Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (493)

Search Parameters:
Keywords = sustainable concrete composites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 4554 KiB  
Review
Lithium Slag as a Supplementary Cementitious Material for Sustainable Concrete: A Review
by Sajad Razzazan, Nuha S. Mashaan and Themelina Paraskeva
Materials 2025, 18(15), 3641; https://doi.org/10.3390/ma18153641 - 2 Aug 2025
Viewed by 189
Abstract
The global cement industry remains a significant contributor to carbon dioxide (CO2) emissions, prompting substantial research efforts toward sustainable construction materials. Lithium slag (LS), a by-product of lithium extraction, has attracted attention as a supplementary cementitious material (SCM). This review synthesizes [...] Read more.
The global cement industry remains a significant contributor to carbon dioxide (CO2) emissions, prompting substantial research efforts toward sustainable construction materials. Lithium slag (LS), a by-product of lithium extraction, has attracted attention as a supplementary cementitious material (SCM). This review synthesizes experimental findings on LS replacement levels, fresh-state behavior, mechanical performance (compressive, tensile, and flexural strengths), time-dependent deformation (shrinkage and creep), and durability (sulfate, acid, abrasion, and thermal) of LS-modified concretes. Statistical analysis identifies an optimal LS dosage of 20–30% (average 24%) for maximizing compressive strength and long-term durability, with 40% as a practical upper limit for tensile and flexural performance. Fresh-state tests show that workability losses at high LS content can be mitigated via superplasticizers. Drying shrinkage and creep strains decrease in a dose-dependent manner with up to 30% LS. High-volume (40%) LS blends achieve up to an 18% gain in 180-day compressive strength and >30% reduction in permeability metrics. Under elevated temperatures, 20% LS mixes retain up to 50% more residual strength than controls. In advanced systems—autoclaved aerated concrete (AAC), one-part geopolymers, and recycled aggregate composites—LS further enhances both microstructural densification and durability. In particular, LS emerges as a versatile SCM that optimizes mechanical and durability performance, supports material circularity, and reduces the carbon footprint. Full article
Show Figures

Figure 1

27 pages, 4880 KiB  
Article
Multi-Objective Optimization of Steel Slag–Ceramsite Foam Concrete via Integrated Orthogonal Experimentation and Multivariate Analytics: A Synergistic Approach Combining Range–Variance Analyses with Partial Least Squares Regression
by Alipujiang Jierula, Haodong Li, Tae-Min Oh, Xiaolong Li, Jin Wu, Shiyi Zhao and Yang Chen
Appl. Sci. 2025, 15(15), 8591; https://doi.org/10.3390/app15158591 (registering DOI) - 2 Aug 2025
Viewed by 176
Abstract
This study aims to enhance the performance of an innovative steel slag–ceramsite foam concrete (SSCFC) to advance sustainable green building materials. An eco-friendly composite construction material was developed by integrating industrial by-product steel slag (SS) with lightweight ceramsite. Employing a three-factor, three-level orthogonal [...] Read more.
This study aims to enhance the performance of an innovative steel slag–ceramsite foam concrete (SSCFC) to advance sustainable green building materials. An eco-friendly composite construction material was developed by integrating industrial by-product steel slag (SS) with lightweight ceramsite. Employing a three-factor, three-level orthogonal experimental design at a fixed density of 800 kg/m3, 12 mix proportions (including a control group) were investigated with the variables of water-to-cement (W/C) ratio, steel slag replacement ratio, and ceramsite replacement ratio. The governing mechanisms of the W/C ratio, steel slag replacement level, and ceramsite replacement proportion on the SSCFC’s fluidity and compressive strength (CS) were elucidated. The synergistic application of range analysis and analysis of variance (ANOVA) quantified the significance of factors on target properties, and partial least squares regression (PLSR)-based prediction models were established. The test results indicated the following significance hierarchy: steel slag replacement > W/C ratio > ceramsite replacement for fluidity. In contrast, W/C ratio > ceramsite replacement > steel slag replacement governed the compressive strength. Verification showed R2 values exceeding 65% for both fluidity and CS predictions versus experimental data, confirming model reliability. Multi-criteria optimization yielded optimal compressive performance and suitable fluidity at a W/C ratio of 0.4, 10% steel slag replacement, and 25% ceramsite replacement. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

