Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,651)

Search Parameters:
Keywords = temperature regulated mechanism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5111 KB  
Article
A Patch and Attention Mechanism-Based Model for Multi-Parameter Prediction of Rabbit House Environmental Parameters
by Ronghua Ji, Guoxin Wu, Hongrui Chang, Zhongying Liu and Zhonghong Wu
Animals 2025, 15(21), 3192; https://doi.org/10.3390/ani15213192 (registering DOI) - 2 Nov 2025
Abstract
The health and productivity of rabbits are highly sensitive to the environmental conditions within the rabbit house, particularly to fluctuations and deviations in temperature, relative humidity, and carbon dioxide (CO2) concentration. However, owing to the thermal inertia and residual evaporation effects [...] Read more.
The health and productivity of rabbits are highly sensitive to the environmental conditions within the rabbit house, particularly to fluctuations and deviations in temperature, relative humidity, and carbon dioxide (CO2) concentration. However, owing to the thermal inertia and residual evaporation effects inherent in ventilation and cooling systems, environmental changes often exhibit delayed responses, rendering real-time control inadequate. Accurate prediction of key environmental parameters is indispensable for formulating effective environmental control strategies, as it enables consideration of their future dynamics and thereby enhances the rationality of regulation in rabbit farming. Existing prediction models often exhibit unsatisfactory accuracy and weak generalization, which restricts the incorporation of prediction into effective environmental control strategies. To address these limitations, summer indoor and outdoor environmental data were collected from rabbit houses in Nanping, Fujian; Jiyuan, Henan; and Qingyang, Gansu, China—three climatically distinct regions—forming three datasets. Based on these datasets, a multi-parameter time-series prediction model, Patch and Cross-Attention Enhanced Transformer for Rabbit House Prediction (PatchCrossFormer-RHP), is introduced, integrating patching and attention mechanisms. The model partitions the sequences of rabbit house temperature, relative humidity, and CO2 concentration into patches and incorporates auxiliary parameters, such as indoor air velocity and outdoor temperature and humidity, to enhance feature representation. Furthermore, it applies cross-attention with differentiated encoding to disentangle multi-parameter relationships and improve predictive performance. This study used the Fujian dataset as the primary benchmark. On this dataset, PatchCrossFormer-RHP achieved root mean square error (RMSE) values of 0.290°C, 1.554%, and 38.837 ppm for rabbit house temperature, humidity, and CO2 concentration, respectively, with corresponding R2 values of 0.963, 0.956, and 0.838, consistently outperforming RNN, GRU, and LSTM. Transfer experiments with single- and multi-source pretraining followed by fine-tuning on Fujian demonstrated that strong cross-regional generalization can be achieved with only limited target-domain data. Full article
(This article belongs to the Section Animal System and Management)
20 pages, 3074 KB  
Article
Hydro-Sedimentary Dynamics and Channel Evolution in the Mid-Huai River Under Changing Environments: A Case Study of the Wujiadu-Xiaoliuxiang Reach
by Kai Cheng, Jin Ni, Hui Zhang, Haitian Lu and Peng Wu
Water 2025, 17(21), 3147; https://doi.org/10.3390/w17213147 (registering DOI) - 2 Nov 2025
Abstract
Within the context of global climate change, the hydrological and sediment load dynamics in the Huai River Basin are expected to continue evolving due to intensified human activities and environmental changes. Effective river management requires a clear understanding of the magnitude, causes, and [...] Read more.
Within the context of global climate change, the hydrological and sediment load dynamics in the Huai River Basin are expected to continue evolving due to intensified human activities and environmental changes. Effective river management requires a clear understanding of the magnitude, causes, and characteristics of these changes, coupled with insight into the dynamic response processes of the river channel. This study applied a suite of statistical methods, including the Mann–Kendall test, Sen’s slope estimator, Pettitt’s test, double mass curve, and morphological analysis, to examine trends in streamflow and sediment load at two hydrological stations in the mid-Huai River from 1982 to 2016, and to assess channel evolution between Wujiadu and Xiaoliuxiang. The results indicate that: (1) both hydrological stations exhibited no significant decrease in annual streamflow, but a significant reduction in sediment load, with a change point detected in 1991 at Wujiadu Station; (2) compared to 1982–1990, the mean streamflow and sediment load decreased by 23% and 50% during 1991–2016, with a significant shift in the streamflow-sediment relationship; (3) while temperature and evapotranspiration increased significantly, precipitation remained relatively stable, indicating that climate change had a minor effect on hydrological elements, and sediment load reduction was primarily driven by large-scale ecological restoration and engineering activities; and (4) differential channel adjustments were observed in response to reduced sediment supply and human activities, modulated by local boundary conditions. Erosion occurred in the WJD section, resulting in a transformation from a U-shape to a V-shape cross-section, whereas the XLX section remained stable with a local adverse gradient. This study reveals the complex mechanisms of hydro-sedimentary and channel evolution under human dominance, offering scientific support for the sustainable management of the Huai River basin and similar regulated rivers. Full article
(This article belongs to the Special Issue Effects of Vegetation on Open Channel Flow and Sediment Transport)
Show Figures

