome the previous limitations of passive components, opening the door to future research on enhancing the efficiency of passive systems and enabling further customization. Full article
Show Figures

Figure 1

64 pages, 8275 KB  
Article
Atmospheric Processes over the Broader Mediterranean Region 1980–2024: Effect of Volcanoes, Solar Activity, NAO, and ENSO
by Harry D. Kambezidis
Earth 2025, 6(4), 138; https://doi.org/10.3390/earth6040138 (registering DOI) - 1 Nov 2025
Abstract
The Mediterranean region is regarded as a hot spot on Earth because of its placement at the junction of many aerosols. Numerous studies have demonstrated that the North Atlantic Oscillation (NAO), which is closely related to the El Niño–Southern Oscillation (ENSO) phenomenon, influences [...] Read more.
The Mediterranean region is regarded as a hot spot on Earth because of its placement at the junction of many aerosols. Numerous studies have demonstrated that the North Atlantic Oscillation (NAO), which is closely related to the El Niño–Southern Oscillation (ENSO) phenomenon, influences the weather in the area. However, a recent study by the same author examined the ENSO effect on atmospheric processes in this area and discovered a slight but notable influence. This study builds on that earlier work, but it divides the Mediterranean region into four smaller regions during the same time span as the previous study, which is extended by two years, from 1980 to 2024. The division is based on geographical, climatological, and atmospheric process features. The findings demonstrate that volcanic eruptions significantly affect the total amount of aerosols. Additionally, the current study reveals that the Granger-causality test of the physical phenomena of solar activity, ENSO, and NAO indicates that all have a significant impact, either separately or in combination, on the atmospheric process over the four Mediterranean regions, and this effect can last up to six months. Moreover, a taxonomy of the different forms of aerosols across the four subregions is given. Full article
Show Figures

Figure 1

27 pages, 2672 KB  
Article
Phytochemical Profiling, Anti-Inflammatory Action, and Human Gut Microbiota-Assisted Digestion of Rheum officinale Petiole and Root Extracts—An In Vitro Study
by Oleksandra Liudvytska, Mariusz Kowalczyk, Justyna Krzyżanowska-Kowalczyk, Karolina Michaś, Maria Michalak, Aneta Balcerczyk, Weronika Skowrońska, Marcin Równicki, Agnieszka Bazylko, Monika A. Olszewska and Joanna Kolodziejczyk-Czepas
Nutrients 2025, 17(21), 3455; https://doi.org/10.3390/nu17213455 (registering DOI) - 1 Nov 2025
Abstract
Background/Objectives: Rheum officinale, an ethnomedicinal plant, has roots widely employed in modern pharmacological formulations. However, many of its biological activities remain only partly recognized. Furthermore, the metabolome and biological activity of its edible petioles, often considered a waste product, have received [...] Read more.
Background/Objectives: Rheum officinale, an ethnomedicinal plant, has roots widely employed in modern pharmacological formulations. However, many of its biological activities remain only partly recognized. Furthermore, the metabolome and biological activity of its edible petioles, often considered a waste product, have received limited scientific attention. Methods and Results: The examination of anti-inflammatory properties of both root and petiole extracts (1–50 µg/mL) revealed the inhibition of the pro-inflammatory cytokine release from human peripheral blood mononuclear cells, a reduction in ALOX5 gene expression in human umbilical vein endothelial cells, and the significant inhibition (>60%) of cyclooxygenase-2 and 5-lipoxygenase activities. Importantly, no cytotoxic effects were detected at the tested concentrations. Conclusions: The petiole extract demonstrated anti-inflammatory efficiency comparable to, or exceeding that of the root extract, suggesting that R. officinale petioles could be valuable source of bioactive compounds for future investigations. Full article
(This article belongs to the Special Issue Food-Derived Bioactive Compounds and Their Health Benefits)
Show Figures

