Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,314)

Search Parameters:
Keywords = synthetic life

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 1939 KiB  
Review
A Review on Anaerobic Digestate as a Biofertilizer: Characteristics, Production, and Environmental Impacts from a Life Cycle Assessment Perspective
by Carmen Martín-Sanz-Garrido, Marta Revuelta-Aramburu, Ana María Santos-Montes and Carlos Morales-Polo
Appl. Sci. 2025, 15(15), 8635; https://doi.org/10.3390/app15158635 (registering DOI) - 4 Aug 2025
Abstract
Digestate valorization is essential for sustainable waste management and circular economy strategies, yet large-scale adoption faces technical, economic, and environmental challenges. Beyond waste-to-energy conversion, digestate is a valuable soil amendment, enhancing soil structure and reducing reliance on synthetic fertilizers. However, its agronomic benefits [...] Read more.
Digestate valorization is essential for sustainable waste management and circular economy strategies, yet large-scale adoption faces technical, economic, and environmental challenges. Beyond waste-to-energy conversion, digestate is a valuable soil amendment, enhancing soil structure and reducing reliance on synthetic fertilizers. However, its agronomic benefits depend on feedstock characteristics, treatment processes, and application methods. This study reviews digestate composition, treatment technologies, regulatory frameworks, and environmental impact assessment through Life Cycle Assessment. It analyzes the influence of functional unit selection and system boundary definitions on Life Cycle Assessment outcomes and the effects of feedstock selection, pretreatment, and post-processing on its environmental footprint and fertilization efficiency. A review of 28 JCR-indexed articles (2018–present) analyzed LCA studies on digestate, focusing on methodologies, system boundaries, and impact categories. The findings indicate that Life Cycle Assessment methodologies vary widely, complicating direct comparisons. Transportation distances, nutrient stability, and post-processing strategies significantly impact greenhouse gas emissions and nutrient retention efficiency. Techniques like solid–liquid separation and composting enhance digestate stability and agronomic performance. Digestate remains a promising alternative to synthetic fertilizers despite market uncertainty and regulatory inconsistencies. Standardized Life Cycle Assessment methodologies and policy incentives are needed to promote its adoption as a sustainable soil amendment within circular economy frameworks. Full article
(This article belongs to the Special Issue Novel Research on By-Products and Treatment of Waste)
Show Figures

Figure 1

10 pages, 216 KiB  
Perspective
Silicon Is the Next Frontier in Plant Synthetic Biology
by Aniruddha Acharya, Kaitlin Hopkins and Tatum Simms
SynBio 2025, 3(3), 12; https://doi.org/10.3390/synbio3030012 - 3 Aug 2025
Viewed by 74
Abstract
Silicon has a striking similarity to carbon and is found in plant cells. However, there is no specific role that has been assigned to silicon in the life cycle of plants. The amount of silicon in plant cells is species specific and can [...] Read more.
Silicon has a striking similarity to carbon and is found in plant cells. However, there is no specific role that has been assigned to silicon in the life cycle of plants. The amount of silicon in plant cells is species specific and can reach levels comparable to macronutrients. Silicon is used extensively in artificial intelligence, nanotechnology, and the digital revolution, and thus can serve as an informational molecule such as nucleic acids. The diverse potential of silicon to bond with different chemical species is analogous to carbon; thus, it can serve as a structural candidate similar to proteins. The discovery of large amounts of silicon on Mars and the moon, along with the recent development of enzyme that can incorporate silicon into organic molecules, has propelled the theory of creating silicon-based life. The bacterial cytochrome has been modified through directed evolution such that it could cleave silicon–carbon bonds in organo-silicon compounds. This consolidates the idea of utilizing silicon in biomolecules. In this article, the potential of silicon-based life forms has been hypothesized, along with the reasoning that autotrophic virus-like particles could be used to investigate such potential. Such investigations in the field of synthetic biology and astrobiology will have corollary benefits for Earth in the areas of medicine, sustainable agriculture, and environmental sustainability. Full article
Show Figures

