Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (94)

Search Parameters:
Keywords = tau oligomer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1466 KiB  
Article
Effect of Tau Fragment and Membrane Interactions on Membrane Permeabilization and Peptide Aggregation
by Majedul Islam, Md Raza Ul Karim, Emily Argueta, Mohammed N. Selim, Ewa P. Wojcikiewicz and Deguo Du
Membranes 2025, 15(7), 208; https://doi.org/10.3390/membranes15070208 - 13 Jul 2025
Viewed by 1103
Abstract
Aggregation of tau protein is a hallmark feature of tauopathies such as Alzheimer’s disease. The microtubule-binding domain of tau plays a crucial role in the tau aggregation process. In this study, we investigated the dual effects of membrane interactions of tau298–317, [...] Read more.
Aggregation of tau protein is a hallmark feature of tauopathies such as Alzheimer’s disease. The microtubule-binding domain of tau plays a crucial role in the tau aggregation process. In this study, we investigated the dual effects of membrane interactions of tau298–317, a fragment peptide from the microtubule-binding domain, on peptide-induced membrane disruption and membrane-mediated peptide self-assembly. Our results show that neither wild-type tau298–317 nor its P301L or Ser305-phosphorylated mutants aggregate in the presence of zwitterionic POPC vesicles or cause lipid vesicle leakage, indicating weak peptide–membrane interactions. In contrast, tau298–317 strongly interacts with negatively charged POPG liposomes, leading to a rapid transition of the peptide conformation from random coils to α-helical intermediate conformation upon membrane adsorption, which may further promote peptide self-association to form oligomers and β-sheet-rich fibrillar structures. Tau298–317-induced rapid POPG membrane leakage indicates a synergistic process of the peptide self-assembly at the membrane interface and the aggregation-induced membrane disruption. Notably, phosphorylation at Ser305 disrupts favorable electrostatic interactions between the peptide and POPG membrane surface, thus preventing peptide aggregation and membrane leakage. In contrast, the P301L mutation significantly enhances membrane-mediated peptide aggregation and peptide-induced membrane disruption, likely due to alleviation of local conformational constraints and enhancement of local hydrophobicity, which facilitates fast conformational conversion to β-sheet structures. These findings provide mechanistic insights into the molecular mechanisms underlying membrane-mediated aggregation of crucial regions of tau and peptide-induced membrane damage, indicating potential strategies to prevent tau aggregation and membrane rupture by targeting critical electrostatic interactions between membranes and key local regions of tau. Full article
(This article belongs to the Section Biological Membranes)
Show Figures

Figure 1

24 pages, 2232 KiB  
Review
Nanoplatforms Targeting Intrinsically Disordered Protein Aggregation for Translational Neuroscience Applications
by Chih Hung Lo, Lenny Yi Tong Cheong and Jialiu Zeng
Nanomaterials 2025, 15(10), 704; https://doi.org/10.3390/nano15100704 - 8 May 2025
Viewed by 994
Abstract
Intrinsically disordered proteins (IDPs), such as tau, beta-amyloid (Aβ), and alpha-synuclein (αSyn), are prone to misfolding, resulting in pathological aggregation and propagation that drive neurodegenerative diseases, including Alzheimer’s disease (AD), frontotemporal dementia (FTD), and Parkinson’s disease (PD). Misfolded IDPs are prone to aggregate [...] Read more.
Intrinsically disordered proteins (IDPs), such as tau, beta-amyloid (Aβ), and alpha-synuclein (αSyn), are prone to misfolding, resulting in pathological aggregation and propagation that drive neurodegenerative diseases, including Alzheimer’s disease (AD), frontotemporal dementia (FTD), and Parkinson’s disease (PD). Misfolded IDPs are prone to aggregate into oligomers and fibrils, exacerbating disease progression by disrupting cellular functions in the central nervous system, triggering neuroinflammation and neurodegeneration. Furthermore, aggregated IDPs exhibit prion-like behavior, acting as seeds that are released into the extracellular space, taken up by neighboring cells, and have a propagating pathology across different regions of the brain. Conventional inhibitors, such as small molecules, peptides, and antibodies, face challenges in stability and blood–brain barrier penetration, limiting their efficacy. In recent years, nanotechnology-based strategies, such as multifunctional nanoplatforms or nanoparticles, have emerged as promising tools to address these challenges. These nanoplatforms leverage tailored designs to prevent or remodel the aggregation of IDPs and reduce associated neurotoxicity. This review discusses recent advances in nanoplatforms designed to target tau, Aβ, and αSyn aggregation, with a focus on their roles in reducing neuroinflammation and neurodegeneration. We examine critical aspects of nanoplatform design, including the choice of material backbone and targeting moieties, which influence interactions with IDPs. We also highlight key mechanisms including the interaction between nanoplatforms and IDPs to inhibit their aggregation, redirect aggregation cascade towards nontoxic, off-pathway species, and disrupt fibrillar structures into soluble forms. We further outline future directions for enhancing IDP clearance, achieving spatiotemporal control, and improving cell-specific targeting. These nanomedicine strategies offer compelling paths forward for developing more effective and targeted therapies for neurodegenerative diseases. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Graphical abstract

