Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (368)

Search Parameters:
Keywords = sustainable urban composition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1792 KiB  
Review
The Response Mechanism of Soil Microbial Carbon Use Efficiency to Land-Use Change: A Review
by Zongkun Li and Dandan Qi
Sustainability 2025, 17(15), 7023; https://doi.org/10.3390/su17157023 - 2 Aug 2025
Viewed by 404
Abstract
Microbial carbon use efficiency (CUE) is an important indicator of soil organic carbon accumulation and loss and a key parameter in biogeochemical cycling models. Its regulatory mechanism is highly dependent on microbial communities and their dynamic mediation of abiotic factors. Land-use change (e.g., [...] Read more.
Microbial carbon use efficiency (CUE) is an important indicator of soil organic carbon accumulation and loss and a key parameter in biogeochemical cycling models. Its regulatory mechanism is highly dependent on microbial communities and their dynamic mediation of abiotic factors. Land-use change (e.g., agricultural expansion, deforestation, urbanization) profoundly alter carbon input patterns and soil physicochemical properties, further exacerbating the complexity and uncertainty of CUE. Existing carbon cycle models often neglect microbial ecological processes, resulting in an incomplete understanding of how microbial traits interact with environmental factors to regulate CUE. This paper provides a comprehensive review of the microbial regulation mechanisms of CUE under land-use change and systematically explores how microorganisms drive organic carbon allocation through community compositions, interspecies interactions, and environmental adaptability, with particular emphasis on the synergistic response between microbial communities and abiotic factors. We found that the buffering effect of microbial communities on abiotic factors during land-use change is a key factor determining CUE change patterns. This review not only provides a theoretical framework for clarifying the microbial-dominated carbon turnover mechanism but also lays a scientific foundation for the precise implementation of sustainable land management and carbon neutrality goals. Full article
(This article belongs to the Special Issue Soil Ecology and Carbon Cycle)
Show Figures

Figure 1

27 pages, 3387 KiB  
Article
Landscape Services from the Perspective of Experts and Their Use by the Local Community: A Comparative Study of Selected Landscape Types in a Region in Central Europe
by Piotr Krajewski, Marek Furmankiewicz, Marta Sylla, Iga Kołodyńska and Monika Lebiedzińska
Sustainability 2025, 17(15), 6998; https://doi.org/10.3390/su17156998 - 1 Aug 2025
Viewed by 169
Abstract
This study investigates the concept of landscape services (LS), which integrate environmental and sociocultural dimensions of sustainable development. Recognizing landscapes as essential to daily life and well-being, the research aims to support sustainable spatial planning by analyzing both their potential and their actual [...] Read more.
This study investigates the concept of landscape services (LS), which integrate environmental and sociocultural dimensions of sustainable development. Recognizing landscapes as essential to daily life and well-being, the research aims to support sustainable spatial planning by analyzing both their potential and their actual use. The study has three main objectives: (1) to assess the potential of 16 selected landscape types to provide six key LS through expert evaluation; (2) to determine actual LS usage patterns among the local community (residents); and (3) to identify agreements and discrepancies between expert assessments and resident use. The services analyzed include providing space for daily activities; regulating spatial structure through diversity and compositional richness; enhancing physical and mental health; enabling passive and active recreation; supporting personal fulfillment; and fostering social interaction. Expert-based surveys and participatory mapping with residents were used to assess the provision and use of LS. The results indicate consistent evaluations for forest and historical urban landscapes (high potential and use) and mining and transportation landscapes (low potential and use). However, significant differences emerged for mountain LS, rated highly by experts but used minimally by residents. These insights highlight the importance of aligning expert planning with community needs to promote sustainable land use policies and reduce spatial conflicts. Full article
Show Figures

