Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (913)

Search Parameters:
Keywords = targeted distribution of therapeutics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 2730 KB  
Review
Imatinib in Targeted Therapy: Advances in Biomedical Applications and Drug Delivery Systems
by Yana Gvozdeva, Petya Georgieva and Plamen Katsarov
Hemato 2025, 6(4), 40; https://doi.org/10.3390/hemato6040040 - 12 Nov 2025
Abstract
Imatinib (IMT) is a small-molecule tyrosine kinase inhibitor that primarily targets platelet-derived growth factor receptor-β and related kinases. Beyond its established efficacy in chronic myeloid leukemia, IMT has also demonstrated therapeutic benefits in gastrointestinal stromal tumors, dermatofibrosarcoma, acute lymphoblastic leukemia, and as a [...] Read more.
Imatinib (IMT) is a small-molecule tyrosine kinase inhibitor that primarily targets platelet-derived growth factor receptor-β and related kinases. Beyond its established efficacy in chronic myeloid leukemia, IMT has also demonstrated therapeutic benefits in gastrointestinal stromal tumors, dermatofibrosarcoma, acute lymphoblastic leukemia, and as a second-line treatment for aggressive systemic mastocytosis or as an anti-Mycobacterium agent. From a physicochemical perspective, IMT exhibits poor aqueous solubility but high membrane permeability, classifying it as a Biopharmaceutics Classification System Class II compound. Pharmacokinetically, IMT shows variable oral absorption and a prolonged terminal half-life, resulting in dose-dependent systemic exposure. Despite relatively high oral bioavailability, its clinical use requires large doses to achieve therapeutic efficacy, underscoring the need for advanced drug delivery strategies. Nano- and microscale delivery systems offer promising approaches to enhance tumor-specific accumulation through the enhanced permeability and retention effect while mitigating resistance mechanisms. However, achieving high drug loading introduces formulation challenges, such as controlling particle size distribution, polydispersity, and scalability. Moreover, designing carriers capable of controlled release without premature leakage remains crucial for maintaining systemic bioavailability and therapeutic performance. Emerging delivery platforms—including polymeric, lipid-based, carbon-derived, and stimuli-responsive nanocarriers—have shown significant potential in overcoming these limitations. Such systems can enhance IMT’s bioavailability, improve selective tumor targeting, and minimize systemic toxicity, thereby advancing its translational potential. This review aims to highlight the different biomedical applications of IMT and off-label uses, and to discuss current advances in drug delivery to optimize its clinical efficacy and safety profile. Full article
(This article belongs to the Section Chronic Myeloid Disease)
Show Figures

Figure 1

13 pages, 1484 KB  
Article
Stage-Specific Expression and Subcellular Localization of Calcineurin in Infective Forms of Leishmania amazonensis
by Deborah Brandt-Almeida, Ismael Pretto Sauter, Mario Costa Cruz, Cristian Cortez, Patricio Reyes Orrego and Mauro Cortez
Pathogens 2025, 14(11), 1139; https://doi.org/10.3390/pathogens14111139 - 10 Nov 2025
Viewed by 81
Abstract
Calcineurin (CaN), a Ca2+-dependent phosphatase, plays key roles in eukaryotic cell signaling. We investigated whether Leishmania amazonensis’ two infective forms—promastigotes and amastigotes—exhibit differences in CaN expression, localization, and functional impact, using two canonical inhibitors (cyclosporin A, CsA; tracolimus, FK506). At [...] Read more.
Calcineurin (CaN), a Ca2+-dependent phosphatase, plays key roles in eukaryotic cell signaling. We investigated whether Leishmania amazonensis’ two infective forms—promastigotes and amastigotes—exhibit differences in CaN expression, localization, and functional impact, using two canonical inhibitors (cyclosporin A, CsA; tracolimus, FK506). At high 40 µM CsA, promastigotes showed reduced viability, whereas amastigotes remained resistant. FK506 had no effect on either form. At a sub-lethal 25 µM CsA, parasite proliferation remained unaffected. In parasite–macrophage co-incubation assays, phosphorylation patterns differed: amastigotes—but not promastigotes—showed increased serine/threonine phosphorylation upon CaN inhibition. Western blotting and in silico data revealed higher CaN catalytic (CaNA2) and regulatory (CaNB) subunit expression in amastigotes than promastigotes. Immunofluorescence localized CaNA prominently in both cytoplasm and nucleus of promastigotes, but predominantly cytoplasmic in amastigotes; CaNB was largely cytoplasmic in both. In silico localization predictions suggested strong membrane associations for CaNA in Leishmania, contrasting with mammalian models. Subcellular fractionation confirmed CaNA enrichment in membrane fractions, with CaNB in cytoplasmic and nuclear fractions. Collectively, these findings reveal form-specific differences in expression, subcellular distribution, and inhibitor responses of CaN in L. amazonensis, highlighting its potential as a stage-specific therapeutic target in leishmaniasis. Full article
(This article belongs to the Special Issue Virulence and Molecular Cell Biology of Parasites)
Show Figures