26 pages, 4775 KiB  
Article
Effects of Partial Replacement of Cement with Fly Ash on the Mechanical Properties of Fiber-Reinforced Rubberized Concrete Containing Waste Tyre Rubber and Macro-Synthetic Fibers
by Mizan Ahmed, Nusrat Jahan Mim, Wahidul Biswas, Faiz Shaikh, Xihong Zhang and Vipulkumar Ishvarbhai Patel
Buildings 2025, 15(15), 2685; https://doi.org/10.3390/buildings15152685 - 30 Jul 2025
Viewed by 208
Abstract
This study investigates the impact of partially replacing cement with fly ash (FA) on the mechanical performance of fiber-reinforced rubberized concrete (FRRC) incorporating waste tyre rubber and recycled macro-synthetic fibers (MSF). FRRC mixtures were prepared with varying fly ash replacement levels (0%, 25%, [...] Read more.
This study investigates the impact of partially replacing cement with fly ash (FA) on the mechanical performance of fiber-reinforced rubberized concrete (FRRC) incorporating waste tyre rubber and recycled macro-synthetic fibers (MSF). FRRC mixtures were prepared with varying fly ash replacement levels (0%, 25%, and 50%), rubber aggregate contents (0%, 10%, and 20% by volume of fine aggregate), and macro-synthetic fiber dosages (0% to 1% by total volume). The fresh properties were evaluated through slump tests, while hardened properties including compressive strength, splitting tensile strength, and flexural strength were systematically assessed. Results demonstrated that fly ash substitution up to 25% improved the interfacial bonding between rubber particles, fibers, and the cementitious matrix, leading to enhanced tensile and flexural performance without significantly compromising compressive strength. However, at 50% replacement, strength reductions were more pronounced due to slower pozzolanic reactions and reduced cement content. The inclusion of MSF effectively mitigated strength loss induced by rubber aggregates, improving post-cracking behavior and toughness. Overall, an optimal balance was achieved at 25% fly ash replacement combined with 10% rubber and 0.5% fiber content, producing a more sustainable composite with favorable mechanical properties while reducing carbon and ecological footprints. These findings highlight the potential of integrating industrial by-products and waste materials to develop eco-friendly, high-performance FRRC for structural applications, supporting circular economy principles and reducing the carbon footprint of concrete infrastructure. Full article
(This article belongs to the Topic Sustainable Building Development and Promotion)
Show Figures

Figure 1

25 pages, 8622 KiB  
Article
Low-Carbon Insulating Geopolymer Binders: Thermal Properties
by Agnieszka Przybek, Jakub Piątkowski, Paulina Romańska, Michał Łach and Adam Masłoń
Sustainability 2025, 17(15), 6898; https://doi.org/10.3390/su17156898 - 29 Jul 2025
Viewed by 207
Abstract
In the context of the growing need to reduce greenhouse gas emissions and to develop sustainable solutions for the construction industry, foamed geopolymers represent a promising alternative to traditional binders and insulation materials. This study investigates the thermal properties of novel low-emission, insulating [...] Read more.
In the context of the growing need to reduce greenhouse gas emissions and to develop sustainable solutions for the construction industry, foamed geopolymers represent a promising alternative to traditional binders and insulation materials. This study investigates the thermal properties of novel low-emission, insulating geopolymer binders made from fly ash with diatomite, chalcedonite, and wood wool aiming to assess their potential for use in thermal insulation systems in energy-efficient buildings. The stability of the foamed geopolymer structure is also assessed. Measurements of thermal conductivity, specific heat, microstructure, density, and compressive strength are presented. The findings indicate that the selected geopolymer formulations exhibit low thermal conductivity, high heat capacity and low density, making them competitive with conventional insulation materials—mainly load-bearing ones such as aerated concrete and wood wool insulation boards. Additionally, incorporating waste-derived materials reduces the production carbon footprint. The best results are represented by the composite incorporating all three additives (diatomite, chalcedonite, and wood wool), which achieved the lowest thermal conductivity (0.10154 W/m·K), relatively low density (415 kg/m3), and high specific heat (1.529 kJ/kg·K). Full article
Show Figures

