Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = sweet potato mild mottle virus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 14177 KiB  
Article
Argonaute 2 Controls Antiviral Activity against Sweet Potato Mild Mottle Virus in Nicotiana benthamiana
by Erzsébet Kenesi, Juan-Jose Lopez-Moya, László Orosz, József Burgyán and Lóránt Lakatos
Plants 2021, 10(5), 867; https://doi.org/10.3390/plants10050867 - 26 Apr 2021
Cited by 8 | Viewed by 3668
Abstract
RNA silencing is a sequence specific post-transcriptional mechanism regulating important biological processes including antiviral defense in plants. Argonaute (AGO) proteins, the catalytic subunits of the silencing complexes, are loaded with small RNAs to execute the sequence specific RNA cleavage or translational inhibition. Plants [...] Read more.
RNA silencing is a sequence specific post-transcriptional mechanism regulating important biological processes including antiviral defense in plants. Argonaute (AGO) proteins, the catalytic subunits of the silencing complexes, are loaded with small RNAs to execute the sequence specific RNA cleavage or translational inhibition. Plants encode several AGO proteins and a few of them, especially AGO1 and AGO2, have been shown to be required for antiviral silencing. Previously, we have shown that the P1 protein of the sweet potato mild mottle virus (SPMMV) suppresses the primary RNA silencing response by inhibiting AGO1. To analyze the role of AGO2 in antiviral defense against the SPMMV, we performed a comparative study using a wild type and ago2−/− mutant Nicotiana benthamiana. Here we show that the AGO2 of N. benthamiana attenuates the symptoms of SPMMV infection. Upon SPMMV infection the levels of AGO2 mRNA and protein are greatly increased. Moreover, we found that AGO2 proteins are loaded with SPMMV derived viral small RNAs as well as with miRNAs. Our results indicate that AGO2 protein takes over the place of AGO1 to confer antiviral silencing. Finally, we provide a plausible explanation for the AGO2 mediated recovery of an SPMMV-infected sweet potato. Full article
(This article belongs to the Special Issue Plant Defense Responses against Viruses)
Show Figures

Graphical abstract

19 pages, 5012 KiB  
Article
Comparative Transcriptome Analysis Reveals the Transcriptional Alterations in Growth- and Development-Related Genes in Sweet Potato Plants Infected and Non-Infected by SPFMV, SPV2, and SPVG
by Jiang Shi, Lin Zhao, Baiyuan Yan, Yueqing Zhu, Huasheng Ma, Wenyue Chen and Songlin Ruan
Int. J. Mol. Sci. 2019, 20(5), 1012; https://doi.org/10.3390/ijms20051012 - 26 Feb 2019
Cited by 13 | Viewed by 4152
Abstract
Field co-infection of multiple viruses results in considerable losses in the yield and quality of storage roots in sweet potato. However, little is known about the molecular mechanisms underlying developmental disorders of sweet potato subjected to co-infection by multiple viruses. Here, a comparative [...] Read more.
Field co-infection of multiple viruses results in considerable losses in the yield and quality of storage roots in sweet potato. However, little is known about the molecular mechanisms underlying developmental disorders of sweet potato subjected to co-infection by multiple viruses. Here, a comparative transcriptomic analysis was performed to reveal the transcriptional alterations in sweet potato plants infected (VCSP) and non-infected (VFSP) by Sweet potato mild mottle virus (SPFMV), Sweet potato virus Y (SPV2) and Sweet potato virus G (SPVG). A total of 1580 and 12,566 differentially expressed genes (DEGs) were identified in leaves and storage roots of VFSP and VCSP plants, respectively. In leaves, 707 upregulated and 773 downregulated genes were identified, whereas 5653 upregulated and 6913 downregulated genes were identified in storage roots. Gene Ontology (GO) classification and pathway enrichment analysis showed that the expression of genes involved in chloroplast and photosynthesis and brassinosteroid (BR) biosynthesis in leaves and the vitamin biosynthetic process in storage roots was inhibited by co-infection of three viruses: SPFMV, SPV2, and SPVG. This was likely closely related to better photosynthesis and higher contents of Vitamin C (Vc) in storage roots of VFSP than that of VCSP. While some genes involved in ribosome and secondary metabolite-related pathways in leaves and alanine, aspartate, and glutamate metabolism in storage roots displayed higher expression in VCSP than in VFSP. Quantitative real-time PCR analysis demonstrated that the expression patterns of 26 DEGs, including 16 upregulated genes and 10 downregulated genes were consistent with the RNA-seq data from VFSP and VCSP. Taken together, this study integrates the results of morphology, physiology, and comparative transcriptome analyses in leaves and storage roots of VCSP and VFSP to reveal transcriptional alterations in growth- and development-related genes, providing new insight into the molecular mechanisms underlying developmental disorders of sweet potato subjected to co-infection by multiple viruses. Full article
(This article belongs to the Special Issue Plant Proteomic Research 2.0)
Show Figures

Graphical abstract

Back to TopTop