Figure 1

47 pages, 4119 KB  
Review
Tire–Road Interaction: A Comprehensive Review of Friction Mechanisms, Influencing Factors, and Future Challenges
by Adrian Soica and Carmen Gheorghe
Machines 2025, 13(11), 1005; https://doi.org/10.3390/machines13111005 (registering DOI) - 1 Nov 2025
Abstract
Tire–road friction is a fundamental factor in vehicle safety, energy efficiency, and environmental sustainability. This narrative review synthesizes current knowledge on the tire–road friction coefficient (TRFC), emphasizing its dynamic nature and the interplay of factors such as tire composition, tread design, road surface [...] Read more.
Tire–road friction is a fundamental factor in vehicle safety, energy efficiency, and environmental sustainability. This narrative review synthesizes current knowledge on the tire–road friction coefficient (TRFC), emphasizing its dynamic nature and the interplay of factors such as tire composition, tread design, road surface texture, temperature, load, and inflation pressure. Friction mechanisms, adhesion, and hysteresis are analyzed alongside their dependence on environmental and operational conditions. The study highlights the challenges posed by emerging mobility paradigms, including electric and autonomous vehicles, which demand specialized tires to manage higher loads, torque, and dynamic behaviors. The review identifies persistent research gaps, such as real-time TRFC estimation methods and the modeling of combined environmental effects. It explores tire–road interaction models and finite element approaches, while proposing future directions integrating artificial intelligence and machine learning for enhanced accuracy. The implications of the Euro 7 regulations, which limit tire wear particle emissions, are discussed, highlighting the need for sustainable tire materials and green manufacturing processes. By linking bibliometric trends, experimental findings, and technological innovations, this review underscores the importance of balancing grip, durability, and rolling resistance to meet safety, efficiency, and environmental goals. It concludes that optimizing friction coefficients is essential for advancing intelligent, sustainable, and regulation-compliant mobility systems, paving the way for safer and greener transportation solutions. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

26 pages, 3984 KB  
Article
Effects of Operational Parameters on Heat Extraction Efficiency in Medium-Deep Geothermal Systems: THM Coupling Numerical Simulation
by Wenrui Wang, Zhiwei Yang, Chenglu Gao, Zhiyuan Liu, Zongqing Zhou and Huaqing Ma
Energies 2025, 18(21), 5727; https://doi.org/10.3390/en18215727 - 30 Oct 2025
Viewed by 163
Abstract
Amid the global energy transition, geothermal energy, as a clean, stable, and renewable energy source, serves as a core direction for energy structure optimization. The development of medium-deep geothermal reservoirs is dominated by thermo–hydro–mechanical (THM) multi-physics coupling effects, yet the quantitative regulation laws [...] Read more.
Amid the global energy transition, geothermal energy, as a clean, stable, and renewable energy source, serves as a core direction for energy structure optimization. The development of medium-deep geothermal reservoirs is dominated by thermo–hydro–mechanical (THM) multi-physics coupling effects, yet the quantitative regulation laws of their operational parameters remain unclear. In this study, a numerical model for geothermal extraction considering THM multi-physics coupling was established. Using the single-factor variable method, simulations were conducted within the set parameter ranges of injection–production pressure difference, well spacing, and injection temperature. The spatiotemporal evolution characteristics of the temperature field, the dynamic temperature–pressure responses at the midpoint of injection–production wells and production wells, and efficiency indicators, such as instantaneous heat extraction power and cumulative heat extraction, were analyzed and quantified. The results show that a larger pressure difference accelerates the expansion of the cold zone in the reservoir, which improves short-term heat extraction efficiency but increases the risk of long-term thermal depletion; a smaller well spacing leads to higher initial heat production power but results in lower long-term cumulative heat extraction due to rapid heat consumption; within the normal temperature range of 16–24 °C, the injection temperature has a negligible impact on heat extraction efficiency. This study clarifies the regulatory laws of operational parameters and provides theoretical support for well pattern design and injection–production process optimization in medium-deep geothermal development. Full article
Show Figures