Graphical abstract

20 pages, 1876 KiB  
Article
Evaluation of Clean-Label Additives to Inhibit Molds and Extend the Shelf Life of Preservative-Free Bread
by Ricardo H. Hernández-Figueroa, Aurelio López-Malo, Beatriz Mejía-Garibay, Nelly Ramírez-Corona and Emma Mani-López
Microbiol. Res. 2025, 16(8), 179; https://doi.org/10.3390/microbiolres16080179 - 1 Aug 2025
Viewed by 108
Abstract
This study evaluates the efficacy of commercial clean-label additives, specifically fermentates, in inhibiting mold growth in vitro and extending the shelf life of preservative-free bread. The mold growth on selected bread was modeled using the time-to-growth approach. The pH, aw, and [...] Read more.
This study evaluates the efficacy of commercial clean-label additives, specifically fermentates, in inhibiting mold growth in vitro and extending the shelf life of preservative-free bread. The mold growth on selected bread was modeled using the time-to-growth approach. The pH, aw, and moisture content of fresh bread were determined. In addition, selected fermentates were characterized physicochemically. Fermentates, defined as liquid or powdered preparations containing microorganisms, their metabolites, and culture supernatants, were tested at varying concentrations (1% to 12%) to assess their antimicrobial performance and impact on bread quality parameters, including moisture content, water activity, and pH. The results showed significant differences in fermentate efficacy, with Product A as the best mold growth inhibitor in vitro and a clear dose-dependent response. For Penicillium corylophilum, inhibition increased from 51.90% at 1% to 62.60% at 4%, while P. chrysogenum had an inhibition ranging from 32.26% to 34.49%. Product F exhibited moderate activity on both molds at 4%, inhibiting between 28.48% and 46.27%. The two molds exhibited differing sensitivities to the fermentates, with P. corylophilum consistently more susceptible to inhibition. Product A displayed a low pH (2.61) and high levels of lactic acid (1053.6 mmol/L) and acetic acid (1061.3 mmol/L). Product F presented a similar pH but lower levels of lactic and acetic acid. A time-to-growth model, validated by significant coefficients (p < 0.05) and high predictive accuracy (R2 > 0.95), was employed to predict the appearance of mold on bread loaves. The model revealed that higher concentrations of fermentates A and F delayed mold growth, with fermentate A demonstrating superior efficacy. At 2% concentration, fermentate A delayed mold growth for 8 days, compared to 6 days for fermentate F. At 8% concentration, fermentate A prevented mold growth for over 25 days, significantly outperforming the control (4 days). Additionally, fermentates influenced bread quality parameters, with fermentate A improving crust moisture retention and reducing water activity at higher concentrations. These findings highlight the potential of fermentates as sustainable, consumer-friendly alternatives to synthetic preservatives, offering a viable solution to the challenge of bread spoilage while maintaining product quality. Full article
(This article belongs to the Collection Microbiology and Technology of Fermented Foods)
Show Figures

Figure 1

23 pages, 2888 KiB  
Review
Machine Learning in Flocculant Research and Application: Toward Smart and Sustainable Water Treatment
by Caichang Ding, Ling Shen, Qiyang Liang and Lixin Li
Separations 2025, 12(8), 203; https://doi.org/10.3390/separations12080203 - 1 Aug 2025
Viewed by 197
Abstract
Flocculants are indispensable in water and wastewater treatment, enabling the aggregation and removal of suspended particles, colloids, and emulsions. However, the conventional development and application of flocculants rely heavily on empirical methods, which are time-consuming, resource-intensive, and environmentally problematic due to issues such [...] Read more.
Flocculants are indispensable in water and wastewater treatment, enabling the aggregation and removal of suspended particles, colloids, and emulsions. However, the conventional development and application of flocculants rely heavily on empirical methods, which are time-consuming, resource-intensive, and environmentally problematic due to issues such as sludge production and chemical residues. Recent advances in machine learning (ML) have opened transformative avenues for the design, optimization, and intelligent application of flocculants. This review systematically examines the integration of ML into flocculant research, covering algorithmic approaches, data-driven structure–property modeling, high-throughput formulation screening, and smart process control. ML models—including random forests, neural networks, and Gaussian processes—have successfully predicted flocculation performance, guided synthesis optimization, and enabled real-time dosing control. Applications extend to both synthetic and bioflocculants, with ML facilitating strain engineering, fermentation yield prediction, and polymer degradability assessments. Furthermore, the convergence of ML with IoT, digital twins, and life cycle assessment tools has accelerated the transition toward sustainable, adaptive, and low-impact treatment technologies. Despite its potential, challenges remain in data standardization, model interpretability, and real-world implementation. This review concludes by outlining strategic pathways for future research, including the development of open datasets, hybrid physics–ML frameworks, and interdisciplinary collaborations. By leveraging ML, the next generation of flocculant systems can be more effective, environmentally benign, and intelligently controlled, contributing to global water sustainability goals. Full article
(This article belongs to the Section Environmental Separations)
Show Figures

