Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (113)

Search Parameters:
Keywords = terpene solvent

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5463 KiB  
Article
Evaluation of Aqueous and Ethanolic Extracts for the Green Synthesis of Zinc Oxide Nanoparticles from Tradescantia spathacea
by Pedro Gerardo Trejo-Flores, Yazmin Sánchez-Roque, Heber Vilchis-Bravo, Yolanda del Carmen Pérez-Luna, Paulina Elizabeth Velázquez-Jiménez, Francisco Ramírez-González, Karen Magaly Soto Martínez, Pascual López de Paz, Sergio Saldaña-Trinidad and Roberto Berrones-Hernández
Nanomaterials 2025, 15(14), 1126; https://doi.org/10.3390/nano15141126 - 20 Jul 2025
Viewed by 417
Abstract
In this work, we report a green synthesis of zinc oxide (ZnO) nanoparticles using aqueous and ethanolic extracts of Tradescantia spathacea (purple maguey) as bioreducing and stabilizing agents, which are plant extracts not previously employed for metal oxide nanoparticle synthesis. This method provides [...] Read more.
In this work, we report a green synthesis of zinc oxide (ZnO) nanoparticles using aqueous and ethanolic extracts of Tradescantia spathacea (purple maguey) as bioreducing and stabilizing agents, which are plant extracts not previously employed for metal oxide nanoparticle synthesis. This method provides an efficient, eco-friendly, and reproducible route to obtain ZnO nanoparticles, while minimizing environmental impact compared to conventional chemical approaches. The extracts were prepared following a standardized protocol, and their phytochemical profiles, including total phenolics, flavonoids, and antioxidant capacity, were quantified via UV-Vis spectroscopy to confirm their reducing potential. ZnO nanoparticles were synthesized using zinc acetate dihydrate as a precursor, with variations in pH and precursor concentration in both aqueous and ethanolic media. UV-Vis spectroscopy confirmed nanoparticle formation, while X-ray diffraction (XRD) revealed a hexagonal wurtzite structure with preferential (101) orientation and lattice parameters a = b = 3.244 Å, c = 5.197 Å. Scanning electron microscopy (SEM) showed agglomerated morphologies, and Fourier transform infrared spectroscopy (FTIR) confirmed the presence of phytochemicals such as quercetin, kaempferol, saponins, and terpenes, along with Zn–O bonding, indicating surface functionalization. Zeta potential measurements showed improved dispersion under alkaline conditions, particularly with ethanolic extracts. This study presents a sustainable synthesis strategy with tunable parameters, highlighting the critical influence of precursor concentration and solvent environment on ZnO nanoparticle formation. Notably, aqueous extracts promote ZnO synthesis at low precursor concentrations, while alkaline conditions are essential when using ethanolic extracts. Compared to other green synthesis methods, this strategy offers control and reproducibility and employs a non-toxic, underexplored plant source rich in phytochemicals, potentially enhancing the crystallinity, surface functionality, and application potential of the resulting ZnO nanoparticles. These materials show promise for applications in photocatalysis, in antimicrobial coatings, in UV-blocking formulations, and as functional additives in optoelectronic and environmental remediation technologies. Full article
(This article belongs to the Special Issue Advanced Nanocatalysis in Environmental Applications)
Show Figures

