Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (68)

Search Parameters:
Keywords = switched-beam antenna

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6134 KiB  
Article
Large- and Small-Scale Beam-Steering Phased Array Antennas Using Variable Phase BLC for Millimeter-Wave Applications
by Fayyadh H. Ahmed and Salam K. Khamas
Sensors 2025, 25(12), 3714; https://doi.org/10.3390/s25123714 - 13 Jun 2025
Viewed by 711
Abstract
This paper presents a novel switchable branch-line coupler (BLC) designed to achieve variable phase shifts while maintaining a constant output power. The proposed design incorporates low stepwise phase shifters with incremental phase shifts of 10° to 20°, covering phase ranges from −3° to [...] Read more.
This paper presents a novel switchable branch-line coupler (BLC) designed to achieve variable phase shifts while maintaining a constant output power. The proposed design incorporates low stepwise phase shifters with incremental phase shifts of 10° to 20°, covering phase ranges from −3° to 150°. The initial structure is based on a 3 dB branch-line coupler with arm electrical lengths of 3λg/2. A novel delay line structure is integrated within the BLC arms, consisting of a λg/4 section bridged by a tapered stripline to accommodate a PIN diode switch, thereby altering the current path direction. Additionally, two interdigital capacitors (IDCs), uniquely mounted on a crescent-shaped extension, are implemented alongside the tapered line to elongate the current path when the PIN diode is in the OFF state. By controlling the PIN diode states, the delay time is differentially adjusted, resulting in variable differential phase shifts at the output ports. To validate the functionality, the proposed BLC was integrated with a two-element antenna array to demonstrate differential beam steering. The measurement results confirm that the phased array antenna can switch its main beam between −27° and 25° in the elevation plane, achieving an average realized gain of approximately 7 dBi. The BLC was designed and simulated using CST Microwave Studio and was fabricated on an RO4003C Roger substrate (εr = 3.55, 0.406 mm). The proposed design is well-suited for future Butler matrix-based beamforming networks in antenna array systems, particularly for 5G wireless applications. Full article
(This article belongs to the Special Issue Antenna Technologies for Microwave and Millimeter-Wave Sensing)
Show Figures

Figure 1

15 pages, 2006 KiB  
Article
A CMOS-Based Terahertz Reconfigurable Reflectarray with Amplitude Control: Design and Validation
by You Wu, Yongli Ren, Fan Yang, Shenheng Xu and Maokun Li
Appl. Sci. 2025, 15(12), 6638; https://doi.org/10.3390/app15126638 - 12 Jun 2025
Viewed by 472
Abstract
Terahertz reconfigurable reflectarray antennas (RRAs) hold significant promise for next-generation wireless communication systems by enabling dynamic beam control to mitigate severe path loss at high frequencies. This work presents a Complementary Metal-Oxide-Semiconductor (CMOS)-based RRA for terahertz amplitude control using tunable split-ring resonators. First, [...] Read more.
Terahertz reconfigurable reflectarray antennas (RRAs) hold significant promise for next-generation wireless communication systems by enabling dynamic beam control to mitigate severe path loss at high frequencies. This work presents a Complementary Metal-Oxide-Semiconductor (CMOS)-based RRA for terahertz amplitude control using tunable split-ring resonators. First, a terahertz switch in standard 65 nm CMOS process is designed, tested, and calibrated on the chip to extract the equivalent impedance, enabling precise RRA element design. Next, a reconfigurable element architecture is presented through the co-design of a split-ring radiator, control line, and a single switch. Experimental characterization demonstrates that the fabricated RRA achieves 3 dB amplitude variation at 0.290 THz with <8.5 dB element loss under 0.8 V gate bias. The measured results validate that the proposed single-switch topology effectively balances reconfigurability and loss performance in the terahertz regime. The demonstrated CMOS-compatible RRA provides a scalable solution for real-time beamforming in terahertz communication systems. Full article
(This article belongs to the Special Issue Recent Advances in Reflectarray and Transmitarray Antennas)
Show Figures