Figure 1

20 pages, 10603 KiB  
Article
A Safety-Based Approach for the Design of an Innovative Microvehicle
by Michelangelo-Santo Gulino, Susanna Papini, Giovanni Zonfrillo, Thomas Unger, Peter Miklis and Dario Vangi
Designs 2025, 9(4), 90; https://doi.org/10.3390/designs9040090 (registering DOI) - 31 Jul 2025
Viewed by 156
Abstract
The growing popularity of Personal Light Electric Vehicles (PLEVs), such as e-scooters, has revolutionized urban mobility by offering compact, cost-effective, and environmentally friendly transportation solutions. However, safety concerns, including inadequate infrastructure, poor protective measures, and high accident rates, remain critical challenges. This paper [...] Read more.
The growing popularity of Personal Light Electric Vehicles (PLEVs), such as e-scooters, has revolutionized urban mobility by offering compact, cost-effective, and environmentally friendly transportation solutions. However, safety concerns, including inadequate infrastructure, poor protective measures, and high accident rates, remain critical challenges. This paper presents the design and development of an innovative self-balancing microvehicle under the H2020 LEONARDO project, which aims to address these challenges through advanced engineering and user-centric design. The vehicle combines features of monowheels and e-scooters, integrating cutting-edge technologies to enhance safety, stability, and usability. The design adheres to European regulations, including Germany’s eKFV standards, and incorporates user preferences identified through representative online surveys of 1500 PLEV users. These preferences include improved handling on uneven surfaces, enhanced signaling capabilities, and reduced instability during maneuvers. The prototype features a lightweight composite structure reinforced with carbon fibers, a high-torque motorized front wheel, and multiple speed modes tailored to different conditions, such as travel in pedestrian areas, use by novice riders, and advanced users. Braking tests demonstrate deceleration values of up to 3.5 m/s2, comparable to PLEV market standards and exceeding regulatory minimums, while smooth acceleration ramps ensure rider stability and safety. Additional features, such as identification plates and weight-dependent motor control, enhance compliance with local traffic rules and prevent misuse. The vehicle’s design also addresses common safety concerns, such as curb navigation and signaling, by incorporating large-diameter wheels, increased ground clearance, and electrically operated direction indicators. Future upgrades include the addition of a second rear wheel for enhanced stability, skateboard-like rear axle modifications for improved maneuverability, and hybrid supercapacitors to minimize fire risks and extend battery life. With its focus on safety, regulatory compliance, and rider-friendly innovations, this microvehicle represents a significant advancement in promoting safe and sustainable urban mobility. Full article
(This article belongs to the Section Vehicle Engineering Design)
Show Figures

Figure 1

25 pages, 5461 KiB  
Article
Spaceborne LiDAR Reveals Anthropogenic and Biophysical Drivers Shaping the Spatial Distribution of Forest Aboveground Biomass in Eastern Himalayas
by Abhilash Dutta Roy, Abraham Ranglong, Sandeep Timilsina, Sumit Kumar Das, Michael S. Watt, Sergio de-Miguel, Sourabh Deb, Uttam Kumar Sahoo and Midhun Mohan
Land 2025, 14(8), 1540; https://doi.org/10.3390/land14081540 - 27 Jul 2025
Viewed by 410
Abstract
The distribution of forest aboveground biomass density (AGBD) is a key indicator of carbon stock and ecosystem health in the Eastern Himalayas, which represents a global biodiversity hotspot that sustains diverse forest types across an elevation gradient from lowland rainforests to alpine meadows [...] Read more.
The distribution of forest aboveground biomass density (AGBD) is a key indicator of carbon stock and ecosystem health in the Eastern Himalayas, which represents a global biodiversity hotspot that sustains diverse forest types across an elevation gradient from lowland rainforests to alpine meadows and contributes to the livelihoods of more than 200 distinct indigenous communities. This study aimed to identify the key factors influencing forest AGBD across this region by analyzing the underlying biophysical and anthropogenic drivers through machine learning (random forest). We processed AGBD data from the Global Ecosystem Dynamics Investigation (GEDI) spaceborne LiDAR and applied filtering to retain 30,257 high-quality footprints across ten ecoregions. We then analyzed the relationship between AGBD and 17 climatic, topographic, soil, and anthropogenic variables using random forest regression models. The results revealed significant spatial variability in AGBD (149.6 ± 79.5 Mg ha−1) across the region. State-wise, Sikkim recorded the highest mean AGBD (218 Mg ha−1) and Manipur the lowest (102.8 Mg ha−1). Within individual ecoregions, the Himalayan subtropical pine forests exhibited the highest mean AGBD (245.5 Mg ha−1). Topographic factors, particularly elevation and latitude, were strong determinants of biomass distribution, with AGBD increasing up to elevations of 2000 m before declining. Protected areas (PAs) consistently showed higher AGBD than unprotected forests for all ecoregions, while proximity to urban and agricultural areas resulted in lower AGBD, pointing towards negative anthropogenic impacts. Our full model explained 41% of AGBD variance across the Eastern Himalayas, with better performance in individual ecoregions like the Northeast India-Myanmar pine forests (R2 = 0.59). While limited by the absence of regionally explicit stand-level forest structure data (age, stand density, species composition), our results provide valuable evidence for conservation policy development, including expansion of PAs, compensating avoided deforestation and modifications in shifting cultivation. Future research should integrate field measurements with remote sensing and use high-resolution LiDAR with locally derived allometric models to enhance biomass estimation and GEDI data validation. Full article
Show Figures