Figure 1

17 pages, 5800 KB  
Article
3D Printing of Shape Memory Resin for Orthodontic Aligners with Green Synthesized Antimicrobial ZnO Nanoparticles Coatings: Toward Bioactive Devices
by Airy Teramoto-lida, Rafael Álvarez-Chimal, Lorena Reyes-Carmona, Marco Antonio Álvarez-Pérez, Amaury Pozos-Guillen and Febe Carolina Vázquez-Vázquez
Bioengineering 2025, 12(11), 1193; https://doi.org/10.3390/bioengineering12111193 (registering DOI) - 1 Nov 2025
Abstract
The development of bioactive dental materials with antimicrobial and biocompatible properties is important for improving clinical outcomes and reducing complications associated with intraoral devices. This study presents a novel approach that combines a 3D-printed shape-memory resin (TC-85DAC) with green-synthesized zinc oxide nanoparticles (ZnO [...] Read more.
The development of bioactive dental materials with antimicrobial and biocompatible properties is important for improving clinical outcomes and reducing complications associated with intraoral devices. This study presents a novel approach that combines a 3D-printed shape-memory resin (TC-85DAC) with green-synthesized zinc oxide nanoparticles (ZnO NPs) to enhance biological performance. ZnO NPs were synthesized using Dysphania ambrosioides extract, producing quasi-spherical particles with a crystalline hexagonal structure and sizes between 15 and 40 nm. Resin discs were coated with ZnO NPs at 10%, 20%, and 30%, then assessed for biocompatibility with human gingival fibroblasts and antibacterial activity against Porphyromonas gingivalis and Streptococcus mutans. Surface roughness was also considered with and without ZnO NPs. Biocompatibility assays revealed a concentration- and time-dependent increase in cell viability, with the highest values at 30% ZnO NPs after 72 h of exposure to the NPs. Antibacterial testing confirmed the inhibition of both species, with Porphyromonas gingivalis showing greater sensitivity. Surface roughness increased with higher ZnO NPs concentrations, significantly influencing biological interactions. The integration of green-synthesized ZnO NPs with shape-memory resin produced a multifunctional dental material with improved bioactivity. This sustainable strategy enables bioactive coatings on 3D-printed resins, with potential applications in the next generation of smart dental devices. Full article
Show Figures

Figure 1

30 pages, 10873 KB  
Article
ANN-Based Direct Power Control for Improved Dynamic Performance of DFIG-Based Wind Turbine System: Experimental Validation
by Hamid Chojaa, Mishari Metab Almalki and Mahmoud A. Mossa
Machines 2025, 13(11), 1006; https://doi.org/10.3390/machines13111006 (registering DOI) - 1 Nov 2025
Abstract
Direct power control (DPC) is a widely accepted control scheme utilized in renewable energy applications owing to its several advantages over other control mechanisms, including its simplicity, ease of implementation, and faster response. However, DPC suffers from inherent drawbacks and limitations that constrain [...] Read more.
Direct power control (DPC) is a widely accepted control scheme utilized in renewable energy applications owing to its several advantages over other control mechanisms, including its simplicity, ease of implementation, and faster response. However, DPC suffers from inherent drawbacks and limitations that constrain its applicability. These restrictions include notable ripples in active power and torque, as well as poor power quality brought on by the usage of a hysteresis regulator for capacity management. To address these issues and overcome the limitations of DPC, this study proposes a novel approach that incorporates artificial neural networks (ANNs) into DPC. The proposed technique focuses on doubly fed induction generators (DFIGs) and is validated through experimental testing. ANNs are employed to recompense for the deficiencies of the hysteresis controller and switching table. The intelligent DPC technique is then compared to three other strategies: classic DPC, backstepping control, and integral sliding-mode control. Various tests are conducted to compare the ripple ratio, current quality, durability, response time, and reference tracking. The validity and robustness of the proposed intelligent DPC for DFIGs are verified through both simulation and experimental results obtained from the MATLAB/Simulink environment and the Real-Time Interface (RTI) of the dSPACE DS1104 controller card. The results confirm that the intelligent DPC outperforms conventional control strategies in terms of stator current harmonic distortion, dynamic response, power ripple minimization, reference tracking accuracy, robustness, and overshoot reduction. Overall, the intelligent DPC exhibits superior performance across all evaluated criteria compared to the alternative approaches. Full article
(This article belongs to the Special Issue Wound Field and Less Rare-Earth Electrical Machines in Renewables)
Show Figures