13 pages, 788 KiB  
Article
Functional Analysis of Direct In Vitro Effect of Phosphorylated Tau on Mitochondrial Respiration and Hydrogen Peroxide Production
by Zdeněk Fišar and Jana Hroudová
Biomolecules 2025, 15(4), 495; https://doi.org/10.3390/biom15040495 - 28 Mar 2025
Viewed by 504
Abstract
The neurotoxicity of phosphorylated tau protein (P-tau) and mitochondrial dysfunction play a significant role in the pathophysiology of Alzheimer’s disease (AD). In vitro studies of the effects of P-tau oligomers on mitochondrial bioenergetics and reactive oxygen species production will allow us to evaluate [...] Read more.
The neurotoxicity of phosphorylated tau protein (P-tau) and mitochondrial dysfunction play a significant role in the pathophysiology of Alzheimer’s disease (AD). In vitro studies of the effects of P-tau oligomers on mitochondrial bioenergetics and reactive oxygen species production will allow us to evaluate the direct influence of P-tau on mitochondrial function. We measured the in vitro effect of P-tau oligomers on oxygen consumption and hydrogen peroxide production in isolated brain mitochondria. An appropriate combination of specific substrates and inhibitors of the phosphorylation pathway enabled the measurement and functional analysis of the effect of P-tau on mitochondrial respiration in defined coupling control states achieved in complex I-, II-, and I&II-linked electron transfer pathways. At submicromolar P-tau concentrations, we found no significant effect of P-tau on either mitochondrial respiration or hydrogen peroxide production in different respiratory states. The titration of P-tau showed a nonsignificant dose-dependent decrease in hydrogen peroxide production for complex I- and I&II-linked pathways. An insignificant in vitro effect of P-tau oligomers on both mitochondrial respiration and hydrogen peroxide production indicates that P-tau-induced mitochondrial dysfunction in AD is not due to direct effects of P-tau on the efficiency of the electron transport chain and on the production of reactive oxygen species. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 621 KiB  
Review
Cellular Prion Protein and Amyloid-β Oligomers in Alzheimer’s Disease—Are There Connections?
by Michał Fułek, Naomi Hachiya, Martyna Gachowska, Jan Aleksander Beszłej, Elżbieta Bartoszewska, Donata Kurpas, Tomasz Kurpiński, Hanna Adamska, Rafał Poręba, Szymon Urban, Katarzyna Fułek and Jerzy Leszek
Int. J. Mol. Sci. 2025, 26(5), 2097; https://doi.org/10.3390/ijms26052097 - 27 Feb 2025
Cited by 2 | Viewed by 1172
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia worldwide. Pathological deposits of neurotoxin proteins within the brain, such as amyloid-β and hyperphosphorylated tau tangles, are prominent features in AD. The prion protein (PrP) is involved in neurodegeneration via its conversion from [...] Read more.
Alzheimer’s disease (AD) is the most common cause of dementia worldwide. Pathological deposits of neurotoxin proteins within the brain, such as amyloid-β and hyperphosphorylated tau tangles, are prominent features in AD. The prion protein (PrP) is involved in neurodegeneration via its conversion from the normal cellular form (PrPC) to the infection prion protein scrapie (PrPSc) form. Some studies indicated that post-translationally modified PrPC isoforms play a fundamental role in AD pathological progression. Several studies have shown that the interaction of Aβ oligomers (Aβos) with the N-terminal residues of the PrPC protein region appears critical for neuronal toxicity. PrPC-Aβ binding always occurs in AD brains and is never detected in non-demented controls, and the binding of Aβ aggregates to PrPC is restricted to the N-terminus of PrPC. In this study, we aimed to gather all of the recent information about the connections between PrPC and AD, with potential clinical implications. Full article
(This article belongs to the Special Issue Molecular Research on Mental Disorders 2.0)
Show Figures