Figure 1

17 pages, 18876 KiB  
Article
Deciphering Soil Keystone Microbial Taxa: Structural Diversity and Co-Occurrence Patterns from Peri-Urban to Urban Landscapes
by Naz Iram, Yulian Ren, Run Zhao, Shui Zhao, Chunbo Dong, Yanfeng Han and Yanwei Zhang
Microorganisms 2025, 13(8), 1726; https://doi.org/10.3390/microorganisms13081726 - 24 Jul 2025
Viewed by 297
Abstract
Assessing microbial community stability and soil quality requires understanding the role of keystone microbial taxa in maintaining diversity and functionality. This study collected soil samples from four major habitats in the urban and peri-urban areas of 20 highly urbanized provinces in China using [...] Read more.
Assessing microbial community stability and soil quality requires understanding the role of keystone microbial taxa in maintaining diversity and functionality. This study collected soil samples from four major habitats in the urban and peri-urban areas of 20 highly urbanized provinces in China using both the five-point method and the S-shape method and explored their microbiota through high-throughput sequencing techniques. The data was used to investigate changes in the structural diversity and co-occurrence patterns of keystone microbial communities from peri-urban (agricultural land) to urban environments (hospitals, wastewater treatment plants, and zoos) across different regions. Using network analysis, we examined the structure and symbiosis of soil keystone taxa and their association with environmental factors during urbanization. Results revealed that some urban soils exhibited higher microbial diversity, network complexity, and community stability compared to peri-urban soil. Significant differences were observed in the composition, structure, and potential function of keystone microbial taxa between these environments. Correlation analysis showed a significant negative relationship between keystone taxa and mean annual precipitation (p < 0.05), and a strong positive correlation with soil nutrients, microbial diversity, and community stability (p < 0.05). These findings suggest that diverse keystone taxa are vital for sustaining microbial community stability and that urbanization-induced environmental changes modulate their composition. Shifts in keystone taxa composition reflect alterations in soil health and ecosystem functioning, emphasizing their role as indicators of soil quality during urban development. This study highlights the ecological importance of keystone taxa in shaping microbial resilience under urbanization pressure. Full article
(This article belongs to the Special Issue The Urban Microbiome)
Show Figures