Figure 1

21 pages, 9440 KB  
Article
Cold-Tolerant Bacteria Isolated from Alpine Plants Can Promote Growth and Mitigate Cold Stress in Tomato Seedlings by Complex Transcriptional Reprogramming of Stress-Related Genes
by Irma Milanese, Aureliano Bombarely, Malek Marian and Michele Perazzolli
Plants 2025, 14(21), 3316; https://doi.org/10.3390/plants14213316 - 30 Oct 2025
Viewed by 159
Abstract
Cold stress adversely affects crop growth, and climate change is increasing its severity and frequency in many agricultural regions. Tomato plants are sensitive to low temperatures, although they activate some stress response mechanisms. Beneficial microorganisms can enhance cold-stress acclimation in tomato plants, but [...] Read more.
Cold stress adversely affects crop growth, and climate change is increasing its severity and frequency in many agricultural regions. Tomato plants are sensitive to low temperatures, although they activate some stress response mechanisms. Beneficial microorganisms can enhance cold-stress acclimation in tomato plants, but the transcriptional regulation underlying this process remains poorly understood. This study aimed to investigate the transcriptional processes activated by cold stress in tomato plants following inoculation with cold-tolerant bacteria isolated from alpine plants to identify genes potentially involved in cold stress acclimation. Among 41 cold-tolerant bacterial isolates tested, Chryseobacterium sp. GRCS301 and Pseudomonas sp. GRCS202 inoculation in sterilized soil promoted tomato growth under controlled non-stress (25 ± 2 °C) and cold-stress (10 ± 2 °C) conditions. Bacterial inoculations lowered H2O2 content and affected the transcriptional regulations activated in tomato shoots after one day and 14 days of incubation under cold-stress conditions. In mock-inoculated plants, cold stress downregulated genes related to energy generation, photosynthesis, and reproductive processes, highlighting its detrimental effects. Conversely, plants inoculated with Chryseobacterium and Pseudomonas upregulated genes involved in DNA replication, galactose metabolism, polysaccharide metabolism, photosynthesis, and protein metabolism in response to cold stress. Bacterial inoculation induced the expression of genes involved in reactive oxygen species homeostasis, cold-stress response, and hormonal signaling, suggesting that cold-tolerant bacteria trigger key transcriptional changes in tomato plants and enhance cold-stress acclimation. Full article
(This article belongs to the Special Issue Cell Physiology and Stress Adaptation of Crops)
Show Figures