Figure 1

13 pages, 1771 KiB  
Article
Tau Oligomers Resist Phase Separation
by Lathan Lucas, Phoebe S. Tsoi, Josephine C. Ferreon and Allan Chris M. Ferreon
Biomolecules 2025, 15(3), 336; https://doi.org/10.3390/biom15030336 - 26 Feb 2025
Cited by 1 | Viewed by 1095
Abstract
Tau is a microtubule-associated protein that undergoes liquid–liquid phase separation (LLPS) to form condensates under physiological conditions, facilitating microtubule stabilization and intracellular transport. LLPS has also been implicated in pathological Tau aggregation, which contributes to tauopathies such as Alzheimer’s disease. While LLPS is [...] Read more.
Tau is a microtubule-associated protein that undergoes liquid–liquid phase separation (LLPS) to form condensates under physiological conditions, facilitating microtubule stabilization and intracellular transport. LLPS has also been implicated in pathological Tau aggregation, which contributes to tauopathies such as Alzheimer’s disease. While LLPS is known to promote Tau aggregation, the relationship between Tau’s structural states and its phase separation behavior remains poorly defined. Here, we examine how oligomerization modulates Tau LLPS and uncover key distinctions between monomeric, oligomeric, and amyloidogenic Tau species. Using dynamic light scattering and fluorescence microscopy, we monitored oligomer formation over time and assessed oligomeric Tau’s ability to undergo LLPS. We found that Tau monomers readily phase separate and form condensates. As oligomerization progresses, Tau’s propensity to undergo LLPS diminishes, with oligomers still being able to phase separate, albeit with reduced efficiency. Interestingly, oligomeric Tau is recruited into condensates formed with 0-day-aged Tau, with this recruitment depending on the oligomer state of maturation. Early-stage, Thioflavin T (ThT)-negative oligomers co-localize with 0-day-aged Tau condensates, whereas ThT-positive oligomers resist condensate recruitment entirely. This study highlights a dynamic interplay between Tau LLPS and aggregation, providing insight into how Tau’s structural and oligomeric states influence its pathological and functional roles. These findings underscore the need to further explore LLPS as a likely modulator of Tau pathogenesis and distinct pathogenic oligomers as viable therapeutic targets in tauopathies. Full article
(This article belongs to the Collection Feature Papers in 'Biomacromolecules: Proteins')
Show Figures

Figure 1

31 pages, 1450 KiB  
Review
Small-Molecule Inhibitors of Amyloid Beta: Insights from Molecular Dynamics—Part A: Endogenous Compounds and Repurposed Drugs
by Mariyana Atanasova
Pharmaceuticals 2025, 18(3), 306; https://doi.org/10.3390/ph18030306 - 23 Feb 2025
Viewed by 2082
Abstract
The amyloid hypothesis is the predominant model of Alzheimer’s disease (AD) pathogenesis, suggesting that amyloid beta (Aβ) peptide is the primary driver of neurotoxicity and a cascade of pathological events in the central nervous system. Aβ aggregation into oligomers and deposits triggers various [...] Read more.
The amyloid hypothesis is the predominant model of Alzheimer’s disease (AD) pathogenesis, suggesting that amyloid beta (Aβ) peptide is the primary driver of neurotoxicity and a cascade of pathological events in the central nervous system. Aβ aggregation into oligomers and deposits triggers various processes, such as vascular damage, inflammation-induced astrocyte and microglia activation, disrupted neuronal ionic homeostasis, oxidative stress, abnormal kinase and phosphatase activity, tau phosphorylation, neurofibrillary tangle formation, cognitive dysfunction, synaptic loss, cell death, and, ultimately, dementia. Molecular dynamics (MD) is a powerful structure-based drug design (SBDD) approach that aids in understanding the properties, functions, and mechanisms of action or inhibition of biomolecules. As the only method capable of simulating atomic-level internal motions, MD provides unique insights that cannot be obtained through other techniques. Integrating experimental data with MD simulations allows for a more comprehensive understanding of biological processes and molecular interactions. This review summarizes and evaluates MD studies from the past decade on small molecules, including endogenous compounds and repurposed drugs, that inhibit amyloid beta. Furthermore, it outlines key considerations for future MD simulations of amyloid inhibitors, offering a potential framework for studies aimed at elucidating the mechanisms of amyloid beta inhibition by small molecules. Full article
Show Figures