Figure 1

35 pages, 10235 KiB  
Article
GIS-Driven Spatial Planning for Resilient Communities: Walkability, Social Cohesion, and Green Infrastructure in Peri-Urban Jordan
by Sara Al-Zghoul and Majd Al-Homoud
Sustainability 2025, 17(14), 6637; https://doi.org/10.3390/su17146637 - 21 Jul 2025
Viewed by 445
Abstract
Amman’s rapid population growth and sprawling urbanization have resulted in car-centric, fragmented neighborhoods that lack social cohesion and are vulnerable to the impacts of climate change. This study reframes walkability as a climate adaptation strategy, demonstrating how pedestrian-oriented spatial planning can reduce vehicle [...] Read more.
Amman’s rapid population growth and sprawling urbanization have resulted in car-centric, fragmented neighborhoods that lack social cohesion and are vulnerable to the impacts of climate change. This study reframes walkability as a climate adaptation strategy, demonstrating how pedestrian-oriented spatial planning can reduce vehicle emissions, mitigate urban heat island effects, and enhance the resilience of green infrastructure in peri-urban contexts. Using Deir Ghbar, a rapidly developing marginal area on Amman’s western edge, as a case study, we combine objective walkability metrics (street connectivity and residential and retail density) with GIS-based spatial regression analysis to examine relationships with residents’ sense of community. Employing a quantitative, correlational research design, we assess walkability using a composite objective walkability index, calculated from the land-use mix, street connectivity, retail density, and residential density. Our results reveal that higher residential density and improved street connectivity significantly strengthen social cohesion, whereas low-density zones reinforce spatial and socioeconomic disparities. Furthermore, the findings highlight the potential of targeted green infrastructure interventions, such as continuous street tree canopies and permeable pavements, to enhance pedestrian comfort and urban ecological functions. By visualizing spatial patterns and correlating built-environment attributes with community outcomes, this research provides actionable insights for policymakers and urban planners. These strategies contribute directly to several Sustainable Development Goals (SDGs), particularly SDG 11 (Sustainable Cities and Communities) and SDG 13 (Climate Action), by fostering more inclusive, connected, and climate-resilient neighborhoods. Deir Ghbar emerges as a model for scalable, GIS-driven spatial planning in rural and marginal peri-urban areas throughout Jordan and similar regions facing accelerated urban transitions. By correlating walkability metrics with community outcomes, this study operationalizes SDGs 11 and 13, offering a replicable framework for climate-resilient urban planning in arid regions. Full article
Show Figures

Figure 1

22 pages, 6378 KiB  
Article
Cross-Modal Insights into Urban Green Spaces Preferences
by Jiayi Yan, Fan Zhang and Bing Qiu
Buildings 2025, 15(14), 2563; https://doi.org/10.3390/buildings15142563 - 20 Jul 2025
Viewed by 250
Abstract
Urban green spaces (UGSs) and forests play a vital role in shaping sustainable and livable cities, offering not only ecological benefits but also spaces that are essential for human well-being, social interactions, and everyday life. Understanding the landscape features that resonate most with [...] Read more.
Urban green spaces (UGSs) and forests play a vital role in shaping sustainable and livable cities, offering not only ecological benefits but also spaces that are essential for human well-being, social interactions, and everyday life. Understanding the landscape features that resonate most with public preferences is essential for enhancing the appeal, accessibility, and functionality of these environments. However, traditional approaches—such as surveys or single-data analyses—often lack the nuance needed to capture the complex and multisensory nature of human responses to green spaces. This study explores a cross-modal methodology that integrates natural language processing (NLP) and deep learning techniques to analyze text and image data collected from public reviews of 19 urban parks in Nanjing. By capturing both subjective emotional expressions and objective visual impressions, this study reveals a consistent public preference for natural landscapes, particularly those featuring evergreen trees, shrubs, and floral elements. Text-based data reflect users’ lived experiences and nuanced perceptions, while image data offers insights into visual appeal and spatial composition. By bridging human-centered insights with data-driven analysis, this research provides a robust framework for evaluating landscape preferences. It also underscores the importance of designing green spaces that are not only ecologically sound but also emotionally resonant and socially inclusive. The findings offer valuable guidance for the planning, design, and adaptive management of urban green infrastructure in ways that support healthier, more responsive, and smarter urban environments. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