Graphical abstract

27 pages, 2644 KiB  
Article
Nutraceutical Potential of Sideroxylon cinereum, an Endemic Mauritian Fruit of the Sapotaceae Family, Through the Elucidation of Its Phytochemical Composition and Antioxidant Activity
by Cheetra Bhajan, Joyce Govinden Soulange, Vijayanti Mala Ranghoo-Sanmukhiya, Remigiusz Olędzki, Daniel Ociński, Irena Jacukowicz-Sobala, Adam Zając, Melanie-Jayne R. Howes and Joanna Harasym
Molecules 2025, 30(14), 3041; https://doi.org/10.3390/molecules30143041 - 20 Jul 2025
Viewed by 358
Abstract
Sideroxylon cinereum, an endemic Mauritian fruit, was investigated through comprehensive chemical analyses of solvent extracts from its pulp and seed. Dried fruit materials were subjected to maceration using water and organic solvents including methanol, ethanol, propanol, and acetone to obtain extracts of [...] Read more.
Sideroxylon cinereum, an endemic Mauritian fruit, was investigated through comprehensive chemical analyses of solvent extracts from its pulp and seed. Dried fruit materials were subjected to maceration using water and organic solvents including methanol, ethanol, propanol, and acetone to obtain extracts of varying polarity. Preliminary phytochemical screening revealed the presence of several bioactive compounds, with pulp extracts generally richer in phytochemicals than seed extracts. UV-Vis and FTIR analyses confirmed key organic constituents, including sulfoxides in seeds. HPLC quantification showed notable citric acid content in the pulp (15.63 mg/g dry weight). Antioxidant assays indicated that organic solvent extracts of the pulp had superior free radical scavenging activity, while the seed’s aqueous extract exhibited the highest ferric reducing power. GC–MS profiling identified a diverse bioactive profile rich in terpenes, notably lanosterol acetate (>45% in both pulp and seeds). It is important to note that these findings are based on solvent extracts, which may differ from the phytochemical composition of the whole fruit as typically consumed. Among the extracts, aqueous fractions are likely the most relevant to dietary intake. Overall, the extracts of Sideroxylon cinereum pulp and seed show potential as sources of bioactive compounds for functional product development. Full article
Show Figures

Figure 1

20 pages, 1558 KiB  
Article
Investigation of the Antioxidant and Antimicrobial Properties of Ultrasound-Assisted Extracted Phenolics from Aronia melanocarpa Pomace
by Iuliana Aprodu, Carmen Lidia Chitescu, Leontina Grigore-Gurgu and Loredana Dumitrașcu
Appl. Sci. 2025, 15(13), 7070; https://doi.org/10.3390/app15137070 - 23 Jun 2025
Viewed by 292
Abstract
Black chokeberry (Aronia melanocarpa; BC) pomace represents an excellent source of compounds with health-promoting properties. This study investigated the contribution of ultrasound treatment to the recovery of phenolic compounds in comparison with conventional extraction, using water and ethanol solvents. The ultrasound [...] Read more.
Black chokeberry (Aronia melanocarpa; BC) pomace represents an excellent source of compounds with health-promoting properties. This study investigated the contribution of ultrasound treatment to the recovery of phenolic compounds in comparison with conventional extraction, using water and ethanol solvents. The ultrasound amplitude was tested between 20% and 60%, for 10 min, with the highest concentrations of total polyphenols and antioxidant activity being measured at a 30% amplitude. Ultrasound treatment was able to reduce the extraction time for the efficient recovery of antioxidants, from 24 h as required in conventional extraction to several minutes while using lower amplitudes. Regardless of the ultrasound extraction conditions, the ethanolic extracts provided higher content of antioxidants compared to water extracts. The chromatographic analysis highlighted the presence of 48 bioactive compounds, including phenolic acids, isoflavones, flavones, flavanones, proanthocyanidins, flavonols and terpenes. BC extracts showed potential to inhibit the growth of Escherichia coli and Staphylococcus aureus. In addition, the potential mechanism associated with the antibacterial activity was revealed after performing molecular docking tests involving, as receptors, essential proteins for the survival and colonization functions of E. coli and S. aureus. Full article
(This article belongs to the Special Issue Application of Natural Components in Food Production)
Show Figures