Figure 1

20 pages, 1119 KiB  
Review
Multimer Detection System: A Universal Assay System for Differentiating Protein Oligomers from Monomers
by Angelo Moscoso Jamerlan, Kyu Hwan Shim, Niti Sharma and Seong Soo A. An
Int. J. Mol. Sci. 2025, 26(3), 1199; https://doi.org/10.3390/ijms26031199 - 30 Jan 2025
Viewed by 1703
Abstract
Depositions of protein aggregates are typical pathological hallmarks of various neurodegenerative diseases (NDs). For example, amyloid-beta (Aβ) and tau aggregates are present in the brain and plasma of patients with Alzheimer’s disease (AD); α-synuclein in Parkinson’s disease (PD), dementia with Lewy bodies (DLB), [...] Read more.
Depositions of protein aggregates are typical pathological hallmarks of various neurodegenerative diseases (NDs). For example, amyloid-beta (Aβ) and tau aggregates are present in the brain and plasma of patients with Alzheimer’s disease (AD); α-synuclein in Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA); mutant huntingtin protein (Htt) in Huntington’s disease (HD); and DNA-binding protein 43 kD (TDP-43) in amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and limbic-predominant age-related TDP-43 encephalopathy (LATE). The same misfolded proteins can be present in multiple diseases in the form of mixed proteinopathies. Since there is no cure for all these diseases, understanding the mechanisms of protein aggregation becomes imperative in modern medicine, especially for developing diagnostics and therapeutics. A Multimer Detection System (MDS) was designed to distinguish and quantify the multimeric/oligomeric forms from the monomeric form of aggregated proteins. As the unique epitope of the monomer is already occupied by capturing or detecting antibodies, the aggregated proteins with multiple epitopes would be accessible to both capturing and detecting antibodies simultaneously, and signals will be generated from the oligomers rather than the monomers. Hence, MDS could present a simple solution for measuring various conformations of aggregated proteins with high sensitivity and specificity, which may help to explore diagnostic and treatment strategies for developing anti-aggregation therapeutics. Full article
Show Figures

Figure 1

31 pages, 5017 KiB  
Review
Structures of Oligomeric States of Tau Protein, Amyloid-β, α-Synuclein and Prion Protein Implicated in Alzheimer’s Disease, Parkinson’s Disease and Prionopathies
by Ondrej Cehlar, Stefana Njemoga, Marian Horvath, Erik Cizmazia, Zuzana Bednarikova and Exequiel E. Barrera
Int. J. Mol. Sci. 2024, 25(23), 13049; https://doi.org/10.3390/ijms252313049 - 4 Dec 2024
Cited by 2 | Viewed by 3227
Abstract
In this review, we focus on the biophysical and structural aspects of the oligomeric states of physiologically intrinsically disordered proteins and peptides tau, amyloid-β and α-synuclein and partly disordered prion protein and their isolations from animal models and human brains. These protein states [...] Read more.
In this review, we focus on the biophysical and structural aspects of the oligomeric states of physiologically intrinsically disordered proteins and peptides tau, amyloid-β and α-synuclein and partly disordered prion protein and their isolations from animal models and human brains. These protein states may be the most toxic agents in the pathogenesis of Alzheimer’s and Parkinson’s disease. It was shown that oligomers are important players in the aggregation cascade of these proteins. The structural information about these structural states has been provided by methods such as solution and solid-state NMR, cryo-EM, crosslinking mass spectrometry, AFM, TEM, etc., as well as from hybrid structural biology approaches combining experiments with computational modelling and simulations. The reliable structural models of these protein states may provide valuable information for future drug design and therapies. Full article
(This article belongs to the Special Issue Protein Folding: 2nd Edition)
Show Figures