Figure 1

20 pages, 6713 KiB  
Article
Influence of Nanosilica and PVA Fibers on the Mechanical and Deformation Behavior of Engineered Cementitious Composites
by Mohammed A. Albadrani
Polymers 2025, 17(15), 2067; https://doi.org/10.3390/polym17152067 - 29 Jul 2025
Viewed by 241
Abstract
This paper evaluates the synergistic effect of polyvinyl alcohol (PVA) fibers and nanosilica (nS) on the mechanical behavior and deformation properties of engineered cementitious composites (ECCs). ECCs have gained a reputation for high ductility, crack control, and strain-hardening behavior. Nevertheless, the next step [...] Read more.
This paper evaluates the synergistic effect of polyvinyl alcohol (PVA) fibers and nanosilica (nS) on the mechanical behavior and deformation properties of engineered cementitious composites (ECCs). ECCs have gained a reputation for high ductility, crack control, and strain-hardening behavior. Nevertheless, the next step is to improve their performance even more through nano-modification and fine-tuning of fiber dosage—one of the major research directions. In the experiment, six types of ECC mixtures were made by maintaining constant PVA fiber content (0.5, 1.0, 1.5, and 2.0%), while the nanosilica contents were varied (0, 1, 2, 3, and 5%). Stress–strain tests carried out in the form of compression, together with unrestrained shrinkage measurement, were conducted to test strength, strain capacity, and resistance to deformation, which was highest at 80 MPa, recorded in the concrete with 2% nS and 0.5% PVA. On the other hand, the mixture of 1.5% PVA and 3% nS had the highest strain result of 2750 µm/m, which indicates higher ductility. This is seen to be influenced by refined microstructures, improved fiber dispersion, and better fiber–matrix interfacial bonding through nS. In addition to these mechanical modifications, the use of nanosilica, obtained from industrial byproducts, provided the possibility to partially replace Portland cement, resulting in a decrease in the amount of CO2 emissions. In addition, the enhanced crack resistance implies higher durability and reduced long-term maintenance. Such results demonstrate that optimized ECC compositions, including nS and PVA, offer high performance in terms of strength and flexibility as well as contribute to the sustainability goals—features that will define future eco-efficient infrastructure. Full article
Show Figures

Figure 1

19 pages, 2688 KiB  
Article
Red Clay as a Raw Material for Sustainable Masonry Composite Ceramic Blocks
by Todorka Samardzioska, Igor Peshevski, Valentina Zileska Pancovska, Bojan Golaboski, Milorad Jovanovski and Sead Abazi
Sustainability 2025, 17(15), 6852; https://doi.org/10.3390/su17156852 - 28 Jul 2025
Viewed by 659
Abstract
The pursuit of sustainable construction practices has become imperative in the modern era. This paper delves into the research of the properties and application of a specific material called “red clay” from the locality “Crvena Mogila” in Macedonia. A series of laboratory tests [...] Read more.
The pursuit of sustainable construction practices has become imperative in the modern era. This paper delves into the research of the properties and application of a specific material called “red clay” from the locality “Crvena Mogila” in Macedonia. A series of laboratory tests were conducted to evaluate the physical, mechanical, and chemical properties of the material. The tested samples show that it is a porous material with low density, high water absorption, and compressive strength in range of 29.85–38.32 MPa. Samples of composite wall blocks were made with partial replacement of natural aggregate with red clay aggregate. Two types of blocks were produced with dimensions of 390 × 190 × 190 mm, with five and six holes. The average compressive strength of the blocks ranges from 3.1 to 4.1 MPa, which depends on net density and the number of holes. Testing showed that these blocks have nearly seven-times-lower thermal conductivity than conventional concrete blocks and nearly twice-lower conductivity than full-fired clay bricks. The general conclusion is that the tested red clay is an economically viable and sustainable material with favourable physical, mechanical, and thermal parameters and can be used as a granular aggregate in the production of composite ceramic blocks. Full article
(This article belongs to the Special Issue Environmental Protection and Sustainable Ecological Engineering)
Show Figures