Figure 1

28 pages, 7749 KB  
Article
Effects of Bile on Pathogenic Vibrio, Aeromonas, and Clostridioides spp. Toxin Effector Domains
by Jaylen E. Taylor, David B. Heisler, Eshan Choudhary, Elena Kudryashova and Dmitri S. Kudryashov
Biomolecules 2025, 15(11), 1539; https://doi.org/10.3390/biom15111539 (registering DOI) - 1 Nov 2025
Abstract
Bile acids, the primary components of bile, are cholesterol-derived molecules synthesized in the liver and secreted to the small intestine. Besides their primary digestive roles, bile acids have antimicrobial properties and serve as an environmental cue for intestinal pathogens, modulating the expression of [...] Read more.
Bile acids, the primary components of bile, are cholesterol-derived molecules synthesized in the liver and secreted to the small intestine. Besides their primary digestive roles, bile acids have antimicrobial properties and serve as an environmental cue for intestinal pathogens, modulating the expression of virulence factors, e.g., toxins and effector proteins. Whereas timely recognition and neutralization of pathogenic toxin effectors by the host is critical, our understanding of the effects of bile on their structure and function is limited. In this work, we found that bile effectively protected cultured IEC-18 enterocytes from the mixture of Aeromonas hydrophila secreted toxins, containing hemolysin, aerolysin, and RtxA (MARTX). To explore whether these effects have broad specificity, we employed biochemical and biophysical techniques to test the in vitro effects of bile and bile acids on several effector domains of MARTX and VgrG toxins from Vibrio cholerae and Aeromonas hydrophila, and catalytic domains of TcdA and TcdB toxins from Clostridioides difficile. Bile compromised the structural integrity of the tested effectors to various degrees in a protein charge-dependent manner. Bile and bile acids promoted exposure of hydrophobic residues and the unfolding of most, but not all, of the tested effectors, facilitating their precipitation and cleavage by chymotrypsin. Bile also inhibited specific activities of the tested effector enzymes, partially due to imposed oxidation of their catalytic residues. To summarize, this work validated bile as a non-proteinaceous factor of innate immunity, capable of compromising the structural integrity and function of the effector domains of various bacterial toxins. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

41 pages, 887 KB  
Review
Advances in Photocatalytic Degradation of Crystal Violet Using ZnO-Based Nanomaterials and Optimization Possibilities: A Review
by Vladan Nedelkovski, Milan Radovanović and Milan Antonijević
ChemEngineering 2025, 9(6), 120; https://doi.org/10.3390/chemengineering9060120 (registering DOI) - 1 Nov 2025
Abstract
The photocatalytic degradation of Crystal Violet (CV) using ZnO-based nanomaterials presents a promising solution for addressing water pollution caused by synthetic dyes. This review highlights the exceptional efficiency of ZnO and its modified forms—such as doped, composite, and heterostructured variants—in degrading CV under [...] Read more.
The photocatalytic degradation of Crystal Violet (CV) using ZnO-based nanomaterials presents a promising solution for addressing water pollution caused by synthetic dyes. This review highlights the exceptional efficiency of ZnO and its modified forms—such as doped, composite, and heterostructured variants—in degrading CV under both ultraviolet (UV) and solar irradiation. Key advancements include strategic bandgap engineering through doping (e.g., Cd, Mn, Co), innovative heterojunction designs (e.g., n-ZnO/p-Cu2O, g-C3N4/ZnO), and composite formations with graphene oxide, which collectively enhance visible-light absorption and minimize charge recombination. The degradation mechanism, primarily driven by hydroxyl and superoxide radicals, leads to the complete mineralization of CV into non-toxic byproducts. Furthermore, this review emphasizes the emerging role of Artificial Neural Networks (ANNs) as superior tools for optimizing degradation parameters, demonstrating higher predictive accuracy and scalability compared to traditional methods like Response Surface Methodology (RSM). Potential operational challenges and future directions—including machine learning-driven optimization, real-effluent testing potential, and the development of solar-active catalysts—are further discussed. This work not only consolidates recent breakthroughs in ZnO-based photocatalysis but also provides a forward-looking perspective on sustainable wastewater treatment strategies. Full article
Show Figures