Figure 1

17 pages, 968 KiB  
Review
Targeting Protein Misfolding and Aggregation as a Therapeutic Perspective in Neurodegenerative Disorders
by Marta Sidoryk-Węgrzynowicz, Kamil Adamiak and Lidia Strużyńska
Int. J. Mol. Sci. 2024, 25(22), 12448; https://doi.org/10.3390/ijms252212448 - 20 Nov 2024
Cited by 4 | Viewed by 3631
Abstract
The abnormal deposition and intercellular propagation of disease-specific protein play a central role in the pathogenesis of many neurodegenerative disorders. Recent studies share the common observation that the formation of protein oligomers and subsequent pathological filaments is an essential step for the disease. [...] Read more.
The abnormal deposition and intercellular propagation of disease-specific protein play a central role in the pathogenesis of many neurodegenerative disorders. Recent studies share the common observation that the formation of protein oligomers and subsequent pathological filaments is an essential step for the disease. Synucleinopathies such as Parkinson’s disease (PD), dementia with Lewy bodies (DLB) or multiple system atrophy (MSA) are neurodegenerative diseases characterized by the aggregation of the α-synucleinprotein in neurons and/or in oligodendrocytes (glial cytoplasmic inclusions), neuronal loss, and astrogliosis. A similar mechanism of protein Tau-dependent neurodegeneration is a major feature of tauopathies, represented by Alzheimer’s disease (AD), corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), and Pick’s disease (PD). The specific inhibition of the protein misfolding and their interneuronal spreading represents a promising therapeutic strategy against both disease pathology and progression. The most recent research focuses on finding potential applications targeting the pathological forms of proteins responsible for neurodegeneration. This review highlights the mechanisms relevant to protein-dependent neurodegeneration based on the most common disorders and describes current therapeutic approaches targeting protein misfolding and aggregation. Full article
Show Figures

Figure 1

32 pages, 5633 KiB  
Review
The Mechanistic Link Between Tau-Driven Proteotoxic Stress and Cellular Senescence in Alzheimer’s Disease
by Karthikeyan Tangavelou and Kiran Bhaskar
Int. J. Mol. Sci. 2024, 25(22), 12335; https://doi.org/10.3390/ijms252212335 - 17 Nov 2024
Cited by 1 | Viewed by 3165
Abstract
In Alzheimer’s disease (AD), tau dissociates from microtubules (MTs) due to hyperphosphorylation and misfolding. It is degraded by various mechanisms, including the 20S proteasome, chaperone-mediated autophagy (CMA), 26S proteasome, macroautophagy, and aggrephagy. Neurofibrillary tangles (NFTs) form upon the impairment of aggrephagy, and eventually, [...] Read more.
In Alzheimer’s disease (AD), tau dissociates from microtubules (MTs) due to hyperphosphorylation and misfolding. It is degraded by various mechanisms, including the 20S proteasome, chaperone-mediated autophagy (CMA), 26S proteasome, macroautophagy, and aggrephagy. Neurofibrillary tangles (NFTs) form upon the impairment of aggrephagy, and eventually, the ubiquitin chaperone valosin-containing protein (VCP) and heat shock 70 kDa protein (HSP70) are recruited to the sites of NFTs for the extraction of tau for the ubiquitin–proteasome system (UPS)-mediated degradation. However, the impairment of tau degradation in neurons allows tau to be secreted into the extracellular space. Secreted tau can be monomers, oligomers, and paired helical filaments (PHFs), which are seeding competent pathological tau that can be endocytosed/phagocytosed by healthy neurons, microglia, astrocytes, oligodendrocyte progenitor cells (OPCs), and oligodendrocytes, often causing proteotoxic stress and eventually triggers senescence. Senescent cells secrete various senescence-associated secretory phenotype (SASP) factors, which trigger cellular atrophy, causing decreased brain volume in human AD. However, the molecular mechanisms of proteotoxic stress and cellular senescence are not entirely understood and are an emerging area of research. Therefore, this comprehensive review summarizes pertinent studies that provided evidence for the sequential tau degradation, failure, and the mechanistic link between tau-driven proteotoxic stress and cellular senescence in AD. Full article
(This article belongs to the Special Issue Proteasome Activity Regulation)
Show Figures