Graphical abstract

21 pages, 4493 KB  
Technical Note
A Semi-Automated Imaging Flow Cytometry Workflow for High-Throughput Quantification of Compound Internalization with IDEAS and FluoSta Software
by Kirill Elfimov, Ludmila Gotfrid, Alina Nokhova, Mariya Gashnikova, Dmitriy Baboshko, Aleksei Totmenin, Aleksandr Agaphonov and Natalya Gashnikova
Methods Protoc. 2025, 8(6), 138; https://doi.org/10.3390/mps8060138 - 9 Nov 2025
Viewed by 152
Abstract
For many therapeutic agents to be effective against intracellular targets, they must first be able to penetrate the cell membrane. Current methodologies for assessing internalization, such as confocal microscopy and conventional flow cytometry, are limited by low throughput or an inability to provide [...] Read more.
For many therapeutic agents to be effective against intracellular targets, they must first be able to penetrate the cell membrane. Current methodologies for assessing internalization, such as confocal microscopy and conventional flow cytometry, are limited by low throughput or an inability to provide precise spatial information on signal localization. Here, we present a comprehensive, semi-automated analytical pipeline for investigating compound internalization based on imaging flow cytometry, which is designed to address these limitations. Our workflow details the procedure from sample preparation and data acquisition on an Amnis FlowSight cytometer to analysis using IDEAS 6.2 software with a custom-designed template. Key features of our approach include the automated discrimination of signal between the plasma membrane and cytoplasmic compartments, the calculation of an internalization coefficient, and the introduction of a novel parameter—signal distribution entropy—to quantify the uniformity of the compound distribution within cells. For the statistical analysis, we developed FluoSta v1.0, a software tool that automates descriptive statistics and analysis of variance (ANOVA with Tukey’s post hoc test) and facilitates data visualization. The pipeline’s utility was demonstrated in a series of model experiments, including a comparative assessment of the internalization efficiency of PS- versus PS/LNA-modified compounds in MT-4 cell cultures. Full article
(This article belongs to the Special Issue Feature Papers in Methods and Protocols 2025)
Show Figures

Figure 1

41 pages, 7586 KB  
Review
Unlocking the Therapeutic Potential of Ellagitannins: A Comprehensive Review of Key Representatives
by Rositsa Mihaylova, Viktoria Elincheva, Georgi Momekov and Rumyana Simeonova
Molecules 2025, 30(22), 4328; https://doi.org/10.3390/molecules30224328 - 7 Nov 2025
Viewed by 513
Abstract
The present review offers a comprehensive synthesis of the structural diversity, natural occurrence, and therapeutic promise of key ellagitannins (punicalagin, sanguiin H-6, corilagin, geraniin, oenothein B, chebulagic, and chebulinic acids) within the hydrolyzable ellagitannin pool. Distributed in medicinal and dietary plants long used [...] Read more.
The present review offers a comprehensive synthesis of the structural diversity, natural occurrence, and therapeutic promise of key ellagitannins (punicalagin, sanguiin H-6, corilagin, geraniin, oenothein B, chebulagic, and chebulinic acids) within the hydrolyzable ellagitannin pool. Distributed in medicinal and dietary plants long used in traditional medicine, ellagitannin-rich species serve as sources of both complex polyphenolic scaffolds and their bioactive metabolites, urolithins, which mediate many of their health-promoting effects. Special emphasis is placed on the multifaceted mechanisms that contribute to their potent antioxidant, anti-inflammatory, antimicrobial, and anticancer effects, extending to both non-communicable and communicable diseases. Despite their broad therapeutic spectrum, clinical translation is limited by challenges such as poor bioavailability, host-gut microbiota variability, and a lack of robust in vivo evidence. The review highlights future directions aimed at unlocking ellagitannins’ potential, including microbiota-targeted strategies for urolithin production, the design of stable prodrugs and analogs, and innovative delivery platforms. By integrating phytochemical, mechanistic and translational insights, this article positions ellagitannins as promising candidates for the development of novel polyphenol-based interventions. Full article
Show Figures