Figure 1

28 pages, 5172 KiB  
Article
Machine Learning-Assisted Sustainable Mix Design of Waste Glass Powder Concrete with Strength–Cost–CO2 Emissions Trade-Offs
by Yuzhuo Zhang, Jiale Peng, Zi Wang, Meng Xi, Jinlong Liu and Lei Xu
Buildings 2025, 15(15), 2640; https://doi.org/10.3390/buildings15152640 - 26 Jul 2025
Viewed by 527
Abstract
Glass powder, a non-degradable waste material, offers significant potential to reduce cement consumption and carbon emissions in concrete production. However, existing mix design methods for glass powder concrete (GPC) fail to systematically balance economic efficiency, environmental sustainability, and mechanical performance. To address this [...] Read more.
Glass powder, a non-degradable waste material, offers significant potential to reduce cement consumption and carbon emissions in concrete production. However, existing mix design methods for glass powder concrete (GPC) fail to systematically balance economic efficiency, environmental sustainability, and mechanical performance. To address this gap, this study proposes an AI-assisted framework integrating machine learning (ML) and Multi-Objective Optimization (MOO) to achieve a sustainable GPC design. A robust database of 1154 experimental records was developed, focusing on five key predictors: cement content, water-to-binder ratio, aggregate composition, glass powder content, and curing age. Seven ML models were optimized via Bayesian tuning, with the Ensemble Tree model achieving superior accuracy (R2 = 0.959 on test data). SHapley Additive exPlanations (SHAP) analysis further elucidated the contribution mechanisms and underlying interactions of material components on GPC compressive strength. Subsequently, a MOO framework minimized unit cost and CO2 emissions while meeting compressive strength targets (15–70 MPa), solved using the NSGA-II algorithm for Pareto solutions and TOPSIS for decision-making. The Pareto-optimal solutions provide actionable guidelines for engineers to align GPC design with circular economy principles and low-carbon policies. This work advances sustainable construction practices by bridging AI-driven innovation with building materials, directly supporting global goals for waste valorization and carbon neutrality. Full article
Show Figures

Figure 1

26 pages, 1923 KiB  
Review
Review of Energy Dissipation Mechanisms in Concrete: Role of Advanced Materials, Mix Design, and Curing Conditions
by Hadi Bahmani, Hasan Mostafaei and Davood Mostofinejad
Sustainability 2025, 17(15), 6723; https://doi.org/10.3390/su17156723 - 24 Jul 2025
Viewed by 372
Abstract
Concrete structures increasingly face dynamic loading conditions, such as seismic events, vehicular traffic, and environmental vibrations, necessitating enhanced energy dissipation capabilities. The damping ratio, a critical parameter quantifying a material’s ability to dissipate vibrational energy, is typically low in conventional concrete, prompting extensive [...] Read more.
Concrete structures increasingly face dynamic loading conditions, such as seismic events, vehicular traffic, and environmental vibrations, necessitating enhanced energy dissipation capabilities. The damping ratio, a critical parameter quantifying a material’s ability to dissipate vibrational energy, is typically low in conventional concrete, prompting extensive research into strategies for improvement. This review comprehensively explores the impact of advanced concrete types—such as Engineered Cementitious Composites (ECCs), Ultra-High-Performance Concrete (UHPC), High-Performance Concrete (HPC), and polymer concrete—on enhancing the damping behavior. Additionally, key mix design innovations, including fiber reinforcement, rubber powder incorporation, and aggregate modification, are evaluated for their roles in increasing energy dissipation. External factors, particularly curing conditions, are also discussed for their influence on the damping performance. The findings consolidate experimental and theoretical insights into how material composition, mix design, and external treatments interact to optimize dynamic resilience. To guide future research, this paper identifies critical gaps including the need for multi-scale numerical simulation frameworks, standardized damping test protocols, and long-term performance evaluation under realistic service conditions. Advancing work in material innovation, optimized mix design, and controlled curing environments will be essential for developing next-generation concretes with superior vibration control, durability, and sustainability. These insights provide a strategic foundation for applications in seismic-prone and vibration-sensitive infrastructure. Full article
(This article belongs to the Special Issue Advanced Concrete- and Cement-Based Composite Materials)
Show Figures