Figure 1

16 pages, 1242 KiB  
Article
Simultaneous Profiling of Terpenes and Cannabinoids in Hemp Essential Oils Using Static Headspace Gas Chromatography–Mass Spectrometry for Quality Control and Chemotype Differentiation
by Nathareen Chaiwangrach, Sirikan Mukda, Prapapan Temkitthawon, Nitra Nuengchamnong, Sarita Pinmanee, Thapakorn Somboon, Panatpong Boonnoun and Kornkanok Ingkaninan
Sci. Pharm. 2025, 93(2), 27; https://doi.org/10.3390/scipharm93020027 - 16 Jun 2025
Viewed by 817
Abstract
Hemp essential oils are rich in bioactive compounds, including terpenes and cannabinoids, yet standardized analytical methods for their simultaneous quality control are limited. This study aimed to (i) validate a static headspace gas chromatography–mass spectrometry (SHS-GC-MS) method for simultaneous quantification of 20 terpenes [...] Read more.
Hemp essential oils are rich in bioactive compounds, including terpenes and cannabinoids, yet standardized analytical methods for their simultaneous quality control are limited. This study aimed to (i) validate a static headspace gas chromatography–mass spectrometry (SHS-GC-MS) method for simultaneous quantification of 20 terpenes and 2 cannabinoids and (ii) apply it to fingerprint essential oils from four hemp strains, including local (HRDI2, HRDI5) and internationally cultivated (Charlotte’s Angel, Cherry Wine) varieties. The method met AOAC validation criteria, with detection limits of 0.025–0.5 µg/mL for terpenes and 1 µg/mL for cannabinoids. Quantitation limits ranged from 0.1–1 µg/mL for terpenes and 5 µg/mL for cannabinoids. Intraday precision (%RSD) ranged from 0.27–11.00%, while interday precision ranged from 3.14–13.89%. The method recoveries ranged from 85.12–115.47%. Precision and recovery confirmed the method’s reliability. Multivariate statistical analysis identified 82 metabolites, revealing distinct chemical fingerprints among strains, and emerged as newly identified chemotype markers, supporting chemotype classification. This work demonstrates, for the first time, a solvent-free, automatable SHS-GC-MS approach for simultaneous terpene and cannabinoid profiling in hemp essential oils, enabling both qualitative and quantitative characterization and supporting regulatory compliance for the development of standardized phytopharmaceutical products. Full article
Show Figures

Figure 1

15 pages, 1001 KiB  
Article
Biological Activity Evaluation Against Fusarium oxysporum, Fusarium circinatum, and Meloidogyne incognita of Bioactives-Enriched Extracts of Ruta graveolens L.
by Lorena Reyes-Vaquero, Elena Ibáñez, Soledad Sanz-Alférez, Gloria Nombela, Alma Angélica Del Villar-Martínez and Mónica Bueno
Molecules 2025, 30(10), 2240; https://doi.org/10.3390/molecules30102240 - 21 May 2025
Viewed by 646
Abstract
Ruta graveolens L. has been described as possessing antifungal and nematicidal activity. Among the bioactive compounds present in this plant, alkaloids and furanocoumarins have attracted considerable attention. The aim of this study was to evaluate the in vitro biological activity of extracts from [...] Read more.
Ruta graveolens L. has been described as possessing antifungal and nematicidal activity. Among the bioactive compounds present in this plant, alkaloids and furanocoumarins have attracted considerable attention. The aim of this study was to evaluate the in vitro biological activity of extracts from rue enriched in bioactive compounds against Fusarium oxysporum, F. circinatum, and Meloidogyne incognita, and to correlate the chemical profile of the extracts with their biological activities. Six extracts with contrasting chemical profiles, obtained by pressurized liquid extraction and supercritical fluid extraction using green solvents, were selected for biological evaluation. The highest F. oxysporum growth inhibition was achieved with the extracts enriched in fatty acids and furanocoumarins at concentrations of 4, 8, and 16 mg/mL, while for F. circinatum, the highest growth inhibition was obtained using the extract enriched in terpenes at 16 mg/mL; moreover, the six extracts evaluated caused mortality in M. incognita. Therefore, enriched extracts of R. graveolens might be considered as an alternative for pathogen control on economically important crops such as potatoes, tomatoes, and onions, among others. Correlations between biological activities and chemical compositions suggest the importance of fatty acids against F. oxysporum, fatty acids and terpenes against F. circinatum, and alkaloids, coumarins, and furanocoumarins for M. incognita. Full article
(This article belongs to the Special Issue Natural Products: Extraction, Analysis and Biological Activities)
Show Figures