Figure 1

19 pages, 6079 KiB  
Article
Inhibition of Calcineurin with FK506 Reduces Tau Levels and Attenuates Synaptic Impairment Driven by Tau Oligomers in the Hippocampus of Male Mouse Models
by Michela Marcatti, Batbayar Tumurbaatar, Michela Borghi, Jutatip Guptarak, Wen-Ru Zhang, Balaji Krishnan, Rakez Kayed, Anna Fracassi and Giulio Taglialatela
Int. J. Mol. Sci. 2024, 25(16), 9092; https://doi.org/10.3390/ijms25169092 - 22 Aug 2024
Cited by 6 | Viewed by 1694
Abstract
Alzheimer’s disease (AD) is the most common age-associated neurodegenerative disorder, characterized by progressive cognitive decline, memory impairment, and structural brain changes, primarily involving Aβ plaques and neurofibrillary tangles of hyperphosphorylated tau protein. Recent research highlights the significance of smaller Aβ and Tau oligomeric [...] Read more.
Alzheimer’s disease (AD) is the most common age-associated neurodegenerative disorder, characterized by progressive cognitive decline, memory impairment, and structural brain changes, primarily involving Aβ plaques and neurofibrillary tangles of hyperphosphorylated tau protein. Recent research highlights the significance of smaller Aβ and Tau oligomeric aggregates (AβO and TauO, respectively) in synaptic dysfunction and disease progression. Calcineurin (CaN), a key calcium/calmodulin-dependent player in regulating synaptic function in the central nervous system (CNS) is implicated in mediating detrimental effects of AβO on synapses and memory function in AD. This study aims to investigate the specific impact of CaN on both exogenous and endogenous TauO through the acute and chronic inhibition of CaN. We previously demonstrated the protective effect against AD of the immunosuppressant CaN inhibitor, FK506, but its influence on TauO remains unclear. In this study, we explored the short-term effects of acute CaN inhibition on TauO phosphorylation and TauO-induced memory deficits and synaptic dysfunction. Mice received FK506 post-TauO intracerebroventricular injection and TauO levels and phosphorylation were assessed, examining their impact on CaN and GSK-3β. The study investigated FK506 preventive/reversal effects on TauO-induced clustering of CaN and GSK-3β. Memory and synaptic function in TauO-injected mice were evaluated with/without FK506. Chronic FK506 treatment in 3xTgAD mice explored its influence on CaN, Aβ, and Tau levels. This study underscores the significant influence of CaN inhibition on TauO and associated AD pathology, suggesting therapeutic potential in targeting CaN for addressing various aspects of AD onset and progression. These findings provide valuable insights for potential interventions in AD, emphasizing the need for further exploration of CaN-targeted strategies. Full article
Show Figures

Graphical abstract

16 pages, 5467 KiB  
Article
Huperzine A Regulates the Physiological Homeostasis of Amyloid Precursor Protein Proteolysis and Tau Protein Conformation—A Computational and Experimental Investigation
by Suwakon Wongjaikam, Chutikorn Nopparat, Parichart Boontem, Jiraporn Panmanee, Nopporn Thasana, Mayuri Shukla and Piyarat Govitrapong
Biology 2024, 13(7), 518; https://doi.org/10.3390/biology13070518 - 12 Jul 2024
Cited by 1 | Viewed by 2240
Abstract
The beneficial actions of the natural compound Huperzine A (Hup A) against age-associated learning and memory deficits promote this compound as a nootropic agent. Alzheimer’s disease (AD) pathophysiology is characterized by the accumulation of amyloid beta (Aβ). Toxic Aβ oligomers account for the [...] Read more.
The beneficial actions of the natural compound Huperzine A (Hup A) against age-associated learning and memory deficits promote this compound as a nootropic agent. Alzheimer’s disease (AD) pathophysiology is characterized by the accumulation of amyloid beta (Aβ). Toxic Aβ oligomers account for the cognitive dysfunctions much before the pathological lesions are manifested in the brain. In the present study, we investigated the effects of Hup A on amyloid precursor protein (APP) proteolysis in SH-SY5Y neuroblastoma cells. Hup A downregulated the expression of β-site amyloid precursor protein cleaving enzyme 1 (BACE1) and presenilin 1 (PS1) levels but augmented the levels of A disintegrin and metalloproteinase 10 (ADAM10) with significant decrement in the Aβ levels. We herein report for the first time an in silico molecular docking analysis that revealed that Hup A binds to the functionally active site of BACE1. We further analyzed the effect of Hup A on glycogen synthase kinase-3 β (GSK3β) and phosphorylation status of tau. In this scenario, based on the current observations, we propose that Hup A is a potent regulator of APP processing and capable of modulating tau homeostasis under physiological conditions holding immense potential in preventing and treating AD like disorders. Full article
(This article belongs to the Special Issue Biological Bases of Alzheimer's Disease)
Show Figures