Figure 1

10 pages, 3271 KiB  
Article
Focal Plane Array Based on Silicon Nitride for Optical Beam Steering at 2 Microns
by Qing Gao, Jiaqi Li, Jincheng Wei, Jinjie Zeng, Dong Yang, Xiaoqun Yu, Mingshen Peng, Hongwen Xuan, Ruijun Wang and Yanfeng Zhang
Photonics 2025, 12(5), 448; https://doi.org/10.3390/photonics12050448 - 5 May 2025
Viewed by 841
Abstract
The 2 μm wavelength is ideal for light detection and ranging and gas sensing due to its eye-safe operation, strong molecular absorption targeting, and low atmospheric scattering—critical for environmental monitoring and free-space communications. The existing 2 μm systems rely on mechanical beam steering, [...] Read more.
The 2 μm wavelength is ideal for light detection and ranging and gas sensing due to its eye-safe operation, strong molecular absorption targeting, and low atmospheric scattering—critical for environmental monitoring and free-space communications. The existing 2 μm systems rely on mechanical beam steering, which limits speed and reliability. Integrated photonic solutions have not yet been demonstrated in this wavelength. We propose a focal plane array design to address these challenges. Compared to optical phased arrays requiring complex phase control for each antenna, FPAs have a simple switch-based control and high suppression of background noise. Although FPAs need an external lens for beam collimation, they significantly reduce system complexity. This study introduces a compact, low-loss 1 × 8 focal plane array operating in the 2 μm range, employing a cascaded Mach–Zehnder interferometer switch array on a silicon nitride platform. The device demonstrates a field of view of 16.8°, background suppression better than 17 dB, and excess loss of −1.4 dB. This integrated photonic beam steering solution offers a highly promising, cost-effective approach for rapid beam switching. This integrated photonic beam steering solution offers a highly promising, cost-effective approach for rapid beam switching. Full article
(This article belongs to the Special Issue Free-Space Optical Communication and Networking Technology)
Show Figures

Figure 1

19 pages, 4412 KiB  
Article
A Reconfigurable Digital Beamformer Implemented on a Field-Programmable Gate Array for Real-Time and Resource-Efficient Direction-of-Arrival Estimation
by Yuting Wang, Liyuan Zhu, Tianxiang Wu and Shunli Ma
Sensors 2025, 25(8), 2497; https://doi.org/10.3390/s25082497 - 16 Apr 2025
Viewed by 690
Abstract
A medium- or large-scale receiving antenna array using digital beamforming can achieve high-resolution direction-of-arrival (DOA) estimation at the receiver. However, it typically suffers from high cost and complexity. This paper proposes an efficient reconfigurable digital beamformer that can achieve real-time angle estimation with [...] Read more.
A medium- or large-scale receiving antenna array using digital beamforming can achieve high-resolution direction-of-arrival (DOA) estimation at the receiver. However, it typically suffers from high cost and complexity. This paper proposes an efficient reconfigurable digital beamformer that can achieve real-time angle estimation with high accuracy while making effective use of hardware resources. The digital beamformer operates in two modes: beamforming mode and angle estimation mode. In the angle estimation mode, the phase shift steps required for beam scanning can be flexibly adjusted according to the desired angular resolution. By dynamically switching operational modes and fine-tuning the granularity of processing tasks, this architecture maximizes the efficient use of Field-Programmable Gate Array (FPGA) resources, ensuring optimal performance and flexibility in real-time signal processing applications. Simulation results show that with an input signal-to-noise ratio of 10 dB, the beamformer can complete DOA estimation with an error of less than 1° within microsecond-level delay. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

17 pages, 6859 KiB  
Communication
Drone’s Angle-of-Arrival Estimation Using a Switched-Beam Antenna and Single-Channel Receiver
by Sumin Han and Byung-Jun Jang
Sensors 2025, 25(8), 2376; https://doi.org/10.3390/s25082376 - 9 Apr 2025
Viewed by 1051
Abstract
In this study, we propose a method to estimate the Angle-of-Arrival (AoA) of OFDM-based drone signals with wideband and burst characteristics using only a single-channel receiver and a switched-beam antenna. First, six circularly arranged directional antennas are time-division controlled using RF switches to [...] Read more.
In this study, we propose a method to estimate the Angle-of-Arrival (AoA) of OFDM-based drone signals with wideband and burst characteristics using only a single-channel receiver and a switched-beam antenna. First, six circularly arranged directional antennas are time-division controlled using RF switches to measure the received power of each antenna. Next, the maximum beam pattern and the measured power of each antenna are synthesized in vector form, and the direction of the synthesized vector becomes the angle of arrival of the drone signal. To verify the proposed method, an experiment was conducted using the video signal of DJI Phantom 4 Pro with a bandwidth of 10 MHz. As a result, it was confirmed that stable angle-of-arrival estimation of drone video signals was possible with an average error of less than 5°. The proposed system has the advantage of being able to estimate the AoA of a drone with only a single receiver without the need for synchronization. Therefore, the proposed system is expected to be used as a low-cost, compact, and highly portable anti-drone system. Full article
(This article belongs to the Special Issue Advanced UAV-Based Sensor Technologies: 2nd Edition)
Show Figures