Figure 1

58 pages, 1897 KiB  
Review
Fabrication and Application of Bio-Based Natural Polymer Coating/Film for Food Preservation: A Review
by Nosipho P. Mbonambi, Jerry O. Adeyemi, Faith Seke and Olaniyi A. Fawole
Processes 2025, 13(8), 2436; https://doi.org/10.3390/pr13082436 - 1 Aug 2025
Viewed by 453
Abstract
Food waste has emerged as a critical worldwide concern, resulting in environmental deterioration and economic detriment. Bio-based natural polymer coatings and films have emerged as a sustainable solution to food preservation challenges, particularly in reducing postharvest losses and extending shelf life. Compared to [...] Read more.
Food waste has emerged as a critical worldwide concern, resulting in environmental deterioration and economic detriment. Bio-based natural polymer coatings and films have emerged as a sustainable solution to food preservation challenges, particularly in reducing postharvest losses and extending shelf life. Compared to their synthetic counterparts, these polymers, such as chitosan, starch, cellulose, proteins, and alginate, are derived from renewable sources that are biodegradable, safe, and functional. Within this context, this review examines the various bio-based natural polymer coatings and films as biodegradable, edible alternatives to conventional packaging solutions. It examines the different fabrication methods, like solution casting, electrospinning, and spray coating, and incorporates antimicrobial agents to enhance performance. Emphasis is placed on their mechanical, barrier, and antimicrobial properties, their application in preserving fresh produce, how they promote food safety and environmental sustainability, and accompanying limitations. This review highlights the importance of bio-based natural polymer coatings and films as a promising, eco-friendly solution to enhancing food quality, safety, and shelf life while addressing global sustainability challenges. Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Figure 1

42 pages, 3564 KiB  
Review
A Review on Sustainable Upcycling of Plastic Waste Through Depolymerization into High-Value Monomer
by Ramkumar Vanaraj, Subburayan Manickavasagam Suresh Kumar, Seong Cheol Kim and Madhappan Santhamoorthy
Processes 2025, 13(8), 2431; https://doi.org/10.3390/pr13082431 - 31 Jul 2025
Viewed by 603
Abstract
Plastic waste accumulation is one of the most pressing environmental challenges of the 21st century, owing to the widespread use of synthetic polymers and the limitations of conventional recycling methods. Among available strategies, chemical upcycling via depolymerization has emerged as a promising circular [...] Read more.
Plastic waste accumulation is one of the most pressing environmental challenges of the 21st century, owing to the widespread use of synthetic polymers and the limitations of conventional recycling methods. Among available strategies, chemical upcycling via depolymerization has emerged as a promising circular approach that converts plastic waste back into valuable monomers and chemical feedstocks. This article provides an in-depth narrative review of recent progress in the upcycling of major plastic types such as PET, PU, PS, and engineering plastics through thermal, chemical, catalytic, biological, and mechanochemical depolymerization methods. Each method is critically assessed in terms of efficiency, scalability, energy input, and environmental impact. Special attention is given to innovative catalyst systems, such as microsized MgO/SiO2 and Co/CaO composites, and emerging enzymatic systems like engineered PETases and whole-cell biocatalysts that enable low-temperature, selective depolymerization. Furthermore, the conversion pathways of depolymerized products into high-purity monomers such as BHET, TPA, vanillin, and bisphenols are discussed with supporting case studies. The review also examines life cycle assessment (LCA) data, techno-economic analyses, and policy frameworks supporting the adoption of depolymerization-based recycling systems. Collectively, this work outlines the technical viability and sustainability benefits of depolymerization as a core pillar of plastic circularity and monomer recovery, offering a path forward for high-value material recirculation and waste minimization. Full article
Show Figures