Figure 1

16 pages, 2285 KiB  
Article
Evaluating the Heat of Hydration, Conductivity, and Microstructural Properties of Cement Composites with Recycled Concrete Powder
by Damir Barbir, Pero Dabić, Miće Jakić and Ivana Weber
Buildings 2025, 15(15), 2613; https://doi.org/10.3390/buildings15152613 - 23 Jul 2025
Viewed by 209
Abstract
This study investigates the effects of incorporating recycled concrete powder (RCP) as a supplementary cementitious material in Portland cement composites at replacement levels of 5–30% by weight. A comprehensive characterization using isothermal calorimetry, electrical conductivity measurements, thermogravimetric analysis, FT-IR spectroscopy, and scanning electron [...] Read more.
This study investigates the effects of incorporating recycled concrete powder (RCP) as a supplementary cementitious material in Portland cement composites at replacement levels of 5–30% by weight. A comprehensive characterization using isothermal calorimetry, electrical conductivity measurements, thermogravimetric analysis, FT-IR spectroscopy, and scanning electron microscopy revealed that RCP modified the hydration behavior and microstructural development. The results showed a linear 16.5% reduction in the total heat of hydration (from 145.38 to 121.44 J/g) at 30% RCP content, accompanied by a 26.5% decrease in peak electrical conductivity (19.16 to 14.08 mS/cm) and delayed reaction kinetics. Thermal analysis demonstrated an increased stability of hydration products, with portlandite decomposition temperatures rising by up to 10.8 °C. Microstructural observations confirmed the formation of denser but more amorphous C–S–H phases alongside increased interfacial porosity at higher RCP contents. The study provides quantitative evidence of RCP’s dual functionality as both an inert filler and a nucleation agent, identifying an optimal 20–25% replacement range that balances performance and sustainability. These findings advance the understanding of construction waste utilization in cementitious materials and provide practical solutions for developing more sustainable building composites while addressing circular economy objectives in the construction sector. Full article
(This article belongs to the Special Issue Advances and Applications of Recycled Concrete in Green Building)
Show Figures

Figure 1

16 pages, 4455 KiB  
Article
Durability and Microstructure Analysis of Loess-Based Composite Coal Gangue Porous Vegetation Concrete
by Manman Qiu, Wuyu Zhang, Shuaihua Ye, Xiaohui Li and Jingbang Li
Buildings 2025, 15(14), 2531; https://doi.org/10.3390/buildings15142531 - 18 Jul 2025
Viewed by 214
Abstract
In order to improve the durability of loess-based composite coal gangue porous planting concrete (LCPC), the effects of fly ash and slag powder content on the durability and microstructure of LCPC were studied. In this paper, fly ash and slag powder were mixed [...] Read more.
In order to improve the durability of loess-based composite coal gangue porous planting concrete (LCPC), the effects of fly ash and slag powder content on the durability and microstructure of LCPC were studied. In this paper, fly ash and slag powder were mixed into LCPC, and freeze-thaw cycle and dry-wet cycle tests were carried out. The compressive strength, dynamic elastic modulus, and mass change were used as evaluation indices to determine the optimal mix ratio for LCPC durability. Scanning electron microscopy (SEM) was performed, and the experimental design was carried out with the water–cement ratio, fly ash, and slag powder content as variables. The microstructure characteristics of LCPC were analyzed. The results show that the maximum number of freeze-thaw cycles can reach 35 times and the maximum number of dry-wet cycles can reach 50 when 5% fly ash and 20% slag powder are used. With an increase in the water-cement ratio, the skeleton of the loess gradually became complete, and its structure became more compact. In the micro-morphology diagram, the mixed fly ash and slag powder particles are not obvious, but with an increase in dosage, the size of the cracks and pores gradually decreases. The incorporation of fly ash and slag powder can play a positive role in the durability of LCPC and improvement of its microstructure. The results of this study are crucial for improving the application performance of ecological restoration, soil improvement, and long-term stability of structures, and can provide a scientific basis for the sustainable development of environmentally friendly building materials. Full article
(This article belongs to the Special Issue Soil–Structure Interactions for Civil Infrastructure)
Show Figures