Figure 1

26 pages, 9151 KiB  
Article
Beam-Switching Antennas Using a Butler Matrix with a Five-Element Configuration
by Wei-Heng Peng and Yen-Sheng Chen
Electronics 2025, 14(5), 959; https://doi.org/10.3390/electronics14050959 - 27 Feb 2025
Viewed by 937
Abstract
Beam-switching technology is critical for fifth-generation (5G) Frequency Range 1 (FR1) base stations, yet existing odd-number Butler matrix designs often struggle to achieve compact size, low complexity, and efficient performance. Although a few studies have investigated 5 × 5 Butler matrices, their reliance [...] Read more.
Beam-switching technology is critical for fifth-generation (5G) Frequency Range 1 (FR1) base stations, yet existing odd-number Butler matrix designs often struggle to achieve compact size, low complexity, and efficient performance. Although a few studies have investigated 5 × 5 Butler matrices, their reliance on waveguide structures or multilayer implementations leads to larger footprints and greater fabrication complexity. This work introduces a novel 5 × 5 Butler matrix integrated with a five-element dipole antenna array for 3.3–3.7 GHz applications, offering notable improvements in beam-switching efficiency and overall system design. The proposed matrix generates five distinct beams at −144°, −72°, 0°, 72°, and 144° by employing precise phase progression, while eliminating crossovers and power dividers to simplify the layout. With a compact footprint of 2.67 × 0.80 × 0.02 cubic wavelength—94.4% smaller than waveguide-based designs—the matrix achieves a bandwidth of 3.32–3.62 GHz and consistently covers the target beams. The integrated system attains measured gains up to 11.4 dBi and half-power beamwidths ranging from 7.96° to 23.66°, with sidelobe levels comparable to those of state-of-the-art configurations. By employing a low-loss substrate, the gain can be further enhanced by as much as 6.81 dB, highlighting the potential for additional performance gains. These innovations establish the proposed design as a compact, low-complexity, and high-performance solution for 5G base station applications. Full article
Show Figures

Figure 1

13 pages, 13392 KiB  
Review
Evolution of Single Photon Lidar: From Satellite Laser Ranging to Airborne Experiments to ICESat-2
by John J. Degnan
Photonics 2024, 11(10), 924; https://doi.org/10.3390/photonics11100924 - 30 Sep 2024
Cited by 3 | Viewed by 2610
Abstract
In September 2018, NASA launched the ICESat-2 satellite into a 500 km high Earth orbit. It carried a truly unique lidar system, i.e., the Advanced Topographic Laser Altimeter System or ATLAS. The ATLAS lidar is capable of detecting single photons reflected from a [...] Read more.
In September 2018, NASA launched the ICESat-2 satellite into a 500 km high Earth orbit. It carried a truly unique lidar system, i.e., the Advanced Topographic Laser Altimeter System or ATLAS. The ATLAS lidar is capable of detecting single photons reflected from a wide variety of terrain (land, ice, tree leaves, and underlying terrain) and even performing bathymetric measurements due to its green wavelength. The system uses a single 5-watt, Q-switched laser producing a 10 kHz train of sub-nanosecond pulses, each containing 500 microjoules of energy. The beam is then split into three “strong” and three “weak” beamlets, with the “strong” beamlets containing four times the power of the “weak” beamlets in order to satisfy a wide range of Earth science goals. Thus, ATLAS is capable of making up to 60,000 surface measurements per second compared to the 40 measurements per second made by its predecessor multiphoton instrument, the Geoscience Laser Altimeter System (GLAS) on ICESat-1, which was terminated after several years of operation in 2009. Low deadtime timing electronics are combined with highly effective noise filtering algorithms to extract the spatially correlated surface photons from the solar and/or electronic background noise. The present paper describes how the ATLAS system evolved from a series of unique and seemingly unconnected personal experiences of the author in the fields of satellite laser ranging, optical antennas and space communications, Q-switched laser theory, and airborne single photon lidars. Full article
Show Figures