Figure 1

18 pages, 549 KiB  
Article
Extension of Poultry Meat Shelf Life Using Cynara cardunculus L. Leaf Extracts as a Natural Preservative
by Cássia H. Barbosa, Mariana A. Andrade, Fernanda Vilarinho, Ana Sanches Silva and Ana Luísa Fernando
Foods 2025, 14(15), 2592; https://doi.org/10.3390/foods14152592 - 24 Jul 2025
Viewed by 283
Abstract
Food additives are used to prevent food spoilage and extend its shelf life. However, concerns regarding the potential health implications associated with some synthetic additives have prompted research efforts aimed at identifying natural alternatives, such as plant extracts. Cynara cardunculus L. (cardoon) is [...] Read more.
Food additives are used to prevent food spoilage and extend its shelf life. However, concerns regarding the potential health implications associated with some synthetic additives have prompted research efforts aimed at identifying natural alternatives, such as plant extracts. Cynara cardunculus L. (cardoon) is known for its antimicrobial and antioxidant properties. The aim of this study was to evaluate the capability of ethanolic food-grade extracts from cultivated cardoon and globe artichoke leaves to preserve poultry breast meat during refrigerated storage. A total of seven treatment groups were tested: one control group (no extract) and six active groups with 0.5%, 1%, and 2% (w/w) of either cultivated cardoon or globe artichoke leaf extracts. Lipid oxidation, moisture, colour, pH, acidity, and microbial growth were assessed in poultry meat samples over 15 days. Both extracts were effective in extending shelf life, up to 11 days, by delaying lipid oxidation and microbial growth. Cardoon extract (1% w/w) displayed superior antimicrobial efficacy, maintaining microbial counts below 5 Log CFU/g meat until day 15, compared to the control. Cultivated cardoon leaf extract proves promising as a natural antimicrobial and antioxidant, extending the shelf life of poultry meat. This presents an opportunity to maintain the quality of meat products, aligning with consumer preferences for natural ingredients and sustainable practices. Full article
(This article belongs to the Special Issue Preservation and Shelf Life Extension of Food Products)
Show Figures

Figure 1

36 pages, 5042 KiB  
Review
The Fungus Among Us: Innovations and Applications of Mycelium-Based Composites
by Zahra Parhizi, John Dearnaley, Kate Kauter, Deirdre Mikkelsen, Priya Pal, Tristan Shelley and Paulomi (Polly) Burey
J. Fungi 2025, 11(8), 549; https://doi.org/10.3390/jof11080549 - 23 Jul 2025
Viewed by 556
Abstract
Mycelium-based composites (MBCs) are an emerging category of cost-effective and environmentally sustainable materials that are attracting significant research and commercial interest across various industries, including construction, manufacturing, agriculture, and biomedicine. These materials harness the natural growth of fungi as a low-energy bio-fabrication method, [...] Read more.
Mycelium-based composites (MBCs) are an emerging category of cost-effective and environmentally sustainable materials that are attracting significant research and commercial interest across various industries, including construction, manufacturing, agriculture, and biomedicine. These materials harness the natural growth of fungi as a low-energy bio-fabrication method, converting abundant agricultural by-products and waste into sustainable alternatives to energy-intensive synthetic construction materials. Their affordability and eco-friendly characteristics make them attractive for both research and commercialisation. Currently, mycelium-based foams and sandwich composites are being actively developed for applications in construction. These materials offer exceptional thermal insulation, excellent acoustic absorption, and superior fire safety compared to conventional building materials like synthetic foams and engineered wood. As a result, MBCs show great potential for applications in thermal and acoustic insulation. However, their foam-like mechanical properties, high water absorption, and limited documentation of material properties restrict their use to non- or semi-structural roles, such as insulation, panelling, and furniture. This paper presents a comprehensive review of the fabrication process and the factors affecting the production and performance properties of MBCs. It addresses key elements such as fungal species selection, substrate choice, optimal growth conditions, dehydration methods, post-processing techniques, mechanical and physical properties, termite resistance, cost comparison, and life cycle assessment. Full article
Show Figures