32 pages, 1236 KiB  
Article
How Does Urban Compactness Affect Green Total Factor Productivity? An Empirical Study of Urban Agglomerations in Southwest China
by Tao Chen, Yike Zhang, Jiahe Wang, Binbin Wu and Yaoning Yang
Sustainability 2025, 17(14), 6612; https://doi.org/10.3390/su17146612 - 19 Jul 2025
Viewed by 382
Abstract
With the development of urban scale and economic growth, the challenges posed by limited resources and insufficient environmental carrying capacity become increasingly severe, making the sustainable improvement of production efficiency an urgent requirement. Based on panel data for cities in the Dianzhong Urban [...] Read more.
With the development of urban scale and economic growth, the challenges posed by limited resources and insufficient environmental carrying capacity become increasingly severe, making the sustainable improvement of production efficiency an urgent requirement. Based on panel data for cities in the Dianzhong Urban Agglomeration and the Chengdu–Chongqing Economic Circle in Southwest China (2012–2021), this study elucidates the positive effect of urban compactness on green total factor productivity (GTFP). By constructing a composite index to measure urban compactness and employing an SBM model to quantify GTFP, we find that a 1% increase in urban compactness leads to a 0.65% increase in GTFP. A mediating-effect analysis reveals that green technological innovation serves as a significant mediator, with a mediating effect value of 0.363. Heterogeneity analysis uncovers differing mechanisms of influence: urban compactness exerts a positive effect in regions with higher levels of economic development, while its impact is not significant in regions with lower economic development, indicating that the effect of compactness varies with economic context; the impact of urban compactness on GTFP is statistically insignificant in regions with higher tertiary sector shares (p > 0.1), whereas it exhibits a highly significant positive effect in regions with lower tertiary sector presence (β = 1.49, p < 0.01). These results collectively demonstrate that the influence of urban compactness on GTFP varies significantly with industrial structure composition. Threshold-effect analysis further shows that there is a threshold in the proportion of industrial output value, beyond which the influence of compactness on GTFP becomes even stronger. Our research quantitatively explores both linear and nonlinear relationships between urban compactness and GTFP, clarifying the linkage between urban spatial dynamics and green production efficiency, and provides empirical evidence and scholarly support for urban planning and economic development. Full article
Show Figures

Figure 1

31 pages, 3874 KiB  
Review
Vertical-Axis Wind Turbines in Emerging Energy Applications (1979–2025): Global Trends and Technological Gaps Revealed by a Bibliometric Analysis and Review
by Beatriz Salvador-Gutierrez, Lozano Sanchez-Cortez, Monica Hinojosa-Manrique, Adolfo Lozada-Pedraza, Mario Ninaquispe-Soto, Jorge Montaño-Pisfil, Ricardo Gutiérrez-Tirado, Wilmer Chávez-Sánchez, Luis Romero-Goytendia, Julio Díaz-Aliaga and Abner Vigo-Roldán
Energies 2025, 18(14), 3810; https://doi.org/10.3390/en18143810 - 17 Jul 2025
Viewed by 807
Abstract
This study provides a comprehensive overview of vertical-axis wind turbines (VAWTs) for emerging energy applications by combining a bibliometric analysis and a thematic mini-review. Scopus-indexed publications from 1979 to 2025 were analyzed using PRISMA guidelines and bibliometric tools (Bibliometrix, CiteSpace, and VOSviewer) to [...] Read more.
This study provides a comprehensive overview of vertical-axis wind turbines (VAWTs) for emerging energy applications by combining a bibliometric analysis and a thematic mini-review. Scopus-indexed publications from 1979 to 2025 were analyzed using PRISMA guidelines and bibliometric tools (Bibliometrix, CiteSpace, and VOSviewer) to map global research trends, and a parallel mini-review distilled recent advances into five thematic areas: aerodynamic strategies, advanced materials, urban integration, hybrid systems, and floating offshore platforms. The results reveal that VAWT research output has surged since 2006, led by China with strong contributions from Europe and North America, and is concentrated in leading renewable energy journals. Dominant topics include computational fluid dynamics (CFD) simulations, performance optimization, wind–solar hybrid integration, and adaptation to turbulent urban environments. Technologically, active and passive aerodynamic innovations have boosted performance albeit with added complexity, remaining mostly at moderate technology readiness (TRL 3–5), while advanced composite materials are improving durability and fatigue life. Emerging applications in microgrids, building-integrated systems, and offshore floating platforms leverage VAWTs’ omnidirectional, low-noise operation, although challenges persist in scaling up, control integration, and long-term field validation. Overall, VAWTs are gaining relevance as a complement to conventional turbines in the sustainable energy transition, and this study’s integrated approach identifies critical gaps and high-priority research directions to accelerate VAWT development and help transition these turbines from niche prototypes to mainstream renewable solutions. Full article
Show Figures