Figure 1

12 pages, 3583 KiB  
Article
Smart Transfer Planer with Multiple Antenna Arrays to Enhance Low Earth Orbit Satellite Communication Ground Links
by Mon-Li Chang, Ding-Bing Lin, Hui-Tzu Rao, Hsuan-Yu Lin and Hsi-Tseng Chou
Electronics 2024, 13(17), 3581; https://doi.org/10.3390/electronics13173581 - 9 Sep 2024
Viewed by 1136
Abstract
In this study, we propose a smart transfer planer equipped with multiple antenna arrays to improve ground links for low Earth orbit (LEO) satellite communication. The STP features a symmetrical structure and is strategically placed on both ends of a window, serving both [...] Read more.
In this study, we propose a smart transfer planer equipped with multiple antenna arrays to improve ground links for low Earth orbit (LEO) satellite communication. The STP features a symmetrical structure and is strategically placed on both ends of a window, serving both indoor and outdoor environments. Using the window glass as a medium, energy transmission occurs through a coupling mechanism between the planers. The design focuses on large array antenna design, beamforming networks, and coupler design on both sides of the glass. Beamforming networks enable the indoor and outdoor antenna arrays to switch beams in various directions, optimizing high-gain antennas with narrow beamwidths. Through electromagnetic induction and filter couplers, a robust signal transmission channel is established between indoor and outdoor environments. This setup significantly enhances communication efficiency, particularly in non-line-of-sight environments. Full article
Show Figures

Figure 1

11 pages, 9773 KiB  
Article
Wide-Angle Beam-Switching Antenna with Stable Gain Based on a Virtual Image Lens
by Oskar Zetterstrom, Nelson J. G. Fonseca and Oscar Quevedo-Teruel
Electronics 2024, 13(6), 1034; https://doi.org/10.3390/electronics13061034 - 10 Mar 2024
Viewed by 1688
Abstract
Beam-switching antennas based on quasi-optical beamformers can provide cost-effective solutions for high-frequency communication applications. Here, we propose a wide-angle beam-switching planar lens antenna based on the recently presented virtual image lens. The antenna operates from 24 to 28 GHz and produces a beam [...] Read more.
Beam-switching antennas based on quasi-optical beamformers can provide cost-effective solutions for high-frequency communication applications. Here, we propose a wide-angle beam-switching planar lens antenna based on the recently presented virtual image lens. The antenna operates from 24 to 28 GHz and produces a beam that can be steered in a 100-degrees range in one plane with less than 2 dB simulated gain variation over the angular range and operational band. The performance of the presented antenna is similar to reported lens antennas with stable gain, but the proposed lens requires a smaller refractive index range to be realized, which alleviates the manufacturing. Full article
(This article belongs to the Special Issue Advanced Antenna Technologies for B5G and 6G Applications)
Show Figures

Figure 1

17 pages, 13079 KiB  
Article
Reconfigurable Microwave Multi-Beamforming Based on Optical Switching and Distributing Network
by Yue Lin, Di Jiang, Yuan Chen, Xiang Li and Qi Qiu
Photonics 2024, 11(1), 65; https://doi.org/10.3390/photonics11010065 - 7 Jan 2024
Cited by 1 | Viewed by 1924
Abstract
Optical beamforming in microwave photonics is promising for supporting broadband wireless communications. However, the current optical beamforming lacks freedom because of the fixed connection between radio frequency (RF) signal and antenna elements (AEs). This manuscript tackles this challenge by proposing a dynamical optical [...] Read more.
Optical beamforming in microwave photonics is promising for supporting broadband wireless communications. However, the current optical beamforming lacks freedom because of the fixed connection between radio frequency (RF) signal and antenna elements (AEs). This manuscript tackles this challenge by proposing a dynamical optical beamforming architecture that reconfigures the antenna subarray for signal transmission depending on the number of signals to be transmitted. The proposed architecture employs an optical switching and distributing network (SDN) to realize a flexible connection between signals and AEs. An instance of the proposed architecture in photonic integrated circuits, which enables three working modes and transmits four RF signals through sixteen AEs, was presented and numerically simulated. The optical field distribution and beam pattern plots illustrated the operational principle and validated the feasibility of the proposed SDN architecture. Furthermore, the impact of the introduced architecture on the signal amplitude–phase consistency and the comparison of the proposed dynamic architecture and conventional fixe architectures are analyzed and discussed. The results indicate that the proposed architecture exhibits variable beamforming gain with lower hardware complexity. Full article
(This article belongs to the Special Issue The Development and Future Prospect of Microwave Photonics)
Show Figures