Graphical abstract

14 pages, 1954 KiB  
Article
Sunflower Seed Oil Enriched with Compounds from the Turmeric Rhizome: Extraction, Characterization and Cell Viability
by Késia Corsato de Oliveira Segantini, Oscar de Oliveira Santos Junior, Vitor Augusto Dos Santos Garcia, Djéssica Tatiane Raspe and Camila da Silva
Separations 2025, 12(5), 121; https://doi.org/10.3390/separations12050121 - 11 May 2025
Cited by 1 | Viewed by 561
Abstract
The present work aimed to obtain and characterize sunflower seed oil (SO) enriched with compounds from turmeric rhizome (TR). For this purpose, the enriched oil was obtained from two strategies: extraction of the compounds from TR using SO as solvent (ESO) and simultaneous [...] Read more.
The present work aimed to obtain and characterize sunflower seed oil (SO) enriched with compounds from turmeric rhizome (TR). For this purpose, the enriched oil was obtained from two strategies: extraction of the compounds from TR using SO as solvent (ESO) and simultaneous extraction of SO and TR compounds using ethyl acetate as solvent (ESOS). In these strategies, the effect of time (15 and 30 min) and temperature (60 and 70 °C) on the enrichment in relation to the curcuminoids content was determined. Evaluation of phytochemicals such as total phenolic compounds (TPCs), phenolic compound profile and fatty-acid profile and bioactivity by antioxidant potential (AP) was carriedoutin the enriched oils and in the SO;mean while, oxidative stability and cytotoxicity were evaluated using HaCaT (human immortalized keratinocyte) cells. From the results obtained, higher contents of curcuminoids (510 mg/100 g oil) were observed in the oil obtained from simultaneous extraction (ESOS) in a shorter time and lower temperature (15 min and 60 °C), and similar behavior was found for the content of phenolic compounds and antioxidant potential. The profile of phenolic compounds revealed the presence of phenolic acids, curcuminoids and terpenes in the composition of the enriched oils, which increased oxidative stability. The oils obtained did not show any cytotoxic effect against the cells tested, confirmed by the high survival rate (>88%) after 48 h of exposure. Full article
(This article belongs to the Special Issue Application of Sustainable Separation Techniques in Food Processing)
Show Figures

Graphical abstract

16 pages, 2649 KiB  
Article
Electrophysiological Mechanism and Identification of Effective Compounds of Ginger (Zingiber officinale Roscoe) Shoot Volatiles Against Aphis gossypii Glover (Hemiptera: Aphididae)
by Jiawei Ma, Ye Tian, Xuli Liu, Shengyou Fang, Chong Sun, Junliang Yin, Yongxing Zhu and Yiqing Liu
Horticulturae 2025, 11(5), 490; https://doi.org/10.3390/horticulturae11050490 - 30 Apr 2025
Viewed by 390
Abstract
Aphis gossypii Glover (Homoptera: Aphidinae), a major pest of Chinese pepper (Zanthoxylum bungeanum Maxim), causes significant agricultural damage. Ginger (Zingiber officinale Roscoe) has shown potential as a source for developing botanical pesticides due to its strong bacteriostatic [...] Read more.
Aphis gossypii Glover (Homoptera: Aphidinae), a major pest of Chinese pepper (Zanthoxylum bungeanum Maxim), causes significant agricultural damage. Ginger (Zingiber officinale Roscoe) has shown potential as a source for developing botanical pesticides due to its strong bacteriostatic and insecticidal properties; however, the underlying mechanisms remain poorly understood. This study evaluated the repellent activity of ginger shoot extract (GSE) across four solvent phases—petroleum ether, trichloromethane, ethyl acetate, and methanol—against A. gossypii. The results demonstrated that GSE exhibited significant repellent effects, with the methanol phase showing the most pronounced activity. Twelve fractions were chromatographically separated from the methanol phase, and electroantennography (EAG) analysis revealed that fraction 4 induced strong EAG responses in both winged and wingless aphids. Further identification of active compounds in fraction 4 by gas chromatography–mass spectrometry (GC–MS) indicated the presence of terpenes, aromatics, alkanes, esters, and phenols as major constituents. Subsequent EAG analysis identified several key compounds—octahydro-pentalene (C1), (Z)-cyclooctene (C2), dimethylstyrene (C3), tetramethyl-heptadecane (C5), tetrahydro-naphthalene (C6), and heptacosane (C9)—as responsible for eliciting EAG responses in both aphid forms. Additionally, results from Y-tube olfactometer assays showed that (Z)-cyclooctene and heptacosane were significantly attractive, while octahydro-pentalene acted as a strong repellent to both winged and wingless aphids. These findings offer valuable insights for the development of synthetic attractants and repellents for A. gossypii and provide a theoretical foundation for utilizing ginger in the creation of botanical pesticides targeting this pest. Full article
(This article belongs to the Special Issue Advances in Bioactive Compounds of Horticultural Plants)
Show Figures