Figure 1

18 pages, 4415 KiB  
Article
SARS-CoV-2 Nucleocapsid Protein Induces Tau Pathological Changes That Can Be Counteracted by SUMO2
by Franca Orsini, Marco Bosica, Annacarla Martucci, Massimiliano De Paola, Davide Comolli, Rosaria Pascente, Gianluigi Forloni, Paul E. Fraser, Ottavio Arancio and Luana Fioriti
Int. J. Mol. Sci. 2024, 25(13), 7169; https://doi.org/10.3390/ijms25137169 - 28 Jun 2024
Cited by 3 | Viewed by 3039
Abstract
Neurologic manifestations are an immediate consequence of SARS-CoV-2 infection, the etiologic agent of COVID-19, which, however, may also trigger long-term neurological effects. Notably, COVID-19 patients with neurological symptoms show elevated levels of biomarkers associated with brain injury, including Tau proteins linked to Alzheimer’s [...] Read more.
Neurologic manifestations are an immediate consequence of SARS-CoV-2 infection, the etiologic agent of COVID-19, which, however, may also trigger long-term neurological effects. Notably, COVID-19 patients with neurological symptoms show elevated levels of biomarkers associated with brain injury, including Tau proteins linked to Alzheimer’s pathology. Studies in brain organoids revealed that SARS-CoV-2 alters the phosphorylation and distribution of Tau in infected neurons, but the mechanisms are currently unknown. We hypothesize that these pathological changes are due to the recruitment of Tau into stress granules (SGs) operated by the nucleocapsid protein (NCAP) of SARS-CoV-2. To test this hypothesis, we investigated whether NCAP interacts with Tau and localizes to SGs in hippocampal neurons in vitro and in vivo. Mechanistically, we tested whether SUMOylation, a posttranslational modification of NCAP and Tau, modulates their distribution in SGs and their pathological interaction. We found that NCAP and Tau colocalize and physically interact. We also found that NCAP induces hyperphosphorylation of Tau and causes cognitive impairment in mice infected with NCAP in their hippocampus. Finally, we found that SUMOylation modulates NCAP SG formation in vitro and cognitive performance in infected mice. Our data demonstrate that NCAP induces Tau pathological changes both in vitro and in vivo. Moreover, we demonstrate that SUMO2 ameliorates NCAP-induced Tau pathology, highlighting the importance of the SUMOylation pathway as a target of intervention against neurotoxic insults, such as Tau oligomers and viral infection. Full article
Show Figures