Figure 1

16 pages, 6323 KB  
Article
Characterization and Antibacterial Properties of Centrifugally Spun Polyvinylpyrrolidone/Copper(II) Acetate Composite Fibers
by Batool Ibrahim, Roberto Curiel, Sara Ibrahim, Luis Materon, Oleg Ermolinsky, Helia Morales, Jason G. Parsons and Mataz Alcoutlabi
J. Compos. Sci. 2025, 9(11), 590; https://doi.org/10.3390/jcs9110590 (registering DOI) - 1 Nov 2025
Abstract
The demand for effective antibacterial materials is growing rapidly in today’s world. Both metallic and metal oxide nanoparticles have been widely used as antibacterial agents against various bacterial species due to their unique mechanisms of destroying bacterial membrane cells. The current study explores [...] Read more.
The demand for effective antibacterial materials is growing rapidly in today’s world. Both metallic and metal oxide nanoparticles have been widely used as antibacterial agents against various bacterial species due to their unique mechanisms of destroying bacterial membrane cells. The current study explores the antibacterial activity of centrifugally spun fibers prepared from copper acetate polyvinylpyrrolidone (PVP) ethanol precursor solutions against both Gram-negative and Gram-positive bacteria. During the synthesis of the composite fibers, the physical and chemical conditions were optimized. The structure and morphology of the PVP/Cu-Ac fibers were analyzed using scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), and thermogravimetric analysis (TGA). The antibacterial activity of PVP/copper acetate fibers was tested against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. The PVP/Copper acetate fibers demonstrated bactericidal activity against both bacterial strains, making the PVP/copper acetate composite fibers an effective material for biomedical applications. Full article
(This article belongs to the Special Issue Polymer Composites and Fibers, 3rd Edition)
Show Figures

Figure 1

19 pages, 4672 KB  
Article
A Ternary Spinel Strategy for Increasing the Performances of Oxygen Reduction Reaction and Anion Exchange Membrane Fuel Cell Based on Mn-Co Spinel Oxides
by Weitao Jin, Ruiqing Song, Jiansong Yuan, Hengxi Pang, Wen Zong, Xiao Zhang and Juan Zhou
Catalysts 2025, 15(11), 1031; https://doi.org/10.3390/catal15111031 (registering DOI) - 1 Nov 2025
Abstract
Anion exchange membrane fuel cells (AEMFCs) represent a promising class of clean energy devices, with their performance being critically dependent on the efficiency of the cathode oxygen reduction reaction (ORR) catalyst. Manganese-cobalt spinel (Mn1.5Co1.5O4, MCS) has been [...] Read more.
Anion exchange membrane fuel cells (AEMFCs) represent a promising class of clean energy devices, with their performance being critically dependent on the efficiency of the cathode oxygen reduction reaction (ORR) catalyst. Manganese-cobalt spinel (Mn1.5Co1.5O4, MCS) has been demonstrated to be a highly active ORR catalyst. Herein, we report a strategy of incorporating Cu (MCCS) and Fe (MCFS) into MCS to form ternary spinel oxides for tuning ORR activity. Among them, MCS exhibits the best ORR performance, with a half-wave potential (E1/2) of 0.736 V vs. RHE in 0.1 M KOH and a peak power density (PPD) of 248.3 mW·cm−2 for the fuel cell test. In contrast, MCCS and MCFS show divergent behaviors in a rotating disk-ring electrode (RRDE) and fuel cell tests. X-ray diffraction (XRD) analyses and X-ray photoelectron spectroscopy (XPS) analyses reveal that the introduction of Cu2+ and Fe3+ induces a phase transformation in the spinel structure, leading to a reduction in oxygen vacancies and an increase in the valence state of Mn, thereby degrading catalytic activity. However, the incorporation of these elements also modulates the hydration capability of the catalysts, which is critical for the ion and charge transfer in the fuel cell environment and has been validated in the distribution of relaxation time (DRT) analysis of the fuel cell test. This study provides a valuable strategy for designing and synthesizing low-cost, highly efficient, and stable ternary spinel electrocatalysts for AEMFC applications, and bridges the gap between RRDE evaluation and fuel cell testing through DRT analysis. Full article
(This article belongs to the Special Issue Metal Oxide-Supported Catalysts)
Show Figures