Graphical abstract

14 pages, 1555 KB  
Article
Ladarixin Potential over the Effects of IL-8 and of Serum from Patients with Abdominal Aortic Aneurysm on Human Aortic Cells
by Lucia Spartano, Maria Lombardi, Vincenzo Ardita, Roberto Chiesa, Andrea Aramini, Marcello Allegretti, Domenico Baccellieri, Lidia De Filippis and Chiara Foglieni
Cells 2025, 14(21), 1713; https://doi.org/10.3390/cells14211713 - 31 Oct 2025
Viewed by 255
Abstract
Early cellular alterations in abdominal aortic aneurysm (AAA) are scarcely investigated. Aortic remodeling inflammation-related suggested the CXCR2/CXCL1/IL-8 axis as a therapeutic target. This study investigates CXCR1/CXCR2 antagonism in primary human aortic endothelial (HAOEC) and smooth muscle cells (HAOSMC) conditioned with IL-8 or serum [...] Read more.
Early cellular alterations in abdominal aortic aneurysm (AAA) are scarcely investigated. Aortic remodeling inflammation-related suggested the CXCR2/CXCL1/IL-8 axis as a therapeutic target. This study investigates CXCR1/CXCR2 antagonism in primary human aortic endothelial (HAOEC) and smooth muscle cells (HAOSMC) conditioned with IL-8 or serum from patients with AAA (sPT). Ladarixin (10 μM Lad or 25 μM) served as an inhibitor. Readouts included RT-qPCR for CXCL1, CXCL8, CXCR2, MMP9, NFKB1, and VEGF-A; zymography for MMP9 activity confocal microscopy for F-actin and mitochondria; NADPH/NADH diaphorase histochemistry for redox activity; and ATP assay. In HAOEC, IL-8 downregulated CXCR2, increased MMP9 activity, and induced cytoskeletal and mitochondria disorganization without altering NADH/NADPH diaphorases but increasing ATP release. At concentration of 10 μM Lad rescued cell organization and gene expression. sPT upregulated CXCL8, CXCR2, and MMP9, decreased NADH/NADPH diaphorases, and altered cytoskeleton and mitochondria organization in HAOEC. At concentration of 10 μM Lad (partially) and 25 μM Lad reverted gene upregulation and mitochondria distribution; both doses increased diaphorase and released ATP. HAOSMC were scantily susceptible to IL-8 and weakly responsive to sPT, slightly upregulating CXCR2 and VEGF-A but increasing proMMP9 gelatinolysis. Ladarixin recovered proMMP9 activity and modulated CXCL1. AAA-like vascular cell alterations involve multiple inflammatory factors and are modulable by inhibition of IL-8 receptors. The results underline careful dose calibration. Full article
Show Figures

Figure 1

21 pages, 1579 KB  
Article
Sequence Permutation Generated Lysine and Tryptophan-Rich Antimicrobial Peptides with Enhanced Therapeutic Index
by Kuang-Li Peng, Yu-Hsuan Wu, Hsuan-Che Hsu and Jya-Wei Cheng
Antibiotics 2025, 14(11), 1077; https://doi.org/10.3390/antibiotics14111077 - 26 Oct 2025
Viewed by 595
Abstract
Background/Objectives: Antimicrobial peptides (AMPs) are promising therapeutic agents due to their broad-spectrum activity against bacteria, viruses, and fungi. Unlike traditional antibiotics, AMPs target microbial membranes directly and are less likely to induce resistance. They also possess immunomodulatory and wound-healing properties. However, clinical application [...] Read more.
Background/Objectives: Antimicrobial peptides (AMPs) are promising therapeutic agents due to their broad-spectrum activity against bacteria, viruses, and fungi. Unlike traditional antibiotics, AMPs target microbial membranes directly and are less likely to induce resistance. They also possess immunomodulatory and wound-healing properties. However, clinical application remains limited by factors such as salt sensitivity, low bioavailability, and poor stability. To address these challenges, researchers have turned to structural optimization strategies. Recently, artificial intelligence (AI) has facilitated peptide drug design by rapidly screening large peptide libraries. Still, AI struggles to predict how subtle sequence changes affect peptide structure and function. Traditional sequence permutation offers a complementary approach by analyzing structural and functional effects without altering amino acid composition. Methods: In this study, we applied a clockwise sequence permutation strategy to the AMP W5K/A9W, generating derivative peptides with identical molecular weight, net charge, and hydrophobicity. We aimed to investigate how lysine and tryptophan distribution affects antimicrobial activity, membrane permeability, and selectivity. We assessed the secondary structures using circular dichroism (CD) spectroscopy and evaluated in vitro antimicrobial activity, salt resistance, membrane-permeabilizing ability, hemolysis, and wound healing effects. Results: The results revealed that the sequence arrangement of key residues significantly impacts peptide bioactivity and therapeutic index. Conclusions: This study highlights the importance of sequence order in determining AMP function. It also supports integrating permutation strategies with AI-based design to enhance AMP discovery. Together, these approaches offer new opportunities to combat drug-resistant pathogens and advance next-generation anti-infective therapies. Full article
Show Figures