Graphical abstract

27 pages, 6937 KiB  
Article
Exploring Tau Fibril-Disaggregating and Antioxidating Molecules Binding to Membrane-Bound Amyloid Oligomers Using Machine Learning-Enhanced Docking and Molecular Dynamics
by Luthary Segura, Natalia Santos, Rafael Flores, Donald Sikazwe, Miles McGibbon, Vincent Blay and Kwan H. Cheng
Molecules 2024, 29(12), 2818; https://doi.org/10.3390/molecules29122818 - 13 Jun 2024
Cited by 4 | Viewed by 2368
Abstract
Intracellular tau fibrils are sources of neurotoxicity and oxidative stress in Alzheimer’s. Current drug discovery efforts have focused on molecules with tau fibril disaggregation and antioxidation functions. However, recent studies suggest that membrane-bound tau-containing oligomers (mTCOs), smaller and less ordered than tau fibrils, [...] Read more.
Intracellular tau fibrils are sources of neurotoxicity and oxidative stress in Alzheimer’s. Current drug discovery efforts have focused on molecules with tau fibril disaggregation and antioxidation functions. However, recent studies suggest that membrane-bound tau-containing oligomers (mTCOs), smaller and less ordered than tau fibrils, are neurotoxic in the early stage of Alzheimer’s. Whether tau fibril-targeting molecules are effective against mTCOs is unknown. The binding of epigallocatechin-3-gallate (EGCG), CNS-11, and BHT-CNS-11 to in silico mTCOs and experimental tau fibrils was investigated using machine learning-enhanced docking and molecular dynamics simulations. EGCG and CNS-11 have tau fibril disaggregation functions, while the proposed BHT-CNS-11 has potential tau fibril disaggregation and antioxidation functions like EGCG. Our results suggest that the three molecules studied may also bind to mTCOs. The predicted binding probability of EGCG to mTCOs increases with the protein aggregate size. In contrast, the predicted probability of CNS-11 and BHT-CNS-11 binding to the dimeric mTCOs is higher than binding to the tetrameric mTCOs for the homo tau but not for the hetero tau–amylin oligomers. Our results also support the idea that anionic lipids may promote the binding of molecules to mTCOs. We conclude that tau fibril-disaggregating and antioxidating molecules may bind to mTCOs, and that mTCOs may also be useful targets for Alzheimer’s drug design. Full article
(This article belongs to the Special Issue Computational Drug Discovery: Methods and Applications)
Show Figures

Graphical abstract

14 pages, 6073 KiB  
Article
Crystal Violet Selectively Detects Aβ Oligomers but Not Fibrils In Vitro and in Alzheimer’s Disease Brain Tissue
by Kanchana Karunarathne, Teresa R. Kee, Hanna Jeon, Sara Cazzaro, Yasith I. Gamage, Jianjun Pan, Jung-A. A. Woo, David E. Kang and Martin Muschol
Biomolecules 2024, 14(6), 615; https://doi.org/10.3390/biom14060615 - 23 May 2024
Cited by 2 | Viewed by 2117
Abstract
Deposition of extracellular Amyloid Beta (Aβ) and intracellular tau fibrils in post-mortem brains remains the only way to conclusively confirm cases of Alzheimer’s Disease (AD). Substantial evidence, though, implicates small globular oligomers instead of fibrils as relevant biomarkers of, and critical contributors to, [...] Read more.
Deposition of extracellular Amyloid Beta (Aβ) and intracellular tau fibrils in post-mortem brains remains the only way to conclusively confirm cases of Alzheimer’s Disease (AD). Substantial evidence, though, implicates small globular oligomers instead of fibrils as relevant biomarkers of, and critical contributors to, the clinical symptoms of AD. Efforts to verify and utilize amyloid oligomers as AD biomarkers in vivo have been limited by the near-exclusive dependence on conformation-selective antibodies for oligomer detection. While antibodies have yielded critical evidence for the role of both Aβ and tau oligomers in AD, they are not suitable for imaging amyloid oligomers in vivo. Therefore, it would be desirable to identify a set of oligomer-selective small molecules for subsequent development into Positron Emission Tomography (PET) probes. Using a kinetics-based screening assay, we confirm that the triarylmethane dye Crystal Violet (CV) is oligomer-selective for Aβ42 oligomers (AβOs) grown under near-physiological solution conditions in vitro. In postmortem brains of an AD mouse model and human AD patients, we demonstrate that A11 antibody-positive oligomers but not Thioflavin S (ThioS)-positive fibrils colocalize with CV staining, confirming in vitro results. Therefore, our kinetic screen represents a robust approach for identifying new classes of small molecules as candidates for oligomer-selective dyes (OSDs). Such OSDs, in turn, provide promising starting points for the development of PET probes for pre-mortem imaging of oligomer deposits in humans. Full article
(This article belongs to the Section Molecular Biomarkers)
Show Figures

Figure 1

Back to TopTop