Figure 1

17 pages, 759 KB  
Review
Optimizing Nutrient Dynamics for Crop Resilience to Abiotic Stress: An Endogenous Phytohormone Perspective
by Ibragim Bamatov, Eliza Sobralieva, Rashiya Bekmurzaeva and Shamil Alimurzaev
Plants 2025, 14(21), 3303; https://doi.org/10.3390/plants14213303 - 29 Oct 2025
Viewed by 203
Abstract
Plants continuously adapt to dynamic environmental conditions, which include abiotic stress such as drought, salinity, and high temperature. Translocation, availability, and uptake of essential nutrients are suggested to be disrupted, thereby impairing growth, development, and productivity of the plant. The interplay between the [...] Read more.
Plants continuously adapt to dynamic environmental conditions, which include abiotic stress such as drought, salinity, and high temperature. Translocation, availability, and uptake of essential nutrients are suggested to be disrupted, thereby impairing growth, development, and productivity of the plant. The interplay between the root architecture, membrane transporters, and hormonal regulation is suggested to have efficient nutrient acquisition. For mediating nutrient uptake and redistribution under abiotic stress conditions, transporter proteins such as nitrate (NRT), ammonium (AMT), phosphate (PHT), and potassium (HAK) families play a crucial role for the major essential elements (N, P, K). Abiotic stress triggers specific transcriptional and post-transcriptional regulation of these transporters, modulating their activity in response to external nutrient availability. Under nutrient-deficient conditions, phytohormones such as abscisic acid (ABA), cytokinin, and ethylene play a pivotal role in orchestrating plant responses. Moreover, the plant stress tolerance is suggested to be influenced by stress-induced signalling mechanisms, which are mediated by reactive oxygen species (ROS). The current review synthesizes current knowledge of nutrient dynamics under abiotic stress, focusing on the molecular mechanisms governing transporter regulation and phytohormonal crosstalk. By unravelling these complex regulatory networks, this article aims to pave the way for sustainable agricultural practices. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Graphical abstract

21 pages, 3892 KB  
Article
Study on Energy-Saving Potential Based on Heat and Moisture Transfer Characteristics During Fresh Air Introduction in Deep Underground Engineering
by Jiangyan Ma, Xu Zhou, Lin Huang, Baoshun Deng, Lei He, Xiaoling Cao and Shuang Qiu
Energies 2025, 18(21), 5684; https://doi.org/10.3390/en18215684 - 29 Oct 2025
Viewed by 164
Abstract
The goal of this paper is to clarify the heat–moisture coupled regulation mechanism of deep-buried underground air tunnels and to address the research gaps in the heat–moisture coupled transfer between airflow and surrounding rock. This paper established a 560 m deep ventilation shaft [...] Read more.
The goal of this paper is to clarify the heat–moisture coupled regulation mechanism of deep-buried underground air tunnels and to address the research gaps in the heat–moisture coupled transfer between airflow and surrounding rock. This paper established a 560 m deep ventilation shaft with a diameter of 5 m focused on the heat–moisture coupled transfer of “surrounding rock—air tunnel—airflow” to investigate the airflow characteristics; analyze the heat and moisture changes of the tunnel surface and airflow, as well as the energy storage characteristics of the surrounding rock; and compare the induced airflow characteristics across four typical cities in China. The results show the following: there is an “inlet effect” in the deep-buried air tunnel; the wall temperature becomes basically stable after 200 m from the entrance, while a greater depth is required for the stable section of humidity; in summer, the airflow temperature decreases by more than 1 °C and the enthalpy decreases by 3.5 kJ/kg; in addition, the ground temperature in Guangzhou is relatively high, resulting in a limited effect on adjusting the intake airflow. This study aims to provide support for the energy-saving design of fresh air systems in deep-buried underground buildings. Full article
Show Figures

Figure 1

18 pages, 16465 KB  
Article
Effects of Ball Milling Time and Sintering Temperature on the Microstructure and Mechanical Properties of Mg-Al-Ti Alloy
by Dan Qian, Yue Shen, Zhanli Geng, Binyu Zhao, Wandong Bai, Shiping Sun, Xiang Li, Jinbo Zeng, Shengdi Zhang, Yumin Wang and Xiufeng Ren
Materials 2025, 18(21), 4936; https://doi.org/10.3390/ma18214936 - 29 Oct 2025
Viewed by 245
Abstract
Driven by the demand for lightweight materials, magnesium has gained significant interest due to its abundance and low density. This study systematically investigated the effects of mechanical ball milling time and sintering temperature on the microstructure and mechanical properties of a powder-metallurgy-processed Mg-Al-Ti [...] Read more.
Driven by the demand for lightweight materials, magnesium has gained significant interest due to its abundance and low density. This study systematically investigated the effects of mechanical ball milling time and sintering temperature on the microstructure and mechanical properties of a powder-metallurgy-processed Mg-Al-Ti alloy. The results established a correlation between ball milling and sintering processes, demonstrating that regulating precursor powder characteristics effectively enhances sintering diffusion efficiency. By precisely controlling sintering temperature and powder particle size characteristics, the alloy achieved high density, hardness, and strength at relatively low temperatures, demonstrating comprehensive performance. Optimal properties were obtained at 420 °C sintering conditions: relative density of 98%, hardness of 172 HV, compressive strength of 367 MPa, and nanoscale Young’s modulus reaching 45.15 GPa. Further analysis indicated that intermetallic compounds formed during sintering contributed significantly to the hardness enhancement, with the strengthening mechanism primarily attributed to the synergistic effects of precipitation and solid solution strengthening. The work provides a theoretical basis for further development of high-performance materials by subsequent processing. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