Figure 1

17 pages, 1651 KiB  
Article
Compositional Analysis of Municipal Solid Waste from Tshwane Metropolitan Landfill Sites in South Africa for Potential Sustainable Management Strategies
by Khanyisile Lepota, Kasturie Premlall and Major Mabuza
Waste 2025, 3(3), 22; https://doi.org/10.3390/waste3030022 - 15 Jul 2025
Viewed by 368
Abstract
The modern world has brought extensive socioeconomic and ecological changes. Urbanization in developing nations has significantly increased municipal solid waste, necessitating in-depth understanding of waste composition particularly in developing nations for sustainable management practices. This study aimed to classify and characterize waste while [...] Read more.
The modern world has brought extensive socioeconomic and ecological changes. Urbanization in developing nations has significantly increased municipal solid waste, necessitating in-depth understanding of waste composition particularly in developing nations for sustainable management practices. This study aimed to classify and characterize waste while evaluating potential waste management methods. Mixed methods were used to examine landfilled waste from Soshanguve and Hatherley sites in Tshwane Metropolitan, South Africa, using techniques such as Fourier transform infrared spectroscopy, X-ray fluorescence, proximate, and ultimate analysis. Seasonal variations in waste components were analysed over two seasons. The study identified that both sites are predominantly composed of organic waste, accounting for over 42 wt.%, with moisture content of ~50 wt.%, and minimal recyclables (<5 wt.%). Seasonal variations in MSW were significant for glass (<4% increase), organic waste (<5% increase), while plastic decreased by ~7% during spring. The biodegradable waste showed high carbon (>50%) and oxygen (>40%) levels, low ash content (<18%), and calorific values of 15–19 MJ/kg. Biodegradables mainly contained oxides of calcium, silicon, iron (III), and potassium with chemical composition indicating functional groups that emphasize composting and energy recovery benefits. The research provides insights into sustainable waste management, revealing waste composition at Tshwane landfills, aiding informed decision-making for resource usage and environmental conservation. Full article
Show Figures

Figure 1

26 pages, 891 KiB  
Article
Modeling the Interactions Between Smart Urban Logistics and Urban Access Management: A System Dynamics Perspective
by Gaetana Rubino, Domenico Gattuso and Manfred Gronalt
Appl. Sci. 2025, 15(14), 7882; https://doi.org/10.3390/app15147882 - 15 Jul 2025
Viewed by 315
Abstract
In response to the challenges of urbanization, digitalization, and the e-commerce surge intensified by the COVID-19 pandemic, Smart Urban Logistics (SUL) has become a key framework for addressing last-mile delivery issues, congestion, and environmental impacts. This study introduces a System Dynamics (SD)-based approach [...] Read more.
In response to the challenges of urbanization, digitalization, and the e-commerce surge intensified by the COVID-19 pandemic, Smart Urban Logistics (SUL) has become a key framework for addressing last-mile delivery issues, congestion, and environmental impacts. This study introduces a System Dynamics (SD)-based approach to investigate how urban logistics and access management policies may interact. At the center, there is a Causal Loop Diagram (CLD) that illustrates dynamic interdependencies among fleet composition, access regulations, logistics productivity, and environmental externalities. The CLD is a conceptual basis for future stock-and-flow simulations to support data-driven decision-making. The approach highlights the importance of route optimization, dynamic access control, and smart parking management systems as strategic tools, increasingly enabled by Industry 4.0 technologies, such as IoT, big data analytics, AI, and cyber-physical systems, which support real-time monitoring and adaptive planning. In alignment with the Industry 5.0 paradigm, this technological integration is paired with social and environmental sustainability goals. The study also emphasizes public–private collaboration in designing access policies and promoting alternative fuel vehicle adoption, supported by specific incentives. These coordinated efforts contribute to achieving the objectives of the 2030 Agenda, fostering a cleaner, more efficient, and inclusive urban logistics ecosystem. Full article
Show Figures