Figure 1

20 pages, 1262 KiB  
Article
Physicochemical and Biological Properties of Menthol and Thymol-Based Natural Deep Eutectic Solvents
by Martina Bagović Kolić, Martina Železnjak, Ksenija Markov, Višnja Gaurina Srček, Marina Cvjetko Bubalo, Kristina Radošević and Ivana Radojčić Redovniković
Molecules 2025, 30(8), 1713; https://doi.org/10.3390/molecules30081713 - 11 Apr 2025
Cited by 1 | Viewed by 1417
Abstract
Seven hydrophobic deep eutectic solvents (hDESs) were characterised to evaluate their potential applicability in different industries and their environmental impact. Standard physicochemical properties were determined, yielding polarity and density values that were slightly higher for thymol-based hDESs than menthol-based ones, whereas for viscosity, [...] Read more.
Seven hydrophobic deep eutectic solvents (hDESs) were characterised to evaluate their potential applicability in different industries and their environmental impact. Standard physicochemical properties were determined, yielding polarity and density values that were slightly higher for thymol-based hDESs than menthol-based ones, whereas for viscosity, the trend was opposite. Regarding biologically relevant activities, the antioxidative capacity and antimicrobial activity of hDESs were determined. Thymol-based hDESs are more potent as potential antioxidants, especially the one with coumarin as a hydrogen bond acceptor, which had the highest Oxygen Radical Absorbance Capacity (ORAC) value. Antimicrobial activity was assessed on four bacterial strains and one yeast strain. Calculated minimal inhibitory concentrations (MICs) showed that all hDESs possess this activity, and even the antimycotic effect against C. albicans was observed. Furthermore, to ensure the safety of these solvents for human use, in vitro cytocompatibility was determined. hDESs were tested on three human cell lines (HaCaT, CaCo-2, and HeLa), with no cytotoxic effect observed up to 1000 mg L−1. Finally, the environmental impact by the phytotoxicity test and in vitro antioxidative assay on wheat was determined for three selected hDESs, which were found to be slightly toxic, with different effects on plant defence mechanisms against induced antioxidative stress. Overall, the tested terpene-based hDESs demonstrate potential as alternative solvents for various industries, including food production, cosmetics, and pharmaceuticals, with thymol-based variants exhibiting a slight advantage in relation to the parameters evaluated in this study. Full article
Show Figures

Graphical abstract

16 pages, 2112 KiB  
Article
Extraction of Cannabinoids and Terpenes from Hemp Flowers and Leaves (Cannabis sativa L., Futura 75): Chemical Profiling and Evaluation of Anticancer Properties
by Monika Haczkiewicz, Marta Świtalska, Jacek Łyczko, Magdalena Pluta, Joanna Wietrzyk and Anna Gliszczyńska
Molecules 2025, 30(6), 1325; https://doi.org/10.3390/molecules30061325 - 15 Mar 2025
Cited by 1 | Viewed by 1837
Abstract
This study investigated efficient extraction methods for cannabinoids and terpenes from the above-ground parts of Futura 75, focusing on two techniques: pressurized extraction and magnetic stirrer-assisted extraction. The effects of solvent type, temperature, time, and pressure were evaluated using five organic solvents and [...] Read more.
This study investigated efficient extraction methods for cannabinoids and terpenes from the above-ground parts of Futura 75, focusing on two techniques: pressurized extraction and magnetic stirrer-assisted extraction. The effects of solvent type, temperature, time, and pressure were evaluated using five organic solvents and two binary solvent systems. Cannabinoid profiles of obtained extracts were analyzed using gas chromatography coupled with mass spectrometry (GC-MS), while terpene profiles were characterized through solid-phase microextraction (SPME) combined with GC-MS. Next, two selected extracts with the highest content of cannabinoid and terpene fractions (Futu1 and Futu2) were tested for antiproliferative activity toward cancer cell lines (MV4-11, AGS, HT-29, MDA-MB-468, MCF-7) and their cytotoxicity was evaluated on non-tumorigenic MCF-10A cells. Extract Futu1 contained 51.57% cannabinoids, 9.8% monoterpenes, and 90.2% sesquiterpenes in the terpene fraction. Futu2 exhibited a higher proportion of monoterpenes in the terpene fraction (19.6% monoterpenes and 80.4% sesquiterpenes) and consisted of 49.49% cannabinoids. Both extracts exhibited higher selectivity for cancer cells over non-tumorigenic cells, with Futu2 demonstrating stronger antiproliferative properties. Interestingly, lower concentrations of extracts and tested free, single cannabinoids stimulated the growth of leukemia (MV4-11) and breast cancer (MDA-MB-468) cell lines while their higher concentrations suppressed proliferation. Full article
(This article belongs to the Special Issue Antiproliferative Activities of Natural and Synthetic Compounds)
Show Figures