21 pages, 23671 KB  
Article
Integrative Physiological, Metabolomic and Transcriptomic Analyses Uncover the Mechanisms Underlying Differential Responses of Two Anubias Genotypes to Low-Temperature Stress
by Yanyu Luo, Liguo Wei, Weiguang Liu, Jiwei Chen, Jinzhong Zhang, Zhijian Yang, Shaoli Huang and Yiwei Zhou
Biomolecules 2025, 15(11), 1520; https://doi.org/10.3390/biom15111520 - 28 Oct 2025
Viewed by 187
Abstract
Anubias (Araceae) is a globally important group of ornamental aquatic plants. However, when temperatures drop to 10 °C, most species suffer obvious frostbite from cold stress, restricting winter cultivation and broader application. This study focused on two Anubias genotypes with distinct cold tolerance, [...] Read more.
Anubias (Araceae) is a globally important group of ornamental aquatic plants. However, when temperatures drop to 10 °C, most species suffer obvious frostbite from cold stress, restricting winter cultivation and broader application. This study focused on two Anubias genotypes with distinct cold tolerance, adopting an integrated approach combining phenotypic, physiological, metabolomic, and transcriptomic analyses to reveal the mechanisms underlying their differential cold tolerance. Under 10 °C cold stress, compared with normal temperatures, the leaves of cold-tolerant Anubias sp. ‘Long Leaf’ (Jian) showed no significant frostbite, while cold-sensitive Anubias barteri var. nana ‘Coin Leaf’ (Jin) had clear frost damage. Both genotypes exhibited increased leaf relative electrical conductivity, malondialdehyde (MDA) content, soluble sugar content, and activities of superoxide dismutase (SOD) and catalase (CAT); “Jian” had more notable rises in SOD/CAT activities and maintained higher levels, whereas “Jin” showed greater increases in conductivity, MDA, and soluble sugar. Metabolomic and transcriptomic analyses revealed “Jian” specifically upregulated metabolites in pathways like flavone and flavonol biosynthesis and tryptophan metabolism, as well as genes related to valine, leucine, isoleucine degradation and phenylpropanoid biosynthesis pathways. ERFs, WRKYs, NACs and other transcription factors correlated with these differentially expressed genes, suggesting potential transcriptional regulation. These results provides insights for breeding cold-tolerant Anubias and optimizing low-temperature cultivation. Full article
Show Figures