Figure 1

29 pages, 13314 KiB  
Article
Development of Unfired Clay Bricks with Alumina Waste from Liquid Nitrogen Production: A Sustainable Alternative for Construction Materials
by Noppadol Sangiamsak, Nopanom Kaewhanam, Meesakthana Puapitthayathorn, Seksan Numsong, Kowit Suwannahong, Sukanya Hongthong, Torpong Kreetachat, Sompop Sanongraj and Surachai Wongcharee
Sustainability 2025, 17(14), 6424; https://doi.org/10.3390/su17146424 - 14 Jul 2025
Viewed by 407
Abstract
A major breakthrough in environmentally friendly building materials is the development of sustainable unfired clay bricks including alumina waste produced during liquid nitrogen generation. Though used extensively, conventional fired clay bricks require energy-intensive manufacturing techniques that produce significant amounts of CO2 and [...] Read more.
A major breakthrough in environmentally friendly building materials is the development of sustainable unfired clay bricks including alumina waste produced during liquid nitrogen generation. Though used extensively, conventional fired clay bricks require energy-intensive manufacturing techniques that produce significant amounts of CO2 and aggravate environmental damage. By removing the need for high-temperature firing and allowing for the valorization of industrial byproducts including alumina waste and lateritic soil, unfired clay bricks offer a reasonable low-carbon alternative. High silica and alumina contents define the alumina waste, which shows pozzolanic reactivity, thus improving the physicomechanical performance of the bricks. With alumina waste substituting 0–8.57% of the cement content, seven different formulations showed improvements in compressive strength, reduced water absorption, and optimal thermal conductivity. Especially, the mechanical performance was much enhanced with alumina waste inclusion up to 30%, without sacrificing thermal insulation capacity or moisture resistance. Further supporting the environmental and financial sustainability of the suggested brick compositions is the economic viability of using industrial waste and regionally derived soils. A comparative analysis of the conventional fired bricks shows that the unfired substitutes have a much lower environmental impact and show better mechanical properties, including greater compressive strength and modulus of rupture. These results support the more general goals of circular economy systems and low-carbon urban development by highlighting the feasibility of including alumina waste and lateritic soil into sustainable building materials. Using such waste-derived inputs in building fits world initiatives to lower resource consumption, lower greenhouse gas emissions, and build strong infrastructure systems. Full article
(This article belongs to the Special Issue Solid Waste Management and Sustainable Environmental Remediation)
Show Figures

Figure 1

44 pages, 1977 KiB  
Article
Evaluating Urban Mobility Resilience in Petrópolis Through a Multicriteria Approach
by Alexandre Simas de Medeiros, Marcelino Aurélio Vieira da Silva, Marcus Hugo Sant’Anna Cardoso, Tálita Floriano Santos, Catalina Toro, Gonzalo Rojas and Vicente Aprigliano
Urban Sci. 2025, 9(7), 269; https://doi.org/10.3390/urbansci9070269 - 11 Jul 2025
Viewed by 681
Abstract
Urban mobility resilience plays a central role in sustainable urban planning discussions, especially considering the challenges of extreme events, climate change, and the increasing scarcity of fossil fuels. This study evaluates urban mobility resilience in Petrópolis (RJ), incorporating socio-spatial heterogeneity and energy vulnerability. [...] Read more.
Urban mobility resilience plays a central role in sustainable urban planning discussions, especially considering the challenges of extreme events, climate change, and the increasing scarcity of fossil fuels. This study evaluates urban mobility resilience in Petrópolis (RJ), incorporating socio-spatial heterogeneity and energy vulnerability. This research fills methodological gaps in the literature by proposing a composite resilience index that integrates technical, socioeconomic, and fossil fuel dependency variables within a robust multicriteria framework. We selected eleven variables relevant to urban mobility and organized them into inference blocks. We normalized the variables using Gaussian functions, respecting their maximization or minimization characteristics. We applied the Analytic Hierarchy Process (AHP) to assign weights to the criteria and then aggregated and ranked the results using multicriteria analysis. The final index represents the adaptive capacity of urban territories facing the energy crisis, and we applied it spatially to the neighborhoods of Petrópolis. The analysis identified a significant concentration of neighborhoods with low resilience, particularly in quadrants, combining deficiencies in public transportation, high dependence on fossil fuels, and socioeconomic constraints. Factors such as limited pedestrian access, insufficient motorized public transport coverage, and a high proportion of elderly residents emerged as significant constraints on urban resilience. Intervention strategies that promote active mobility, improve accessibility, and diversify transportation modes proved essential for strengthening local resilience. The results emphasize the urgent need for public policies to reduce energy vulnerability, foster active mobility, and promote equity in access to transportation infrastructure. Full article
(This article belongs to the Special Issue Sustainable Urbanization, Regional Planning and Development)
Show Figures