Figure 1

14 pages, 5909 KiB  
Communication
The Design of a Circularly Polarized Antenna Array with Flat-Top Beam for an Electronic Toll Collection System
by Tianfan Xu, Mengchi Xu and Xiao Cai
Sensors 2023, 23(23), 9388; https://doi.org/10.3390/s23239388 - 24 Nov 2023
Cited by 2 | Viewed by 1518
Abstract
Electronic toll collection (ETC), known as a non-stop toll collection system which can automatically realize payment by setting the identification antenna at the entrance, is always suffering from information exchange interruption caused by beam switching. A circularly polarized sector beam antenna array operating [...] Read more.
Electronic toll collection (ETC), known as a non-stop toll collection system which can automatically realize payment by setting the identification antenna at the entrance, is always suffering from information exchange interruption caused by beam switching. A circularly polarized sector beam antenna array operating at 5.8 GHz with flat-top coverage is proposed, based on the weighted constrained method of the maximum power transmission efficiency (WCMMPTE). By setting the test receiving antennas at the specific angles of the ETC antenna array to be designed, constraints on the received power are introduced to control the radiation pattern and obtain the optimized distribution of excitations for antenna elements. A 1-to-16 feeding network, based on the microstrip transmission line theory is designed to feed a 4 × 4 antenna array. Simulation results show that the half-power beamwidth covers an angular range of −30° to 30° while the axial ratio is below 3dB, which meets the ETC requirements. Furthermore, the gain fluctuation among the needed range of −30° to 30° is lower than 0.7 dB, which is suitable for the ETC system to achieve a stable signal strength and uninterrupted communication. Full article
Show Figures

Figure 1

12 pages, 5009 KiB  
Article
A Low-Cost Multibeam Switching Antenna Using Reconfigurable Hybrid Metasurface for Beamforming Applications
by Lili Sheng, Yumei Luo, Gangxin Ning, Liang Meng and Weiping Cao
Micromachines 2023, 14(8), 1631; https://doi.org/10.3390/mi14081631 - 18 Aug 2023
Cited by 4 | Viewed by 1940
Abstract
In this paper, we proposed a multibeam switching antenna based on a low-cost reconfigurable hybrid metasurface applied for beamforming systems. The antenna consists of two parts: a microstrip feed antenna and a transmission hybrid metasurface. The latter is composed of three types of [...] Read more.
In this paper, we proposed a multibeam switching antenna based on a low-cost reconfigurable hybrid metasurface applied for beamforming systems. The antenna consists of two parts: a microstrip feed antenna and a transmission hybrid metasurface. The latter is composed of three types of units with different amplitude and phase responses to electromagnetic waves so as to control the beams of the feed antenna. Sixteen PIN diodes are arranged in the metasurface with a simple bias network. When two different direct-current voltages are applied to the PIN diodes, the antenna can dynamically switch between two beams and four beams. For demonstration, the proposed antenna is fabricated, and the measured results show that the antenna operates at 9.07–9.42 GHz (−10 dB bandwidth) with a total size of 1.80λ0 × 1.52λ0 × 0.22λ00 corresponds to the wavelength of 9.28 GHz in free space). With the merits of a compact structure, low cost and good radiation performance, the proposed design is suitable for beamforming applications. Full article
(This article belongs to the Special Issue Metasurfaces: Design, Fabrication and Applications)
Show Figures

Figure 1

10 pages, 2836 KiB  
Article
Ultrafast Dynamics of Extraordinary Optical Transmission through Two-Slit Plasmonic Antenna
by Guangqing Du, Fangrui Yu, Yu Lu, Lin Kai, Caiyi Chen, Qing Yang, Xun Hou and Feng Chen
Nanomaterials 2023, 13(16), 2284; https://doi.org/10.3390/nano13162284 - 9 Aug 2023
Cited by 3 | Viewed by 1513
Abstract
We have theoretically investigated the spatial-temporal dynamics of extraordinary optical transmission (EOT) through a two-slit plasmonic antenna under femtosecond laser dual-beam irradiation. The dynamic interference of the crossed femtosecond laser dual-beam with the transiently excited surface plasmon polariton waves are proposed to characterize [...] Read more.
We have theoretically investigated the spatial-temporal dynamics of extraordinary optical transmission (EOT) through a two-slit plasmonic antenna under femtosecond laser dual-beam irradiation. The dynamic interference of the crossed femtosecond laser dual-beam with the transiently excited surface plasmon polariton waves are proposed to characterize the particular spatial-temporal evolutions of EOT. It is revealed that the dynamic EOT can be flexibly switched with tunable symmetry through the respective slit of a two-slit plasmonic antenna by manipulating the phase correlation of the crossed femtosecond laser dual-beam. This is explained as tunable interference dynamics by phase control of surface plasmon polariton waves, allowing the dynamic modulation of EOT at optimized oblique incidences of dual-beams. Furthermore, we have obtained the unobserved traits of symmetry-broken transient spectra of EOT from the respective up- and down-slit of the antenna under crossed femtosecond laser dual-beam irradiation. This study can provide fundamental insights into the ultrafast dynamics of EOT in two-slit plasmonic antennas, which can be helpful to advance a wide range of applications, such as ultrafast plasmonic switch, ultrahigh resolution imaging, the transient amplification of non-linear effects, etc. Full article
(This article belongs to the Special Issue Advances in Photonic and Plasmonic Nanomaterials—Volume II)
Show Figures