Figure 1

12 pages, 3475 KB  
Article
Atomic-Scale Modulation of Lithium Metal Electrode Interfaces by Monolayer Graphene: A Molecular Dynamics Study
by Haoyu Yang, Runze Chen, Shouhang Fu, Shunxiang Mo, Yulin Chen and Jianfang Cao
Materials 2025, 18(21), 4925; https://doi.org/10.3390/ma18214925 - 28 Oct 2025
Viewed by 264
Abstract
Graphene, owing to its exceptional mechanical properties and interfacial modulation capability, is considered an ideal material for enhancing the interfacial strength and damage resistance during the fabrication of ultra-thin lithium foils. Although previous studies have demonstrated the reinforcing effects of graphene on lithium [...] Read more.
Graphene, owing to its exceptional mechanical properties and interfacial modulation capability, is considered an ideal material for enhancing the interfacial strength and damage resistance during the fabrication of ultra-thin lithium foils. Although previous studies have demonstrated the reinforcing effects of graphene on lithium metal interfaces, most analyses have been restricted to single-temperature or idealized substrate conditions, lacking systematic investigations under practical, multi-temperature environments. Consequently, the influence of graphene coatings on lithium-ion conductivity and mechanical stability under real thermal conditions remains unclear. To address this gap, we employ LAMMPS-based molecular dynamics simulations to construct atomic-scale models of pristine lithium and graphene-coated lithium (C/Li) interfaces at three representative temperatures. Through comprehensive analyses of dislocation evolution, root-mean-square displacement, frictional response, and lithium-ion diffusion, we find that graphene coatings synergistically alleviate interfacial stress, suppress crack initiation, reduce friction, and enhance ionic conductivity, with these effects being particularly pronounced at elevated temperatures. These findings reveal the coupled mechanical and electrochemical regulation imparted by graphene, providing a theoretical basis for optimizing the structure of next-generation high-performance lithium metal anodes and laying the foundation for advanced interfacial engineering in battery technologies. Full article
Show Figures

Graphical abstract

37 pages, 2498 KB  
Review
Adapting Crops to Rising Temperatures: Understanding Heat Stress and Plant Resilience Mechanisms
by Anand Kumar, Pandiyan Muthuramalingam, Reetesh Kumar, Savitri Tiwari, Laxmidas Verma, Sujeong Park and Hyunsuk Shin
Int. J. Mol. Sci. 2025, 26(21), 10426; https://doi.org/10.3390/ijms262110426 - 27 Oct 2025
Viewed by 502
Abstract
Global temperature rise has become a critical challenge to agricultural sustainability, severely affecting crop growth, productivity, and survival. Human-induced climate change and greenhouse gas emissions cause heat stress, disrupting plant metabolism and physiology at all developmental stages from germination to harvest. Elevated temperatures [...] Read more.
Global temperature rise has become a critical challenge to agricultural sustainability, severely affecting crop growth, productivity, and survival. Human-induced climate change and greenhouse gas emissions cause heat stress, disrupting plant metabolism and physiology at all developmental stages from germination to harvest. Elevated temperatures during germination impair water uptake, enzyme activity, and energy metabolism, leading to poor or uneven seedling emergence. At key phases such as flowering and grain filling, heat stress limits photosynthesis and transpiration by inducing stomatal closure, restricting carbon dioxide intake, and reducing photosynthetic efficiency. The reproductive stage is particularly vulnerable to high temperatures, impairing pollen viability, preventing anther dehiscence, and reducing fertilization success. Membrane instability further accelerates chlorophyll degradation and leaf senescence. Heat stress also alters biochemical and hormonal balances by disrupting the synthesis and signaling of auxins, gibberellins, and abscisic acid (ABA). Elevated ABA promotes stomatal closure to enhance stress tolerance, while increased ethylene levels trigger premature leaf senescence and abscission. These hormonal shifts and oxidative stress hinder plant growth and reproduction, threatening global food security. Although plants employ adaptive mechanisms such as heat shock protein expression and stress-responsive gene regulation, current strategies remain inadequate, highlighting the urgent need for innovative approaches to improve crop resilience under rising temperatures. Full article
(This article belongs to the Special Issue New Insights into Plant Stress)
Show Figures