Graphical abstract

17 pages, 6941 KB  
Article
Cancer-Associated Fibroblasts Move and Interact More with Triple-Negative Breast Cancer Cells and Stimulate Their Proliferation in a Hyaluronan-Dependent Manner
by Sz-Ying Hou, Sarah C. Macfarlane, Ariadna Gómez Torijano, Hyejeong Rosemary Kim, Marieke Rosier, Katalin Dobra, Penelope D. Ottewell and Annica K. B. Gad
Cells 2025, 14(21), 1663; https://doi.org/10.3390/cells14211663 - 23 Oct 2025
Viewed by 587
Abstract
While normal fibroblasts suppress tumor growth, during cancer initiation and progression, this capacity can be lost and even switched to tumor-promoting, for reasons that are not understood. In this study, we aimed to determine differences between patient-derived cancer-associated fibroblasts and fibroblasts from healthy [...] Read more.
While normal fibroblasts suppress tumor growth, during cancer initiation and progression, this capacity can be lost and even switched to tumor-promoting, for reasons that are not understood. In this study, we aimed to determine differences between patient-derived cancer-associated fibroblasts and fibroblasts from healthy breast tissue to identify if and how these changes stimulate Triple-negative breast cancer (TNBC). Two-dimensional and three-dimensional mono and co-cultures of TNBC cells with fibroblasts from healthy breast or TNBC were analyzed for cell contractility, migration, distribution, proliferation, and hyaluronan production by traction force microscopy, live cell imaging, flow cytometry, Western blot, and ELISA. In 3D spheroid co-culture, CAFs migrated into the tumor mass, mixing with tumor cells, whereas normal fibroblasts remained separate. In 2D, CAFs showed increased cell migration and contractile force, and, in both 2D and 3D co-culture, CAFs increased the proliferation of TNBC cells. CAFs showed increased production of hyaluronan, as compared to normal fibroblasts, and loss of hyaluronan synthase 2 reduced CAF-induced stimulation of TNBC proliferation. These findings suggest that increased production of hyaluronan by TNBC CAFs enhances their capacity to mix with and induce the proliferation of cancer cells, and that the production of hyaluronan by CAFs can be a future therapeutic target against TNBC. Full article
(This article belongs to the Special Issue Cancer-Associated Fibroblasts: Challenges and Directions)
Show Figures

Figure 1

14 pages, 589 KB  
Article
The Diagnostic and Prognostic Value of Reticulated Platelets in Ischemic Stroke: Is Immature Platelet Fraction a New Biomarker?
by Fatih Cemal Tekin, Osman Lütfi Demirci, Emin Fatih Vişneci, Abdullah Enes Ataş, Hasan Hüseyin Kır, Hasan Basri Yıldırım, Çiğdem Damla Deniz, Demet Acar, Said Sami Erdem and Mehmet Gül
Medicina 2025, 61(10), 1887; https://doi.org/10.3390/medicina61101887 - 21 Oct 2025
Viewed by 380
Abstract
Background and Objectives: Ongoing efforts to develop early diagnostic tools for Acute Ischemic Stroke (AIS) point out the advantages of accessible biomarkers such as Immature Platelet Fraction (IPF). This is particularly important for emergency department (EDs), especially those that are overcrowded and [...] Read more.
Background and Objectives: Ongoing efforts to develop early diagnostic tools for Acute Ischemic Stroke (AIS) point out the advantages of accessible biomarkers such as Immature Platelet Fraction (IPF). This is particularly important for emergency department (EDs), especially those that are overcrowded and have limited resources. The present study aimed to evaluate the diagnostic, prognostic, and therapeutic significance of IPF in patients with AIS presenting to the ED. Materials and Methods: This prospective case–control study was conducted in an ED. Participants aged 18-years and older who presented with complaints of numbness, weakness, diplopia or visual disturbances, speech or comprehension impairment, confusion, imbalance, impaired coordination and gait, or dizziness were included in the study. The diagnostic value of IPF in AIS and its relationship with short-term prognosis (STP) were investigated. Additional variables potentially associated with parameters such as infarct localization, number of lesions, affected hemisphere, main artery status, carotid status and treatment method were also analyzed. Results: The median age of the study participants was 67 years (Q1 = 54, Q3 = 76), with 48.9% (n = 88) being female and 51.1% (n = 92) male. Receiver operating characteristic curve analysis demonstrated that IPF was statistically significantly superior to other complete blood count parameters in the diagnostic evaluation of AIS. The diagnostic cutoff value of IPF for AIS was calculated as 2.45. An increase of 1 unit in IPF was found to raise the likelihood of AIS by 2.599 times. The Ratio of Red Cell Distribution Width (RDW) to IPF and NEU to IPF, mean corpuscular volume, and infarct volume were found to be significant predictors in STP assessment. Conclusions: Although not definitive alone, IPF may aid early stroke recognition, support treatment monitoring, and inform targeted therapies. The use of IPF, a biomarker that can be rapidly obtained, in the diagnosis of AIS is expected to yield beneficial outcomes in patient management, particularly in emergency departments and other clinical settings. Full article
(This article belongs to the Special Issue New Insights into Cerebrovascular Disease)
Show Figures