Figure 1

19 pages, 1681 KiB  
Review
Citrus aurantium Flowers: Overview of Chemistry, Functionality, and Technological Applications
by Sepidar Seyyedi-Mansour, Pauline Donn, Paula Barciela, Ana Perez-Vazquez, Rafael Nogueira-Marques, Franklin Chamorro, Maria Carpena and Miguel A. Prieto
Molecules 2025, 30(4), 930; https://doi.org/10.3390/molecules30040930 - 17 Feb 2025
Cited by 1 | Viewed by 1789
Abstract
Bitter orange (Citrus aurantium L.), a member of the Rutaceae family, finds global utility in both the treatment of various ailments and its role as a rootstock for Citrus species in agriculture. Various parts of Citrus aurantium L. have been employed in [...] Read more.
Bitter orange (Citrus aurantium L.), a member of the Rutaceae family, finds global utility in both the treatment of various ailments and its role as a rootstock for Citrus species in agriculture. Various parts of Citrus aurantium L. have been employed in traditional medicine due to their multifarious therapeutic potential. The blossom of this plant serves as a rich source of bioactive compounds, notably polyphenols, alkaloids, and terpenes. Additionally, it harbors substantial quantities of functional, nutritive, and biologically active compounds, which manifest their presence through antioxidant, antidiabetic, anticancer, antimicrobial, cardiovascular, and neuroprotective properties. The recovery of bioactive compounds is significantly affected by extraction methods. Many conventional methods have been explored for the recovering of bioactive compounds from bitter orange flowers. However, in response to the limitations of conventional techniques, green extraction methods, characterized by their ability to significantly increase the yield and reduce the time, energy, and solvent requirements, have also been assessed for this matrix. Therefore, the study of the functionalities of bitter orange blossoms represents a domain with unexplored research opportunities. Consequently, this review aims to offer a comprehensive insight into the biological properties and medicinal applications of the active compounds found within C. aurantium. Full article
(This article belongs to the Special Issue Plant Foods Ingredients as Functional Foods and Nutraceuticals III)
Show Figures

Graphical abstract

21 pages, 10391 KiB  
Article
NADES-in-Oil Emulsions Enriched with Essential Oils for Cosmetic Application
by David S. Freitas, Diana Rocha, Joana Santos, Jennifer Noro, Tânia D. Tavares, Marta O. Teixeira, Daniela Araújo, Joana Castro, Carina Almeida, Sónia Silva, Helena P. Felgueiras, Artur Ribeiro, Armando Venâncio, Artur Cavaco-Paulo and Carla Silva
Processes 2025, 13(2), 374; https://doi.org/10.3390/pr13020374 - 29 Jan 2025
Viewed by 1197
Abstract
This research aims to explore the potential benefits of natural deep eutectic solvents (NADES) in formulating translucent NADES-in-oil emulsions (TEs) containing essential oils (EOs) for cosmetic applications. The TEs investigated in this study are based on previous formulations, consisting of 50 wt.% egg [...] Read more.
This research aims to explore the potential benefits of natural deep eutectic solvents (NADES) in formulating translucent NADES-in-oil emulsions (TEs) containing essential oils (EOs) for cosmetic applications. The TEs investigated in this study are based on previous formulations, consisting of 50 wt.% egg phosphatidylcholine (EPC), 20 wt.% ethanol, 20 wt.% olive oil (OlO), thyme oil (TO), or oregano oil (OrO), and 10 wt.% NADES made from a 1:1 or 1:4 ratio of lactic acid and glycerol (LA). These emulsions exhibit high antioxidant activity, attributed to the terpenes present in the essential oils, such as thymol in TO and carvacrol in OrO. The TEs containing TO and OrO demonstrated a more fluid consistency, along with a more appealing texture and fragrance compared to the OlO control. Additionally, these emulsions exhibited the ability to permeate pig skin, as well as significant antifungal and antibacterial activity, and low toxicity in the Galleria mellonella larval model. Overall, the findings expand the potential applications of NADES, particularly in the development of translucent emulsions with EO for treating microbial skin and nail infections. Full article
Show Figures