Figure 1

19 pages, 4923 KB  
Article
Phytohormone Response to Exogenous Nitric Oxide in Cucumber Under Low-Temperature Stress
by Pei Wu, Zhifeng Yang, Qiusheng Kong, Huimei Cui, Yumei Liu, Rongrong Dong, Caixia Zheng, Huiying Liu and Jinxia Cui
Plants 2025, 14(21), 3275; https://doi.org/10.3390/plants14213275 - 27 Oct 2025
Viewed by 131
Abstract
To elucidate the comprehensive mechanism by which nitric oxide (NO) enhances low-temperature tolerance in cucumber, we utilized two cucumber cultivars (Jinyan No. 4 and Jinyou No. 1) as experimental materials. By integrating transcriptomic analysis with physiological indicators, we investigated the physiological and molecular [...] Read more.
To elucidate the comprehensive mechanism by which nitric oxide (NO) enhances low-temperature tolerance in cucumber, we utilized two cucumber cultivars (Jinyan No. 4 and Jinyou No. 1) as experimental materials. By integrating transcriptomic analysis with physiological indicators, we investigated the physiological and molecular mechanisms underlying the NO-mediated improvement of cold tolerance. Both molecular and physiological data revealed that phytohormone signal transduction and alpha-linolenic acid metabolism were significantly affected by low-temperature stress alone and in combination with exogenous SNP treatment in both cultivars. Under low-temperature stress, most transcripts associated with abscisic acid (ABA) biosynthesis, ABA signal transduction, and flavonoid biosynthesis were coordinately downregulated in cucumber. In contrast, transcripts related to secondary metabolism, lipid metabolism, glutathione biosynthesis, and hormone signal transduction—including salicylic acid (SA), ethylene (ETH), gibberellin (GA), and jasmonic acid (JA) pathways—were coordinately upregulated. Additionally, exogenous SNP was found to regulate both phytohormone signal transduction and endogenous hormone levels. These results suggest that exogenous NO improves low-temperature tolerance in cucumber seedlings primarily by modulating phytohormone signaling and secondary metabolism. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

24 pages, 9815 KB  
Article
Integrative Transcriptomic and Metabolomic Approaches to Deep Pink Flower Color in Prunus campanulata and Insights into Anthocyanin Biosynthesis
by Yuxing Wen, Shoujin Cao, Yuxin Wang, Jianchao Zhu, Xudong Fang, Guangmei Ou, Man Shu, Wei Zhou, Wenhai Yang, Lin Yu and Yingshu Yang
Forests 2025, 16(11), 1633; https://doi.org/10.3390/f16111633 - 26 Oct 2025
Viewed by 207
Abstract
Flower pigmentation is a critical trait in plants, influencing ecological interactions and ornamental value. This study investigates the mechanisms underlying petal coloration in Prunus campanulata and its hybrids, PrunusOkame’ and PrunusYoko’. Morphological analysis revealed consistent flower size [...] Read more.
Flower pigmentation is a critical trait in plants, influencing ecological interactions and ornamental value. This study investigates the mechanisms underlying petal coloration in Prunus campanulata and its hybrids, PrunusOkame’ and PrunusYoko’. Morphological analysis revealed consistent flower size across varieties, indicating that color variation is not linked to structural differences. Physiological and biochemical analyses identified stages III and IV as critical for pigmentation, characterized by the significant accumulation of flavonoids and anthocyanins. Metabolomic profiling highlighted flavonoids as the dominant metabolites, with key compounds including chalcones, flavones, and anthocyanins contributing to color formation. Weighted gene co-expression network analysis (WGCNA) further identified several hub genes, including RPL34, NUDT12, and CYP78A9, within modules strongly correlated with pigment accumulation, suggesting their potential non-canonical roles in the coloration process. Environmental factors such as temperature and pH were found to influence pigment stability. Overall, this study provides insights into the genetic and biochemical regulation of flower pigmentation in P. campanulata, emphasizing the central role of flavonoid and anthocyanin biosynthesis. Full article
(This article belongs to the Section Genetics and Molecular Biology)
Show Figures