Figure 1

25 pages, 689 KiB  
Article
Urbanization in Resource-Based County-Level Cities in China: A Case Study of New Urbanization in Wuan City, Hebei Province
by Jianguang Hou, Danlin Yu, Hao Song and Zhiguo Zhang
Sustainability 2025, 17(14), 6335; https://doi.org/10.3390/su17146335 - 10 Jul 2025
Viewed by 395
Abstract
This study investigates the complex dynamics of new-type urbanization in resource-based county-level cities, using Wuan City in Hebei Province, China, as a representative case. As China pursues a high-quality development agenda, cities historically dependent on resource extraction face profound challenges in achieving sustainable [...] Read more.
This study investigates the complex dynamics of new-type urbanization in resource-based county-level cities, using Wuan City in Hebei Province, China, as a representative case. As China pursues a high-quality development agenda, cities historically dependent on resource extraction face profound challenges in achieving sustainable and inclusive urban growth. This research employs a multi-method approach—including Theil index analysis, industrial shift-share analysis, a Cobb–Douglas production function model, and a composite urbanization index—to quantitatively diagnose the constraints on Wuan’s development and assess its transformation efforts. Our empirical results reveal a multifaceted situation: while the urban–rural income gap has narrowed, rural income streams remain fragile. The shift-share analysis indicates that although Wuan’s traditional industries have regained competitiveness, the city’s economic structure is still burdened by a persistent negative structural component, hindering diversification. Furthermore, the economy exhibits characteristics of a labor-intensive growth model with inefficient capital deployment. These underlying issues are reflected in a comprehensive urbanization index that, after a period of rapid growth, has recently stagnated, signaling the exhaustion of the city’s traditional development mode. In response, Wuan attempts an “industrial transformation-driven new-type urbanization” path. This study details the three core strategies being implemented: (1) incremental population urbanization through development at the urban fringe and in industrial zones; (2) in situ urbanization of the existing rural population; and (3) the cultivation of specialized “characteristic small towns” to create new, diversified economic nodes. The findings from Wuan offer critical, actionable lessons for other resource-dependent regions. The case demonstrates that successful urban transformation requires not only industrial upgrading but also integrated, spatially aware planning and robust institutional support. We conclude that while Wuan’s model provides a valuable reference, its strategies must be adapted to local contexts, emphasizing the universal importance of institutional innovation, human capital investment, and a people-centered approach to achieving resilient and high-quality urbanization. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

18 pages, 1085 KiB  
Article
A Beautiful Bird in the Neighborhood: Canopy Cover and Vegetation Structure Predict Avian Presence in High-Vacancy City
by Sebastian Moreno, Andrew J. Mallinak, Charles H. Nilon and Robert A. Pierce
Land 2025, 14(7), 1433; https://doi.org/10.3390/land14071433 - 8 Jul 2025
Viewed by 497
Abstract
Urban vacant land can provide important habitat for birds, especially in cities with high concentrations of residential vacancy. Understanding which vegetation features best support urban biodiversity can inform greening strategies that benefit both wildlife and residents. This study addressed two questions: (1) How [...] Read more.
Urban vacant land can provide important habitat for birds, especially in cities with high concentrations of residential vacancy. Understanding which vegetation features best support urban biodiversity can inform greening strategies that benefit both wildlife and residents. This study addressed two questions: (1) How does bird species composition reflect the potential conservation value of these neighborhoods? (2) Which vegetation structures predict bird abundance across a fine-grained urban landscape? To answer these questions, we conducted avian and vegetation surveys across 100 one-hectare plots in St. Louis, Missouri, USA. These surveys showed that species richness was positively associated with canopy cover (β = 0.32, p = 0.003). Canopy cover was also the strongest predictor of American Robin (Turdus migratorius) and Northern Cardinal (Cardinalis cardinalis) abundance (β = 1.9 for both species). In contrast, impervious surfaces and abandoned buildings were associated with generalist species. European Starling (Sturnus vulgaris) abundance was strongly and positively correlated with NMS Axis 1 (r = 0.878), while Chimney Swift (Chaetura pelagica) abundance was negatively correlated (r = −0.728). These findings underscore the significance of strategic habitat management in promoting urban biodiversity and addressing ecological challenges within urban landscapes. They also emphasize the importance of integrating biodiversity goals into urban planning policies to ensure sustainable and equitable development. Full article
Show Figures

Figure 1

Back to TopTop