Figure 1

18 pages, 3948 KB  
Article
Integrating Experimental and Computational Approaches to Cardioprotection: Vascular Reactivity, Molecular Docking, and ADMET Modeling of Melicoccus bijugatus (Guinep)
by Keaton Logan, Javier Palacios, Sussan Lopez, Wesley Gray and Chukwuemeka R. Nwokocha
Int. J. Mol. Sci. 2025, 26(20), 10228; https://doi.org/10.3390/ijms262010228 - 21 Oct 2025
Viewed by 414
Abstract
Melicoccus bijugatus (Guinep) is traditionally consumed in the Caribbean and Latin America for its health benefits, yet its cardiovascular effects remain underexplored. This study investigated the therapeutic potential of Guinep by combining experimental and computational approaches. The biological evaluation of the Guinep extract [...] Read more.
Melicoccus bijugatus (Guinep) is traditionally consumed in the Caribbean and Latin America for its health benefits, yet its cardiovascular effects remain underexplored. This study investigated the therapeutic potential of Guinep by combining experimental and computational approaches. The biological evaluation of the Guinep extract was conducted by assessing the effects of modulating Angiotensin-Converting Enzyme (ACE), Angiotensin II Type 1 Receptor (AT1R), and Voltage-Gated Calcium Channels (VGCC) on vascular reactivity. Metabolites previously identified by high-resolution UHPLC-Q-Orbitrap mass spectrometry were further examined using in silico tools, including ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) prediction (pkCSM), biological activity prediction (PASS server), and molecular docking (AutoDock Vina) against cardiovascular targets (ACE: PDB 1O86, AT1R: PDB 4ZUD, VGCC: PDB 8WE8). Docking results revealed that phytochemicals such as isorhamnetin-3-O-glucoside and 3-O-caffeoylquinic acid displayed strong binding affinities with ACE (−9.3 and −8.5 kcal/mol), AT1R (−8.2 and −7.6 kcal/mol), and VGCC (−8.6 and −7.6 kcal/mol), in several cases matching or surpassing standard antihypertensive drugs. Key hydrogen bond interactions closely resembled those of reference ligands, suggesting pharmacophoric similarity. ADMET modeling confirmed favorable pharmacokinetic profiles and low predicted toxicity, supporting their drug-like potential. These findings are consistent with in vivo evidence of Guinep’s hypotensive, antioxidant, and vasodilatory properties. Vascular relaxation of Guinep extract was predominantly mediated by blockade of VGCC (53%) and AT1R (48%), while ACE inhibition accounted for 24%. Collectively, the results demonstrate that Guinep contains bioactive phytochemicals with multitarget cardiovascular activity, particularly as ACE, AT1R, and VGCC modulators. This study validates the traditional use of Guinep. Full article
(This article belongs to the Special Issue Biological Study of Plant Bioactive Compounds)
Show Figures

Figure 1

27 pages, 2977 KB  
Article
Neurobiological Correlates of Coping Strategies in PTSD: The Role of IGF-1, CASP-9, nNOS, and IL-10 Based on Brief-COPE Assessment
by Barbara Paraniak-Gieszczyk and Ewa Alicja Ogłodek
Curr. Issues Mol. Biol. 2025, 47(10), 868; https://doi.org/10.3390/cimb47100868 - 21 Oct 2025
Viewed by 445
Abstract
Post-traumatic stress disorder (PTSD) is associated with long-term disturbances in stress regulation, neuroinflammation, and oxidative stress and reduced psychological coping capacity. The aim of the study was to assess the relationship between selected neurobiological biomarkers (Insulin-like Growth Factor 1—IGF-1; Caspase-9—CASP-9; Neuronal Nitric Oxide [...] Read more.
Post-traumatic stress disorder (PTSD) is associated with long-term disturbances in stress regulation, neuroinflammation, and oxidative stress and reduced psychological coping capacity. The aim of the study was to assess the relationship between selected neurobiological biomarkers (Insulin-like Growth Factor 1—IGF-1; Caspase-9—CASP-9; Neuronal Nitric Oxide Synthase—nNOS; and Interleukin-10—IL-10) and coping styles evaluated using the Brief Coping Orientation to Problems Experienced (Brief-COPE) questionnaire in men with trauma experience. Particular emphasis was placed on analyzing the effect of PTSD chronicity (≤5 years vs. >5 years) on these relationships. The study included 92 adult men with a history of life-threatening situations. Participants were divided into three groups: PTSD within the past ≤5 years (n = 33), PTSD within the past >5 years (n = 31), and a No PTSD group (n = 28). Biomarkers were measured in blood serum. Coping strategies were assessed using the Brief-COPE questionnaire, which includes four subscales: task-oriented, emotion-oriented, avoidant, and general coping. Due to the lack of normal distribution, the Kruskal–Wallis test and Dunn’s post hoc test were used. Correlations between biomarkers and Brief-COPE subscales were calculated using Spearman’s Rank Correlation Coefficient (Rho). Significant differences between groups were found in all four biomarkers (p < 0.001). IGF-1 and IL-10 reached the highest values in the No PTSD group and the lowest in the PTSD ≤ 5 years group, indicating neuroprotective and anti-inflammatory deficits in PTSD. Conversely, CASP-9 and nNOS levels (markers of apoptosis and oxidative stress) were highest in PTSD ≤ 5 years, with partial normalization in the PTSD > 5 years group. In terms of coping strategies, the No PTSD group displayed a highly adaptive profile (task-oriented: 30/32; emotion-oriented: 43/48; and avoidant: 12/32). Individuals with PTSD ≤ 5 years presented a maladaptive pattern (task-oriented: 13/32; avoidant: 26/32; and emotion-oriented: 27/48), while in PTSD > 5 years, a further decline in emotion-oriented (21/48) and general coping (59/112) was observed, suggesting progressive depletion of psychological resources. The strongest correlations between biomarkers and coping strategies occurred in PTSD groups. Low IGF-1 levels in PTSD ≤ 5 years correlated negatively with emotion-oriented coping (Rho = −0.39) and general coping (Rho = −0.35). High CASP-9 levels were associated with reduced task-oriented coping in PTSD > 5 years (Rho = −0.29). Similar trends were observed for nNOS and IL-10, indicating a disturbance in neurobiological balance that favors persistence of PTSD symptoms. PTSD, both in its acute and chronic phases, is associated with an abnormal profile of neuroprotective, apoptotic, and inflammatory biomarkers, which correlates with impaired adaptive coping capacity. Although partial normalization of biological parameters is observed in chronic PTSD, deficits in emotion-oriented and task-oriented coping persist. The Brief-COPE questionnaire, combined with biomarker analysis, may serve as a useful clinical tool for assessing psychophysiological balance and designing early interventions. These results highlight the potential of IGF-1, CASP-9, nNOS, and IL-10 as biomarkers of stress adaptation and therapeutic targets in PTSD. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