Graphical abstract

18 pages, 1703 KB  
Article
A Protocol to Self-Familiarize Health Care Professionals with the Detection Limits of a Physical Activity Tracker for Low-Impact Steps in Patients Recovering from Knee Surgery—A Proposal and a First Evaluation
by Werner Vach, Daniel Rybitschka, Scott Wearing, Andreas Gösele, Frances Weidermann and Marcel Jakob
Sensors 2025, 25(21), 6666; https://doi.org/10.3390/s25216666 (registering DOI) - 1 Nov 2025
Abstract
Physical activity trackers are promising for monitoring physical activity in patients after surgery. However, the remobilization of patients following surgery is characterized by low-impact movements. It is often unclear to health care professionals whether a specific physical activity tracker is able to correctly [...] Read more.
Physical activity trackers are promising for monitoring physical activity in patients after surgery. However, the remobilization of patients following surgery is characterized by low-impact movements. It is often unclear to health care professionals whether a specific physical activity tracker is able to correctly detect steps in this patient population. A protocol is proposed, which allows health care professionals to familiarize themselves with the detection limits of a physical activity tracker. The professional should walk 20 steps under varying conditions mimicking the situation of patients after knee surgery. Conditions vary in step size, walking direction, use of walking aids, and footwear. The protocol was tested in a group of 14 health care professionals. Participants wore four trackers simultaneously, representing different modalities and different locations. For two trackers, the participants could experience a variation in the detection limits across the different conditions. On one hand, the within-participant reproducibility was substantial on average, though the between-participant reproducibility was only fair. On the other hand, experiencing incorrect step counts varied highly across and within participants. In conclusion, the self-familiarization of health care professionals with the detection limits of a physical activity tracker using specific protocols seems to be a feasible approach. Such protocols can provide valuable tools for facilitating the use of physical activity trackers in clinical applications. Additional research may allow for further refinement of the protocol to generate input that is more comparable across participants and closer to the gait of patients. Full article
(This article belongs to the Special Issue Digital Health Technologies for Rehabilitation and Physical Therapy)
Show Figures

Figure 1

22 pages, 2038 KB  
Article
Evaluation of Aqueous Maceration and Ultrasound-Assisted Extracts of Physalis philadelphica Lam. Solanaceae Husk on Hyperglycemia, Insulin Resistance, Hepatic Steatosis, and Oxidative Stress Markers in Obese Rats
by Juliana Morales-Castro, Jazel Barragán-Zúñiga, María Inés Guerra-Rosas, Víctor Iván Sayago-Monreal, José Luis Gónzalez, Fabiola Carlo-Ricartti, Adrián Alvarado-Aguilar, Fernando Guerrero-Romero, Martha Rodríguez-Morán and Claudia I. Gamboa-Gómez
Pharmaceuticals 2025, 18(11), 1655; https://doi.org/10.3390/ph18111655 (registering DOI) - 1 Nov 2025
Abstract
Background/Objectives: Plants and fruits of Physalis philadelphica Lam. Solanacea are commonly used in traditional medicine to improve some illnesses such as diabetes, in North and Central American countries. The aim was to evaluate the effects of aqueous maceration (He-M) and ultrasound-assisted (He-US) [...] Read more.
Background/Objectives: Plants and fruits of Physalis philadelphica Lam. Solanacea are commonly used in traditional medicine to improve some illnesses such as diabetes, in North and Central American countries. The aim was to evaluate the effects of aqueous maceration (He-M) and ultrasound-assisted (He-US) extracts of P. philadelphica husk on hyperglycemia, insulin resistance, hepatic steatosis, and oxidative stress in obese rats. Methods: The effects of husk extracts on carbohydrate and lipid absorption were evaluated using oral starch and lipid tolerance tests in healthy male Wistar rats. Obesity was then induced using a high-fructose and saturated fat diet, followed by 16 weeks of extract administration. Results: He-US significantly reduced the postprandial glycemic spike, while both extracts lowered serum triglyceride levels (~50%) following lipid loading, compared with the negative control. In obese rats, both extracts reduced body weight gain (~10%) and lowered fasting glucose levels (22% for He-M and 15% for He-US), compared with the obese control. He-US also reduced insulin levels (~32%), insulin resistance (~53%), and free fatty acids (~52%), while He-M improved hepatic steatosis and reduced liver triglycerides (~26%). Both extracts reduced hepatic nitrite levels, although only He-M significantly decreased lipid peroxidation (~32%). Additionally, both treatments enhanced hepatic antioxidant enzyme activity. Conclusions: Husk extracts exerted beneficial effects on hyperglycemia, insulin resistance, hepatic steatosis, and oxidative stress markers in obese rats. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