Figure 1

39 pages, 3407 KiB  
Review
Current Status of the Application of Antimicrobial Peptides and Their Conjugated Derivatives
by Marcel·lí del Olmo and Cecilia Andreu
Molecules 2025, 30(15), 3070; https://doi.org/10.3390/molecules30153070 - 22 Jul 2025
Viewed by 337
Abstract
A significant issue in healthcare is the growing prevalence of antibiotic-resistant strains. Therefore, it is necessary to develop strategies for discovering new antibacterial compounds, either by identifying natural products or by designing semisynthetic or synthetic compounds with this property. In this context, a [...] Read more.
A significant issue in healthcare is the growing prevalence of antibiotic-resistant strains. Therefore, it is necessary to develop strategies for discovering new antibacterial compounds, either by identifying natural products or by designing semisynthetic or synthetic compounds with this property. In this context, a great deal of research has recently been carried out on antimicrobial peptides (AMPs), which are natural, amphipathic, low-molecular-weight molecules that act by altering the cell surface and/or interfering with cellular activities essential for life. Progress is also being made in developing strategies to enhance the activity of these compounds through their association with other molecules. In addition to identifying AMPs, it is essential to ensure that they maintain their integrity after passing through the digestive tract and exhibit adequate activity against their targets. Significant advances are being made in relation to analyzing various types of conjugates and carrier systems, such as nanoparticles, vesicles, hydrogels, and carbon nanotubes, among others. In this work, we review the current knowledge of different types of AMPs, their mechanisms of action, and strategies to improve performance. Full article
(This article belongs to the Special Issue Research Progress of New Antimicrobial Drugs)
Show Figures

Graphical abstract

15 pages, 3673 KiB  
Article
Photodegradation Assessment of Calcipotriol in the Presence of UV Absorbers by UHPLC/MSE
by Małgorzata Król, Paweł Żmudzki, Adam Bucki and Agata Kryczyk-Poprawa
Appl. Sci. 2025, 15(15), 8124; https://doi.org/10.3390/app15158124 - 22 Jul 2025
Viewed by 367
Abstract
Calcipotriol, a synthetic vitamin D3 analogue widely used in psoriasis treatment, requires a detailed stability assessment due to its topical application and potential exposure to UV radiation. As a drug applied directly to the skin, calcipotriol is particularly susceptible to photodegradation, which [...] Read more.
Calcipotriol, a synthetic vitamin D3 analogue widely used in psoriasis treatment, requires a detailed stability assessment due to its topical application and potential exposure to UV radiation. As a drug applied directly to the skin, calcipotriol is particularly susceptible to photodegradation, which may affect its therapeutic efficacy and safety profile. The present study focuses on the analysis of calcipotriol photostability. An advanced UHPLC/MSE method was employed for the precise determination of calcipotriol and its degradation products. Particular attention was given to the effects of commonly used organic UV filters—approved for use in cosmetic products in both Europe and the USA (benzophenone-3, dioxybenzone, meradimate, sulisobenzone, homosalate, and avobenzone)—on the stability of calcipotriol. Unexpected degradation of calcipotriol was observed in the presence of sulisobenzone. Importantly, this effect was consistently detected in methanolic solution and in the pharmaceutical formulation containing calcipotriol and betamethasone, which is particularly significant from a practical perspective. This finding underscores the necessity of evaluating photostability under real-life conditions, as cosmetic ingredients, when co-applied with topical drugs on the skin, may substantially influence the stability profile of the pharmaceutical active ingredient. The research resulted in the first-time characterization of four degradation products of calcipotriol. The degradation process was found to primarily affect the E-4-cyclopropyl-4-hydroxy-1-methylbut-2-en-1-yl moiety, causing its isomerization to the Z isomer and the formation of diastereomers with either the R or S configuration. Computational analyses using the OSIRIS Property Explorer indicated that none of the five degradation products exhibit a toxicity effect, whereas molecular docking studies suggested possible binding of two of the five degradation products of calcipotriol with the VDR. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Graphical abstract

17 pages, 6691 KiB  
Article
Antibiotic-Coated Melt Electrowritten Polycaprolactone Meshes: Fabrication and In Vitro Antibacterial Evaluation
by Joana Pinheiro Martins, Ana Sofia de Sousa, Sofia Costa de Oliveira, António Augusto Fernandes and Elisabete Teixeira da Silva
Macromol 2025, 5(3), 33; https://doi.org/10.3390/macromol5030033 - 16 Jul 2025
Viewed by 305
Abstract
In recent years, pelvic organ prolapse (POP) cases have been rising, affecting women’s quality of life. Synthetic surgical transvaginal meshes used for POP treatment were withdrawn from the United States market in 2019 due to high risks, including infection, vaginal mesh erosion, and [...] Read more.
In recent years, pelvic organ prolapse (POP) cases have been rising, affecting women’s quality of life. Synthetic surgical transvaginal meshes used for POP treatment were withdrawn from the United States market in 2019 due to high risks, including infection, vaginal mesh erosion, and POP reoccurrence. Biodegradable mesh implants with three-dimensional printing technology have emerged as an innovative alternative. In this study, polycaprolactone (PCL) meshes for POP repair were fabricated using melt electrospinning writing (MEW) and mechanically evaluated through uniaxial tensile tests. Following this, they were coated with antibiotics—azithromycin, gentamicin sulfate, and ciprofloxacin—commonly used for genitourinary tract infections. Zone inhibition and biofilm assays evaluated antibiotic effectiveness in preventing mesh infections by Escherichia coli, and methicillin-susceptible (MSSA) and methicillin-resistant (MRSA) Staphylococcus aureus. The meshes presented a mechanical behavior closer to vaginal tissue than commercially available meshes. Fourier transform infrared analysis confirmed antibiotic incorporation. Ciprofloxacin demonstrated antibacterial activity against MRSA, with a 92% reduction in metabolic activity and a 99% biomass reduction. Gentamicin and ciprofloxacin displayed inhibitory activity against MSSA and E. coli. Scanning electron microscopy images support these conclusions. This methodology may offer a more effective, patient-friendly solution for POP repair, improving healing and the quality of life for affected women. Full article
Show Figures