12 pages, 3574 KB  
Article
Spatial Proximity of Cancer-Associated Fibroblasts to Tumor and Osteoclasts Suggests a Coordinating Role in OSCC-Induced Bone Invasion: A Preliminary Study
by Nobuyuki Sasahara, Masayuki Kaneko, Takumi Kitaoka, Michihisa Kohno, Takanobu Kabasawa, Naing Ye Aung, Rintaro Ohe, Mitsuyoshi Iino and Mitsuru Futakuchi
Biomedicines 2025, 13(10), 2554; https://doi.org/10.3390/biomedicines13102554 - 20 Oct 2025
Viewed by 411
Abstract
Background: Jawbone invasion is a common and prognostically unfavorable feature of oral squamous cell carcinoma (OSCC). Although cancer-associated fibroblasts (CAFs) are recognized for their role in tumor progression, their spatial dynamics at the tumor–bone interface remain poorly understood. Methods: We analyzed [...] Read more.
Background: Jawbone invasion is a common and prognostically unfavorable feature of oral squamous cell carcinoma (OSCC). Although cancer-associated fibroblasts (CAFs) are recognized for their role in tumor progression, their spatial dynamics at the tumor–bone interface remain poorly understood. Methods: We analyzed 14 OSCC specimens with confirmed jawbone invasion using histopathological and immunohistochemical techniques. Digital pathology combined with AI-assisted image analysis was employed to quantify and visualize the spatial distribution of OSCC cells (RANKL-positive), CAFs (α-SMA and FAP-positive), and osteoclasts (cathepsin K-positive) within defined regions of interest at the tumor–bone invasive front. Results: A consistent laminar stromal region enriched in CAFs was observed between the tumor nests and jawbone. CAFs were spatially clustered near OSCC cells and osteoclasts, with 81% and 74% residing within 50 μm, respectively. On average, 11.4 CAFs were present per OSCC cell and 23.2 per osteoclast. These spatial proximities were largely preserved irrespective of stromal thickness, suggesting active bidirectional cellular interactions. Conclusions: Our findings demonstrate that CAFs are strategically positioned to facilitate intercellular signaling between tumor cells and osteoclasts, potentially coordinating OSCC proliferation and bone resorption. This study highlights the utility of AI-assisted spatial histology in unraveling tumor microenvironmental dynamics and proposes CAFs as potential therapeutic targets in OSCC-induced osteolytic invasion. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Graphical abstract