Figure 1

23 pages, 3120 KiB  
Article
An Experimental Study on the Effects of Basalt Fiber and Iron Ore Tailings on the Durability of Recycled Concrete
by Yang Zhang, Xu-Hui Wang and Xian-Jie Tang
Buildings 2025, 15(14), 2492; https://doi.org/10.3390/buildings15142492 - 16 Jul 2025
Viewed by 296
Abstract
To elucidate the effects of iron ore tailings (IOTs) and basalt fiber (BF) on the durability of recycled aggregate concrete (RAC) with different recycled aggregate replacement rates, this study used IOTs to replace natural sand at mass replacement rates of 0%, 20%, 40%, [...] Read more.
To elucidate the effects of iron ore tailings (IOTs) and basalt fiber (BF) on the durability of recycled aggregate concrete (RAC) with different recycled aggregate replacement rates, this study used IOTs to replace natural sand at mass replacement rates of 0%, 20%, 40%, 60%, 80%, and 100% and incorporated BF at volume fractions of 0%, 0.1%, 0.2%, and 0.3%. Carbonation and freeze–thaw cycle tests were conducted on C30 grade RAC. The carbonation depth and compressive strength of RAC at different carbonation ages and the mass loss rate, relative dynamic elastic modulus, and changes in compressive strength of RAC under different freeze–thaw cycle times were determined. Scanning electron microscopy (SEM) was utilized to meticulously observe the micro-morphological alterations of BF-IOT-RAC before and after carbonation. We then investigated the mechanisms by which BF and IOTs enhance the carbonation resistance of RAC. Utilizing the experimental data, we fitted relevant models to establish both a carbonation depth prediction model and a freeze–thaw damage prediction model specific to BF-IOT-RAC. Furthermore, we projected the service life of BF-IOT-RAC under conditions typical of northwest China. The results showed that as the dosages of the two materials increased, the carbonation resistance and frost resistance of RAC initially improved and then declined. Specifically, the optimal volume content of BF was ascertained to be 0.1%, while the optimal replacement rate of IOTs was determined to be 40%. Compared to using BF or IOTs individually, the composite incorporation of both materials significantly improves the durability of RAC while simultaneously enhancing the reuse of construction waste and mining solid waste, thereby contributing to environmental sustainability. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

20 pages, 4028 KiB  
Article
Exploring the 3D Printability of Engineered Cementitious Composites with Internal Curing for Resilient Construction in Arid Regions
by Tayyab Zafar, Muhammad Saeed Zafar and Maryam Hojati
Materials 2025, 18(14), 3327; https://doi.org/10.3390/ma18143327 - 15 Jul 2025
Viewed by 363
Abstract
This study investigates the feasibility of pumice-based internal curing based on the 3D printability of engineered cementitious composites (ECCs) for water-scarce environments and arid regions. Natural river sand was partially replaced with the presoaked pumice lightweight aggregates (LWAs) at two different levels, 30% [...] Read more.
This study investigates the feasibility of pumice-based internal curing based on the 3D printability of engineered cementitious composites (ECCs) for water-scarce environments and arid regions. Natural river sand was partially replaced with the presoaked pumice lightweight aggregates (LWAs) at two different levels, 30% and 60% by volume, and 50% of the cement was replaced with slag to enhance sustainability. Furthermore, 2% polyethylene (PE) fibers were used to improve the mechanical characteristics and 1% methylcellulose (MC) was used to increase the rheological stability. Pumice aggregates, presoaked for 24 h, were used as an internal curing agent to assess their effect on the printability. Three ECC mixes, CT-PE2-6-10 (control), P30-PE2-6-10 (30% pumice), and P60-PE2-6-10 (60% pumice), were printed using a 3D gantry printing system. A flow table and rheometer were used to evaluate the flowability and rheological properties. Extrudability was measured in terms of dimensional consistency and the coefficient of variation (CV%) to evaluate printability, whereas buildability was determined in terms of the maximum number of layers stacked before failure. All of the mixes met the extrudability criterion (CV < 5%), with P30-PE2-6-10 demonstrating superior printing quality and buildability, having 16 layers, which was comparable with the control mix that had 18 layers. Full article
Show Figures

Figure 1

15 pages, 7741 KiB  
Article
Experimental Study on Low-Shrinkage Concrete Mix Proportion for Post-Casting Belt of Full-Section Casting in Immersed Tube
by Bang-Yan Liang, Wen-Huo Sun, Chun-Lin Deng, Qian Hu and Yong-Hui Huang
Materials 2025, 18(14), 3315; https://doi.org/10.3390/ma18143315 - 14 Jul 2025
Viewed by 235
Abstract
Full-section interval casting technology was adopted for the integral immersed tube of the Chebei Immersed Tunnel. Field tests (Chebei Immersed Tunnel) were conducted to establish the time-dependent development of the concrete shrinkage strain of the full-section casting segments. And laboratory experiments were then [...] Read more.
Full-section interval casting technology was adopted for the integral immersed tube of the Chebei Immersed Tunnel. Field tests (Chebei Immersed Tunnel) were conducted to establish the time-dependent development of the concrete shrinkage strain of the full-section casting segments. And laboratory experiments were then carried out to investigate the influence of factors such as the reinforcement ratio and stress, expansive agent content and composition, fly ash content, and curing temperature and humidity on the expansive effect of calcium–magnesium composite expansive agents. Field tests revealed that casting segments exhibit initial expansion followed by shrinkage, reaching a final strain of 348 με (microstrain). Laboratory investigations demonstrated that reinforcement (20–30 MPa stress) in post-casting belts effectively restrains segments without compromising the performance of calcium–magnesium composite expansive agents. The optimal 5:3:2 ratio of CaO, MgO 90s, and MgO 200s agents controlled shrinkage strain within 80 με by combining CaO’s rapid early expansion with MgO’s sustained effect. Field validation confirmed the mix’s effectiveness in preventing cracking, with key findings: (1) fly ash content and curing conditions significantly influence expansive behavior, and (2) shrinkage development can be precisely regulated through agent composition adjustments. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