Figure 1

23 pages, 5750 KiB  
Article
Effect of Irradiated Nanocellulose on Enhancing the Functionality of Polylactic Acid-Based Composite Films for Packaging Applications
by Ilaria Improta, Mariamelia Stanzione, Elena Orlo, Fabiana Tescione, Marino Lavorgna, Xavier Coqueret and Giovanna G. Buonocore
Polymers 2025, 17(14), 1939; https://doi.org/10.3390/polym17141939 - 15 Jul 2025
Viewed by 293
Abstract
This study investigates the combined use of electron beam irradiation (EBI) and nanotechnology to develop improved food packaging films. EBI, commonly applied for sterilization, can alter polymer microstructure, while irradiated cellulose nanocrystals (CNCs) offer enhanced functionality when incorporated into biopolymer matrices. Here, CNCs [...] Read more.
This study investigates the combined use of electron beam irradiation (EBI) and nanotechnology to develop improved food packaging films. EBI, commonly applied for sterilization, can alter polymer microstructure, while irradiated cellulose nanocrystals (CNCs) offer enhanced functionality when incorporated into biopolymer matrices. Here, CNCs were irradiated with doses up to 50 kGy, leading to the formation of carboxyl and aldehyde groups, confirmed by FTIR analysis, as a consequence of the initial formation of free radicals and peroxides that may subsist in that original form or be converted into various carbonyl groups. Flexible films were obtained by incorporating pristine and EB-irradiated CNCs in an internal mixer, using minute amounts of poly(ethylene oxide) (PEO) to facilitate the dispersion of the filler within the polymer matrix. The resulting PLA/PEO/CNC films were evaluated for their mechanical, thermal, barrier, and antioxidant properties. The results showed that structural modifications of CNCs led to significant enhancements in the performance of the composite films, including a 30% improvement in water barrier properties and a 50% increase in antioxidant activity. These findings underscore the potential of irradiated CNCs as effective additives in biopolymer-based active packaging, offering a sustainable approach to reduce dependence on synthetic preservatives and potentially extend the shelf life of food products. Full article
(This article belongs to the Special Issue Sustainable Polymers for Value Added and Functional Packaging)
Show Figures

Figure 1

17 pages, 2950 KiB  
Article
Obtention of ZnO-Based Hybrid Pigments: Exploring Textile Dye Adsorption and Co-Adsorption with Copper Ion
by Taiane L. Dlugoviet, Andressa dos Santos, Julia de Oliveira Primo and Fauze Jacó Anaissi
Colorants 2025, 4(3), 23; https://doi.org/10.3390/colorants4030023 - 14 Jul 2025
Viewed by 233
Abstract
Annually, more than 10,000 synthetic dyes are produced worldwide, generating around 280,000 tons of waste, posing risks to human and aquatic life, and potentially creating even more toxic products than the dyes themselves. This study aims to immobilize organic dyes, forming hybrid pigments [...] Read more.
Annually, more than 10,000 synthetic dyes are produced worldwide, generating around 280,000 tons of waste, posing risks to human and aquatic life, and potentially creating even more toxic products than the dyes themselves. This study aims to immobilize organic dyes, forming hybrid pigments using ZnO as support obtained through starch combustion. ZnO was obtained by starch (sago) combustion and characterized by XRD, SEM and the BET method. It was then used for the adsorption of orange and green textile dyes, evaluating the adsorbent dosage, initial dye concentration, contact time, and selectivity with copper ions. The removal studies indicated up to 100% removal of both dyes at low concentrations. The co-adsorption system showed excellent performance, with removal percentages exceeding 90% for both textile dyes and Cu (II) ions. Hybrid pigments were assessed for solvent resistance and durability under extended white light exposure. ZnO immobilized the dyes, showing resistance to organic solvents and good stability under prolonged white light exposure. Full article
Show Figures