23 pages, 4305 KB  
Article
Epigenetic Remodeling in Thyroid Cancer: New Dimensions of Targeted Therapy Through lncRNA Modulation
by Adrian Albulescu, Alina Fudulu, Mirela Antonela Mihaila, Iulia Iancu, Adriana Plesa, Marinela Bostan, Anca Botezatu, Lorelei Irina Brasoveanu and Camelia Mia Hotnog
Curr. Issues Mol. Biol. 2025, 47(10), 863; https://doi.org/10.3390/cimb47100863 - 18 Oct 2025
Viewed by 452
Abstract
Thyroid carcinomas are phenotypically heterogeneous malignancies. Advances in molecular and cellular technologies have revealed genetic, epigenetic, and nongenetic factors underlying this heterogeneity. Our study aimed to assess the impact of single and combined treatments with anticancer agents (Carboplatin, Doxorubicin, Paclitaxel, Avastin), natural compounds [...] Read more.
Thyroid carcinomas are phenotypically heterogeneous malignancies. Advances in molecular and cellular technologies have revealed genetic, epigenetic, and nongenetic factors underlying this heterogeneity. Our study aimed to assess the impact of single and combined treatments with anticancer agents (Carboplatin, Doxorubicin, Paclitaxel, Avastin), natural compounds (Quercetin), and epigenetic modulators (suberoylanilide hydroxamic acid and 5-Azacytidine) on the expression of long noncoding RNAs, methylation regulators, and functional features in the human thyroid cancer cell line K1. Methods: Treated and untreated K1 cells were used throughout experiments to evaluate the drug-induced cytotoxicity, apoptosis, cell cycle distribution, cytokine release, gene expression, and global DNA methylation levels. Results: Some single- and combined-drug treatments modulated both cell cycle progression and apoptotic events, demonstrating anti-tumor activity of the tested compounds. Gene expression analysis showed treatment-specific regulation of target genes and lncRNAs, including both upregulation and downregulation across different drug combinations. All treatments resulted in increased global DNA methylation levels compared to the untreated controls. Several combinations significantly upregulated DNMT1 and DNMT3B, while concomitantly decreased EZH2 levels. Conclusions: These coordinated epigenetic changes highlight the therapeutic potential of combining epigenetic modulators with chemotherapeutic agents, suggesting a strategy to prevent or reverse treatment resistance and improve outcomes in thyroid cancer patients. Full article
Show Figures

Figure 1

10 pages, 668 KB  
Article
Distribution and Factors Associated with Neisseria gonorrhoeae Cases in Kampala, Uganda, 2016–2020
by Fahad Lwigale, Conrad Tumwine, Reuben Kiggundu, Patrick Elungat, Hope Mackline, Dathan M. Byonanebye, Andrew Kambugu and Francis Kakooza
Infect. Dis. Rep. 2025, 17(5), 132; https://doi.org/10.3390/idr17050132 - 17 Oct 2025
Viewed by 308
Abstract
Background: Gonorrhoea is a common sexually transmitted infection with serious health consequences if not well-treated. Resistance to common therapeutic agents and limited diagnostics further heighten its burden on sexual and reproductive health. This study determined the positivity level, spatial distribution and factors [...] Read more.
Background: Gonorrhoea is a common sexually transmitted infection with serious health consequences if not well-treated. Resistance to common therapeutic agents and limited diagnostics further heighten its burden on sexual and reproductive health. This study determined the positivity level, spatial distribution and factors influencing test positivity for Neisseria gonorrhoeae in Kampala, Uganda. Methods: Clinical data and urethral swabs were primarily collected from men with urethritis at 10 high-volume surveillance facilities. Laboratory analysis followed conventional microbiology techniques. Statistical analysis was conducted using R 4.4.3. Results: Among 1663 participants, 923 (56%, 95% CI: 53–58%) tested positive for N. gonorrhoeae, with comparable levels in Kampala divisions. Co-positivity of HIV and N. gonorrhoeae ranged from 5–27%. At bivariable analysis, there was a lower risk of testing positive for N. gonorrhoeae among participants aged above 24 years. Individuals who never use condoms or infrequently use them were marginally at a higher risk for positivity compared to routine users. Only age was the independent predictor for positivity with N. gonorrhoeae (aPR = 0.93, 95% CI: 0.87–0.99, p-value = 0.017), with men aged above 24 years being less likely to test positive for N. gonorrhoeae. Conclusions: Spatial distribution of N. gonorrhoeae positivity in Kampala was found not to be significantly influenced by location in any of the five divisions. Public health interventions should be tailored to focus on the high-risk groups such as men aged below 25 years, incorporating targeted education and prevention programs, particularly emphasizing consistent condom use among sexually active individuals to improve sexual and reproductive health in Kampala and greater Uganda. Full article
(This article belongs to the Section Sexually Transmitted Diseases)
Show Figures