Figure 1

8 pages, 3802 KiB  
Communication
A Wideband True Time Delay Circuit Using 0.25 µm GaN HEMT Technology
by Jeong-Geun Kim and Donghyun Baek
Sensors 2023, 23(15), 6827; https://doi.org/10.3390/s23156827 - 31 Jul 2023
Cited by 1 | Viewed by 2170
Abstract
This paper presents a wideband 4-bit true time delay IC using a 0.25 μm GaN HEMT (High-Electron-Mobility Transistor) process for the beam-squint-free phased array antennas. The true time delay IC is implemented with a switched path circuit topology using DPDT (Double Pole Double [...] Read more.
This paper presents a wideband 4-bit true time delay IC using a 0.25 μm GaN HEMT (High-Electron-Mobility Transistor) process for the beam-squint-free phased array antennas. The true time delay IC is implemented with a switched path circuit topology using DPDT (Double Pole Double Throw) with no shunt transistor in the inter-stages to improve the bandwidth and SPDT (Single Pole Single Throw) switches at the input and the output ports. The delay lines are implemented with CLC π-networks with the lumped element to ensure a compact chip size. A negative voltage generator and an SPI controller are implemented in the PCB (Printed Circuit Board) due to the lack of digital control logic in GaN technology. A maximum time delay of ~182 ps with a time delay resolution of 10.5 ps is achieved at DC–6 GHz. The RMS (Root Mean Square) time delay and amplitude error are <5 ps and <0.6 dB, respectively. The measured insertion loss is <6.8 dB and the input and output return losses are >10 dB at DC–6 GHz. The current consumption is nearly zero with a 3.3 V supply. The chip size including pads is 2.45 × 1.75 mm2. To the authors’ knowledge, this is the first demonstration of a true time delay IC using GaN HEMT technology. Full article
(This article belongs to the Special Issue Wide Bandgap Power Integrated Circuits and Sensors)
Show Figures

Figure 1

20 pages, 1460 KiB  
Article
Evaluating the Performance of Proposed Switched Beam Antenna Systems in Dynamic V2V Communication Networks
by Tahir H. Ahmed, Jun Jiat Tiang, Azwan Mahmud, Chung Gwo-Chin and Dinh-Thuan Do
Sensors 2023, 23(15), 6782; https://doi.org/10.3390/s23156782 - 29 Jul 2023
Cited by 8 | Viewed by 1961
Abstract
This paper develops a novel approach for reliable vehicle-to-vehicle (V2V) communication in various environments. A switched beam antenna is deployed at the transmitting and receiving points, with a beam management system that concentrates the power in each beam using a low-computation algorithm and [...] Read more.
This paper develops a novel approach for reliable vehicle-to-vehicle (V2V) communication in various environments. A switched beam antenna is deployed at the transmitting and receiving points, with a beam management system that concentrates the power in each beam using a low-computation algorithm and a potential mathematical model. The algorithm is designed to be flexible for various environments faced by vehicles. Additionally, an anti-failure system is proposed in case the intelligent transportation system (ITS) system fails to retrieve real-time Packet Delivery Ratio (PDR) values related to traffic density. Performance metrics include the time to collision in seconds, the bit error rate (BER), the packet error rate (PER), the average throughput (Mbps), the beam selection probability, and computational complexity factors. The proposed system is compared with traditional systems. Extensive experiments, simulations, and comparisons show that the proposed approach is excellent and reliable for vehicular systems. The proposed study demonstrates an average throughput of 1.7 Mbps, surpassing conventional methods’ typical throughput of 1.35 Mbps. Moreover, the bit error rate (BER) of the proposed study is reduced by a factor of 0.1. Additionally, the proposed framework achieves a beam power efficiency of touching to 100% at computational factor of 34. These metrics indicate that the proposed method is both efficient and sufficiently robust. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Back to TopTop