Figure 1

23 pages, 1142 KiB  
Review
Impact of Nitrogen Fertiliser Usage in Agriculture on Water Quality
by Opeyemi Adebanjo-Aina and Oluseye Oludoye
Pollutants 2025, 5(3), 21; https://doi.org/10.3390/pollutants5030021 - 14 Jul 2025
Viewed by 442
Abstract
Agriculture relies on the widespread application of nitrogen fertilisers to improve crop yields and meet the demands of a growing population. However, the excessive use of these fertilisers has led to significant water quality challenges, posing risks to aquatic life, ecosystems, and human [...] Read more.
Agriculture relies on the widespread application of nitrogen fertilisers to improve crop yields and meet the demands of a growing population. However, the excessive use of these fertilisers has led to significant water quality challenges, posing risks to aquatic life, ecosystems, and human health. This study examines the relationship between synthetic nitrogen fertiliser usage and water pollution while identifying gaps in existing research to guide future studies. A systematic search across databases (Scopus, Web of Science, and Greenfile) identified 18 studies with quantitative data, synthesised using a single-group meta-analysis of means. As the data were continuous, the mean was used as the effect measure, and a random-effects model was applied due to varied study populations, with missing data estimated through statistical assumptions. The meta-analysis found an average nitrate concentration of 34.283 mg/L (95% confidence interval: 29.290–39.276), demonstrating the significant impact of nitrogen fertilisers on water quality. While this average remains marginally below the thresholds set by the World Health Organization (50 mg/L NO3) and EU Nitrate Directive, it exceeds the United States Environmental Protection Agency limit (44.3 mg/L NO3), signalling potential health risks, especially in vulnerable or unregulated regions. The high observed heterogeneity (I2 = 100%) suggests that factors such as soil type, agricultural practices, application rate, and environmental conditions influence nitrate levels. While agriculture is a key contributor, other anthropogenic activities may also affect nitrate concentrations. Future research should comprehensively assess all influencing factors to determine the precise impact of nitrogen fertilisers on water quality. Full article
Show Figures

Figure 1

11 pages, 615 KiB  
Entry
Partially Ordered Sets in Socio-Economic Data Analysis
by Marco Fattore and Lucio De Capitani
Encyclopedia 2025, 5(3), 100; https://doi.org/10.3390/encyclopedia5030100 - 11 Jul 2025
Viewed by 336
Definition
A partially ordered set (or a poset, for short) is a set endowed with a partial order relation, i.e., with a reflexive, anti-symmetric, and transitive binary relation. As mathematical objects, posets have been intensively studied in the last century, [...] Read more.
A partially ordered set (or a poset, for short) is a set endowed with a partial order relation, i.e., with a reflexive, anti-symmetric, and transitive binary relation. As mathematical objects, posets have been intensively studied in the last century, coming to play essential roles in pure mathematics, logic, and theoretical computer science. More recently, they have been increasingly employed in data analysis, multi-criteria decision-making, and social sciences, particularly for building synthetic indicators and extracting rankings from multidimensional systems of ordinal data. Posets naturally represent systems and phenomena where some elements can be compared and ordered, while others cannot be and are then incomparable. This makes them a powerful data structure to describe collections of units assessed against multidimensional variable systems, preserving the nuanced and multi-faceted nature of the underlying domains. Moreover, poset theory collects the proper mathematical tools to treat ordinal data, fully respecting their non-numerical nature, and to extract information out of order relations, providing the proper setting for the statistical analysis of multidimensional ordinal data. Currently, their use is expanding both to solve open methodological issues in ordinal data analysis and to address evaluation problems in socio-economic sciences, from multidimensional poverty, well-being, or quality-of-life assessment to the measurement of financial literacy, from the construction of knowledge spaces in mathematical psychology and education theory to the measurement of multidimensional ordinal inequality/polarization. Full article
(This article belongs to the Collection Encyclopedia of Social Sciences)
Show Figures

Figure 1

Back to TopTop