Graphical abstract

19 pages, 3742 KiB  
Article
Comparison of Secondary Metabolite Extraction Methods in Hamelia patens Jacq. and Their Inhibitory Effect on Fusarium oxysporum f. sp. radicis-lycopersici
by Daniel Jafet Valle Ortiz, Dolores Guadalupe Aguila Muñoz, María del Carmen Cruz López, Diana Verónica Cortés Espinosa, Martha Rosales Castro and Fabiola Eloísa Jiménez Montejo
Metabolites 2025, 15(1), 23; https://doi.org/10.3390/metabo15010023 - 6 Jan 2025
Viewed by 1823
Abstract
Background: Hamelia patens Jacq. (HP) is widely recognized in traditional medicine for its antimicrobial properties, which are attributed to secondary metabolites such as phenolic compounds, alkaloids, and terpenes. Fusarium oxysporum f. sp. radicis-lycopersici (Fo), a phytopathogenic fungus affecting economically important crops, is [...] Read more.
Background: Hamelia patens Jacq. (HP) is widely recognized in traditional medicine for its antimicrobial properties, which are attributed to secondary metabolites such as phenolic compounds, alkaloids, and terpenes. Fusarium oxysporum f. sp. radicis-lycopersici (Fo), a phytopathogenic fungus affecting economically important crops, is managed with fungicides like benzimidazoles and azoles. Excessive use of these compounds has led to resistance and environmental contamination, highlighting the need for sustainable alternatives. This study aimed to optimize the extraction of secondary metabolites from HP leaves and flowers, evaluate their antifungal activity, and assess the impact of extraction methods and plant parts on chemical composition and efficacy. Methods: Three extraction methods were employed: consecutive maceration (CM) using solvents of ascending polarity; total maceration (TM), which is a single-step methanol-based method; and ultrasound-assisted maceration (UAM) employing ultrasonic waves with methanol. Extracts were characterized by quantifying total phenols (TP), condensed tannins (TC), flavonoids (Fl), alkaloids (TA), sterols (TS), and saponins (S) using colorimetric assays and UPLC-MS. Multivariate analyses, including PCA, PLS-DA, OPLS-DA, and Pearson correlation, evaluated the relationships between the chemical profiles and antifungal activity. Results: Leaf extracts exhibited higher flavonoid and tannin contents than flower extracts. CMML showed the highest antifungal activity (IC50 3.7% w/v), which was associated with elevated levels of these compounds. Significant correlations linked antifungal activity with rutin (HP21) and kaempferol-3-O-β-rutinoside (HP29). Conclusions: Methanolic extracts of HP exhibited significant antifungal activity against Fo. These findings highlight the importance of optimizing extraction methods and selecting specific plant parts to enhance bioactive compound efficacy, offering a sustainable approach to pathogen management. Full article
Show Figures

Figure 1

22 pages, 3479 KiB  
Review
Plant-Derived Compounds in Hemp Seeds (Cannabis sativa L.): Extraction, Identification and Bioactivity—A Review
by Virginia Tanase Apetroaei, Daniela Ionela Istrati and Camelia Vizireanu
Molecules 2025, 30(1), 124; https://doi.org/10.3390/molecules30010124 - 31 Dec 2024
Viewed by 1918
Abstract
The growing demand for plant-based protein and natural food ingredients has further fueled interest in exploring hemp seeds (Cannabis sativa L.) as a sustainable source of and nutrition. In addition to the content of proteins and healthy fats (linoleic acid and alpha-linolenic [...] Read more.
The growing demand for plant-based protein and natural food ingredients has further fueled interest in exploring hemp seeds (Cannabis sativa L.) as a sustainable source of and nutrition. In addition to the content of proteins and healthy fats (linoleic acid and alpha-linolenic acid), hemp seeds are rich in phytochemical compounds, especially terpenoids, polyphenols, and phytosterols, which contribute to their bioactive properties. Scientific studies have shown that these compounds possess significant antioxidant, antimicrobial, and anti-inflammatory effects, making hemp seeds a promising ingredient for promoting health. Since THC (tetrahydrocannabinol) and CBD (cannabidiol) are found only in traces, hemp seeds can be used in food applications because the psychoactive effects associated with cannabis are avoided. Therefore, the present article reviews the scientific literature on traditional and modern extraction methods for obtaining active substances that meet food safety standards, enabling the transformation of conventional foods into functional foods that provide additional health benefits and promote a balanced and sustainable diet. Also, the identification methods of biologically active compounds extracted from hemp seeds and their bioactivity were evaluated. Mechanical pressing extraction, steam distillation, solvent-based methods (Soxhlet, maceration), and advanced techniques such as microwave-assisted and supercritical fluid extraction were evaluated. Identification methods such as high-performance liquid chromatography (HPLC) and mass spectrometry (MS) allowed for detailed chemical profiling of cannabinoids, terpenes, and phenolic substances. Optimizing extraction parameters, including solvent type, temperature, and time, is crucial for maximizing yield and purity, offering the potential for developing value-added foods with health benefits. Full article
Show Figures