18 pages, 5580 KiB  
Article
Experimental Study on the Eccentric Compression Behavior of Stiffened Alkali-Activated Concrete-Filled Steel Tube Short Columns
by Hongjie Wang, Zhixin Peng, Tianqi Wang and Changchun Pei
Buildings 2025, 15(14), 2457; https://doi.org/10.3390/buildings15142457 - 13 Jul 2025
Viewed by 276
Abstract
To enhance the environmental sustainability and structural performance of concrete-filled steel tubes (CFSTs), this study experimentally investigates the eccentric compression behavior of short CFST columns incorporating alkali-activated concrete (AAC) and internal stiffeners. Fifteen specimens were tested, varying in steel tube thickness, stiffener thickness, [...] Read more.
To enhance the environmental sustainability and structural performance of concrete-filled steel tubes (CFSTs), this study experimentally investigates the eccentric compression behavior of short CFST columns incorporating alkali-activated concrete (AAC) and internal stiffeners. Fifteen specimens were tested, varying in steel tube thickness, stiffener thickness, and eccentricity. The results show that increasing eccentricity reduces load-bearing capacity and stiffness, while stiffeners delay local buckling and improve stability. Based on the experimental findings, the applicability of the GB 50936-2014, Design of Steel and Composite Structures Specification, and the American AISC-LRFD specification to the design of ACFST columns is further evaluated. Corresponding design recommendations are proposed, and a regression-based predictive model for eccentric bearing capacity is developed, showing good agreement with the test results, with prediction errors within 10%.providing technical references for the development of low-carbon, high-performance CFST members. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

22 pages, 16538 KiB  
Article
Experimental Study on Interface Bonding Performance of Frost-Damaged Concrete Reinforced with Yellow River Sedimentary Sand Engineered Cementitious Composites
by Binglin Tan, Ali Raza, Ge Zhang and Chengfang Yuan
Materials 2025, 18(14), 3278; https://doi.org/10.3390/ma18143278 - 11 Jul 2025
Viewed by 387
Abstract
Freeze–thaw damage is a critical durability challenge in cold climates that leads to surface spalling, cracking, and degradation of structural performance. In northern China, the severity of winter conditions further accelerates the degradation of concrete infrastructure. This study investigates the reinforcement of frost-damaged [...] Read more.
Freeze–thaw damage is a critical durability challenge in cold climates that leads to surface spalling, cracking, and degradation of structural performance. In northern China, the severity of winter conditions further accelerates the degradation of concrete infrastructure. This study investigates the reinforcement of frost-damaged concrete using engineered cementitious composites (ECC) prepared with Yellow River sedimentary sand (YRS), employed as a 100% mass replacement for quartz sand to promote sustainability. The interface bonding performance of ECC-C40 specimens was evaluated by testing the impact of various surface roughness treatments, freeze–thaw cycles, and interface agents. A multi-factor predictive formula for determining interface bonding strength was created, and the bonding mechanism and model were examined through microscopic analysis. The results show that ECC made with YRS significantly improved the interface bonding performance of ECC-C40 specimens. Specimens treated with a cement expansion slurry as the interface agent and those subjected to the splitting method for surface roughness achieves the optimal reinforced condition, exhibited a 27.57%, 35.17%, 43.57%, and 42.92% increase in bonding strength compared to untreated specimens under 0, 50, 100, and 150 cycles, respectively. Microscopic analysis revealed a denser interfacial microstructure. Without an interface agent, the bond interface followed a dual-layer, three-zone model; with the interface agent, a three-layer, three-zone model was observed. Full article
Show Figures

Graphical abstract

Back to TopTop