26 pages, 2614 KB  
Article
Melatonin Improves Bovine Embryo Production and Quality via Antioxidant, Metabolic, and Epigenetic Pathways
by Hallya Beatriz Sousa Amaral, Márcia Marques Silveira, Ana Caroline Chaves Vall Nicolás, Laryssa Ketelyn Lima Pimenta, José Eduardo Vieira Chaves, Alexandre Rodrigues Caetano, Maurício Machaim Franco and Margot Alves Nunes Dode
Antioxidants 2025, 14(11), 1322; https://doi.org/10.3390/antiox14111322 (registering DOI) - 1 Nov 2025
Abstract
This study aimed to evaluate the effects of melatonin supplementation during bovine in vitro embryo production (IVEP) on embryonic development and quality, oxidative stress, lipid metabolism, mitochondrial activity, gene expression, DNA methylation patterns, and cryotolerance. Four treatments were tested: control (without melatonin), melatonin [...] Read more.
This study aimed to evaluate the effects of melatonin supplementation during bovine in vitro embryo production (IVEP) on embryonic development and quality, oxidative stress, lipid metabolism, mitochondrial activity, gene expression, DNA methylation patterns, and cryotolerance. Four treatments were tested: control (without melatonin), melatonin at maturation (IVM + Mlt), culture (IVC + Mlt), and both treatments (IMV/IVC + Mlt). Melatonin significantly improved blastocyst rate and developmental kinetics on D7, reduced ROS and intracellular lipid levels, and increased mitochondrial activity. The most significant effects were observed in the IVC + Mlt group. Melatonin modulated antioxidant (SOD1, Cat, and GSS) and epigenetic (TET1, TET3, and DNMT3A) genes, and although it did not alter lipid gene expression, it reduced lipid content. Methylation analysis showed hypomethylation patterns in repetitive regions (Satellite I and LINE-1), which were even more pronounced in the melatonin-treated groups. However, no significant differences were observed between treatments in terms of cryotolerance or apoptosis rates. These findings suggest that melatonin exerts positive multifactorial effects, regardless of the supplementation stage. In particular, its addition during the IVC phase appears to provide greater benefits to embryos by improving their quality. Full article
Show Figures

Figure 1

12 pages, 1068 KB  
Article
Year-Round Activity Patterns of Badgers (Meles meles) and Mesocarnivore Communities in Urban and Sub-Urban Areas
by Francesco Bisi, Pietro Grespan, Claudia Tranquillo, Adriano Martinoli, Lucas Armand Wauters and Damiano Giovanni Preatoni
Urban Sci. 2025, 9(11), 453; https://doi.org/10.3390/urbansci9110453 (registering DOI) - 1 Nov 2025
Abstract
Urbanisation exerts profound effects on biodiversity, driving species extinctions while promoting behavioural adaptations in generalist taxa. The European badger (Meles meles) exemplifies such adaptability, exploiting anthropogenic resources and modifying activity rhythms. This study assessed badger activity within the Varese province in [...] Read more.
Urbanisation exerts profound effects on biodiversity, driving species extinctions while promoting behavioural adaptations in generalist taxa. The European badger (Meles meles) exemplifies such adaptability, exploiting anthropogenic resources and modifying activity rhythms. This study assessed badger activity within the Varese province in northern Italy, comparing an urban park and a sub-urban landscape. From August 2023 to August 2024, camera traps recorded badgers and sympatric mesocarnivores, including red foxes (Vulpes vulpes), domestic cats (Felis catus), and beech martens (Martes foina). Despite high activity overlap between sites (∆ = 0.87), the Mardia–Watson–Wheeler test revealed significant differences. Urban badgers displayed heightened nocturnality relative to sub-urban individuals, consistent with comparisons to nearby protected natural areas. This pattern indicates anthropogenic disturbance as a driver of temporal adjustment. Urban badgers are active from 18:00 to 07:00, whereas sub-urban badgers are active from 17:00 to 08:00. The later onset and earlier termination of urban activity suggest behavioural avoidance of human presence. Red foxes exhibited even greater nocturnality in urban settings, while domestic cats were primarily crepuscular and less frequently detected, particularly in sub-urban areas. Results underline the ecological plasticity of badgers, highlighting their capacity to accommodate urban pressures and providing city administrations with information to improve park management planning. Full article
Show Figures

Graphical abstract

Back to TopTop