Figure 1

16 pages, 3318 KiB  
Article
Surfactant-Free w/o Gelled Emulsions with Benzyl Alcohol: Analytical Study for Varnish Removal on Oil Paintings
by Marianna Potenza, Silvia Germinario, Stefano Volpin, Elisa Isella, Paolo Cremonesi and Antonella Casoli
Appl. Sci. 2024, 14(24), 11821; https://doi.org/10.3390/app142411821 - 18 Dec 2024
Cited by 1 | Viewed by 1017
Abstract
In this study, the use of surfactant-free water-in-oil gelled emulsions containing benzyl alcohol (BAl/w) is proposed as an alternative to the more traditional use of organic solvents for removing varnishes. To mitigate the strong swelling and solvent action of benzyl alcohol and protect [...] Read more.
In this study, the use of surfactant-free water-in-oil gelled emulsions containing benzyl alcohol (BAl/w) is proposed as an alternative to the more traditional use of organic solvents for removing varnishes. To mitigate the strong swelling and solvent action of benzyl alcohol and protect the paint and the underlying layers, temporary hydrophobization with cyclomethicone D5 has been proposed. The aim of this study was to evaluate the application of BAl/w surfactant-free, constructed with three different gelling agents of the aqueous dispersing phase (xanthan gum, agar-agar, and polyacrylate) on the surface of an oil painting varnished with and without preliminary saturation with D5. The role of pH, which can influence the ionization, and therefore the water solubility of terpene molecules and all other acid species present on the surface, was also studied. Fourier transform infrared (FT-IR) and Raman spectroscopies were used to characterize the pigments and the surface before and after varnish removal. Elemental analysis and any morphological changes were evaluated using scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDS). The leaching efficiency of each surfactant-free emulsion applied on the paint surface was evaluated using a gas chromatography/mass spectroscopy (GC/MS) analysis: the fatty acid content was established in each sample before and after the treatments. Full article
Show Figures

Figure 1

28 pages, 5265 KiB  
Review
Sustainability of Nonisocyanate Polyurethanes (NIPUs)
by Jan Ozimek and Krzysztof Pielichowski
Sustainability 2024, 16(22), 9911; https://doi.org/10.3390/su16229911 - 13 Nov 2024
Cited by 5 | Viewed by 2564
Abstract
This work discusses the synthesis and properties of nonisocyanate polyurethanes (NIPUs) as an environmentally friendly alternative to traditional polyurethanes. NIPUs are made without the use of toxic isocyanates, reducing the environmental impact and safety concerns associated with their production. However, their synthesis reactions [...] Read more.
This work discusses the synthesis and properties of nonisocyanate polyurethanes (NIPUs) as an environmentally friendly alternative to traditional polyurethanes. NIPUs are made without the use of toxic isocyanates, reducing the environmental impact and safety concerns associated with their production. However, their synthesis reactions often require longer time and more energy to be completed. The sustainability of NIPUs is considered from various angles; the main methods for the synthesis of NIPUs, including rearrangement reactions, transurethanization, and ring-opening polymerization of cyclic carbonates with amines, are examined. Another part focuses on renewable sources, such as vegetable oils, terpenes, tannins, lignins, sugars, and others. The synthesis of waterborne and solvent-free NIPUs is also discussed, as it further reduces the environmental impact by minimizing volatile organic compounds (VOCs) and avoiding the use of harmful solvents. The challenges faced by NIPUs, such as lower molecular weight and higher dispersity compared to traditional polyurethanes, which can affect mechanical properties, were also addressed. Improving the performance of NIPUs to make them more competitive compared to conventional polyurethanes remains a key task in future research. Full article
Show Figures

Graphical abstract

Back to TopTop