Figure 1

24 pages, 4333 KB  
Article
Development of Co-Amorphous Systems for Inhalation Therapy—Part 2: In Silico Guided Co-Amorphous Rifampicin–Moxifloxacin and –Ethambutol Formulations
by Eleonore Fröhlich, Noon Sharafeldin, Valerie Reinisch, Nila Mohsenzada, Stefan Mitsche, Hartmuth Schröttner and Sarah Zellnitz-Neugebauer
Pharmaceutics 2025, 17(10), 1339; https://doi.org/10.3390/pharmaceutics17101339 - 16 Oct 2025
Viewed by 456
Abstract
Background/Objectives: Tuberculosis (TB) remains a global health challenge due to long treatment durations, poor adherence, and growing drug resistance. Inhalable co-amorphous systems (COAMS) offer a promising strategy for targeted pulmonary delivery of fixed-dose combinations, improving efficacy and reducing systemic side effects. Methods: [...] Read more.
Background/Objectives: Tuberculosis (TB) remains a global health challenge due to long treatment durations, poor adherence, and growing drug resistance. Inhalable co-amorphous systems (COAMS) offer a promising strategy for targeted pulmonary delivery of fixed-dose combinations, improving efficacy and reducing systemic side effects. Methods: Our in-house-developed machine learning (ML) tool identified two promising API-API combinations for TB therapy, rifampicin (RIF)–moxifloxacin (MOX) and RIF–ethambutol (ETH). Physiologically based pharmacokinetic (PBPK) modeling was used to estimate therapeutic lung doses of RIF, ETH, and MOX following oral administration. Predicted lung doses were translated into molar ratios, and COAMS of RIF-ETH and RIF-MOX at both model-predicted (1:1) and PBPK-informed ratios were prepared by spray drying and co-milling, followed by comprehensive physicochemical and aerodynamic characterization. Results: RIF-MOX COAMS could be prepared in all molar ratios tested, whereas RIF-ETH failed to result in COAMS for therapeutically relevant molar ratios. Spray drying and ball milling successfully produced stable RIF-MOX formulations, with spray drying showing superior behavior in terms of morphology (narrow particle size distribution; lower Sauter mean diameter), aerosolization performance (fine particle fraction above 74% for RIF and MOX), and dissolution. Conclusions: This study demonstrated that PBPK modeling and ML are useful tools to develop COAMS for pulmonary delivery of active pharmaceutical ingredients (APIs) routinely applied through the oral route. It was also observed that COAMS may be less effective when the therapeutic lung dose ratio significantly deviates from the predicted 1:1 molar ratio. This suggests the need for alternative delivery strategies in such cases. Full article
(This article belongs to the Special Issue New Platform for Tuberculosis Treatment)
Show Figures

Graphical abstract

24 pages, 550 KB  
Article
A Data-Driven Approach for Estimating Type 2 Diabetes-Related Costs in Greece
by Elisavet Nika, Thomas Tsiampalis, Athanasios Sachlas, Evangelos Liberopoulos, Sotirios Bersimis and Dimitrios Georgakellos
J. Mark. Access Health Policy 2025, 13(4), 53; https://doi.org/10.3390/jmahp13040053 - 15 Oct 2025
Viewed by 571
Abstract
Type 2 diabetes (T2D) constitutes a major health problem, reaching alarming rates over the last decades, especially due to contemporary lifestyle and associated obesogenic environments, as well as the aging population. Diabetes not only causes social consequences but also leads to increasing healthcare [...] Read more.
Type 2 diabetes (T2D) constitutes a major health problem, reaching alarming rates over the last decades, especially due to contemporary lifestyle and associated obesogenic environments, as well as the aging population. Diabetes not only causes social consequences but also leads to increasing healthcare costs, posing a significant challenge for the health system. This paper applies a five-step approach for estimating T2D-related costs in Greece. The approach initially estimates the T2D-related ICD10 prevalence and the target population. Next it applies the appropriate therapeutic protocols to identify the most appropriate treatments. Subsequently, it calculates the total cost of medical treatments for each target population, based on the distribution of patients between the different treatments and treatment lines. Finally, based on the diagnostic and treatment protocols, it calculates the annual direct costs associated with the cost categories. Using the estimated future population of the country, the proposed methodology can also project the budget required, under certain conditions, to deal with T2D. The analysis estimated that T2D-related costs in 2021 under rational use of resources were EUR 1,397,871,172.55 billion and EUR 1,512,934,947.63 billion projected in the year 2030 considering the aging effect, per cost category, and in total, presenting an increase of approximately 115 million euros in 2030 compared to 2021. The term “rational use of resources” in this study refers to the use of internationally recognized, evidence-based diagnostic and therapeutic protocols, as adopted by the Greek Ministry of Health. This scenario represents an idealized standard of care rather than actual real-world adherence and is used to estimate the potential resource needs under optimal medical practice conditions. An inflation rate of 4.2% was applied to costs between 2021 and 2030. The analysis showed that the highest percentage (39%) of the total T2D-related healthcare expenditures is associated with complications that occur in T2D patients. Despite a comparatively modest prevalence of T2D in Greece relative to other European and Mediterranean countries, the economic burden associated with its management remains high. The aging of the population will lead to an increase in the total cost of T2D. The applied methodology of estimating budgets by aggregating categories of expenses under a specific disease (ICD10), instead of dividing budgets into categories of expenses, can successfully lead to the optimization and rationalization of expenses according to actual needs. The findings underline the significant economic burden of T2D in Greece, particularly due to complications and population aging. These results emphasize the urgent need for health policy strategies focusing on prevention, early intervention, and the efficient allocation of healthcare resources. The methodology applied can serve as a decision-making tool for forecasting healthcare budgets and optimizing expenditures under different population and treatment scenarios. Full article
Show Figures

Figure 1

Back to TopTop