Figure 1

27 pages, 66167 KB  
Article
Investigating the Influence of Urban Morphology on Seasonal Thermal Environment Based on Urban Functional Zones
by Meiling Zeng, Chunxia Liu, Yuechen Li, Bo He, Rongxiang Wang, Zihua Qian, Fang Wang, Qiao Huang, Peng Li, Bingrong Leng and Yunjing Huang
Land 2025, 14(11), 2117; https://doi.org/10.3390/land14112117 - 24 Oct 2025
Viewed by 243
Abstract
With the rapid advancement of urbanization, urban heat environment issues have become increasingly severe, presenting significant challenges to sustainable urban development. Although previous research has demonstrated the substantial impact of urban morphology on land surface temperature (LST), there is still a lack of [...] Read more.
With the rapid advancement of urbanization, urban heat environment issues have become increasingly severe, presenting significant challenges to sustainable urban development. Although previous research has demonstrated the substantial impact of urban morphology on land surface temperature (LST), there is still a lack of comprehensive research on the non-stationary effects of urban morphology on seasonal LST at the block scale. Therefore, this study establishes a comprehensive research framework, utilizing urban functional zones in the core area of Chongqing as the primary research unit, to investigate the seasonal fluctuations in the spatial distribution of LST across various functional zones. Combining Random Forest (RF) with multiscale geographically weighted regression methods (MGWR), the study systematically analyzes the numerical and spatial distribution characteristics of how urban morphology factors influence LST from global and local perspectives. The results indicate that (1) the LST in central Chongqing exhibits marked seasonal variation and a distinct “mountain-water pattern,” with industrial zones consistently hotter and public service areas cooler; (2) biophysical surface parameters and building morphological indicators make a high relative contribution to LST changes across seasons, particularly in public service and commercial areas; (3) building density (BD) and biophysical surface parameters primarily exert local impacts on LST changes, while floor area ratio (FAR) and building height range (RBH) have a global effect. These findings provide new insights into the driving mechanisms of urban heat environments and offer scientific evidence for regulating and mitigating urban heat environment issues across different seasons and urban types. Full article
(This article belongs to the Special Issue The Impact of Urban Planning on the Urban Heat Island Effect)
Show Figures

Graphical abstract

24 pages, 18322 KB  
Article
Block or Connect? Optimizing Ecological Corridors to Enhance the Dual Functions of Resistance and Provision in Forest-Mountain Ecological Security Barriers
by Lei Cao, Chengbin Xi, Xinyao Zhao and Yunlu Zhang
Forests 2025, 16(11), 1625; https://doi.org/10.3390/f16111625 - 24 Oct 2025
Viewed by 257
Abstract
Ecological security barriers safeguard regional ecological security by blocking external risks and supplying internal services. However, existing research has primarily focused on optimizing the connectivity and protection of internal ecological patches within barriers. At a broader scale, there remains insufficient attention on coordinating [...] Read more.
Ecological security barriers safeguard regional ecological security by blocking external risks and supplying internal services. However, existing research has primarily focused on optimizing the connectivity and protection of internal ecological patches within barriers. At a broader scale, there remains insufficient attention on coordinating the “blocking of external ecological risk corridors” and “connecting corridors that supply ecosystem services to internal urban areas”. To address this, this study develops a framework for constructing ecological corridors that integrates both reverse (resistance) and forward (provision) perspectives. Taking the Yanshan–Taihang Mountain Ecological Barrier as a case study, circuit theory is applied to identify risk corridors traversing the barrier area. Service supply corridors directed toward internal urban areas are also established, and key nodes along these corridors are identified. Furthermore, the XGBoost-SHAP method is employed to quantitatively analyze the influencing factors and mechanisms of these key nodes. Finally, strategies are proposed to block risk corridors and connect supply corridors. The main results are as follows: (1) A total of 29 risk corridors, 158 risk pinch points, and 210 risk barriers were identified, along with 250 supply corridors, 158 supply pinch points, and 118 supply barriers, revealing the distinct distribution patterns of both risk transmission and service supply corridors. (2) The dominant factors influencing different types of corridors exhibited significant differences: risk corridors were primarily regulated by natural factors such as mean annual evapotranspiration (EVA) and soil volumetric water content (VWC), whereas supply corridors were mainly influenced by human activities, including the human footprint index (HFP) and land surface temperature (TEM). (3) Even within the same type of corridor, the dominant factors and their operating mechanisms—such as threshold effects and nonlinear interactions—showed considerable heterogeneity across nodes of different characteristics. Based on these findings, differentiated policy recommendations were proposed. This study aims to synergistically enhance the bidirectional functionality of forest-mountain ecological barriers by disrupting external risk corridors and reconstructing internal supply networks. The framework and methodology presented here can provide theoretical and empirical references for the planning and management of other similar barrier regions. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

Back to TopTop