Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = surface- and tip-enhanced Raman scattering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1507 KB  
Article
SERS-Based Immunoassay for α-Fetoprotein Biomarker Detection Using an Au-Ag Nanostars Platform
by Josué Ismael García-Ramírez, Marcos Luna-Cervantes, Irma Yadira Izaguirre-Hernández, Julián Hernández-Torres, Enrique Juárez-Aguilar, Pablo Thomas-Dupont, José María Remes-Troche and Luis Zamora-Peredo
Biosensors 2025, 15(9), 632; https://doi.org/10.3390/bios15090632 - 22 Sep 2025
Viewed by 722
Abstract
Spiky Au-Ag nanostars offer intense plasmonic enhancement due to their sharp-tipped morphology, enabling powerful surface-enhanced Raman scattering (SERS). Here, we report a liquid-phase SERS platform that addresses current limitations in cancer biomarker detection, such as low sensitivity and dependence on Raman reporters. Nanostar [...] Read more.
Spiky Au-Ag nanostars offer intense plasmonic enhancement due to their sharp-tipped morphology, enabling powerful surface-enhanced Raman scattering (SERS). Here, we report a liquid-phase SERS platform that addresses current limitations in cancer biomarker detection, such as low sensitivity and dependence on Raman reporters. Nanostar concentration was tuned by simple centrifugation (10, 30, and 60 min), and their SERS performance was evaluated using methylene blue (MB) and mercaptopropionic acid (MPA) as probe molecules. Signal intensity scaled with nanostar content, enabling sensitive detection. Optimized nanostars were functionalized with MPA, 1-Ethyl-3-(3-dimethylamino1-Ethyl-3-(3dimethylaminopropyl1) carbodiimide (EDC), and N-Hydroxy succinimide (NHS) for covalent attachment of monoclonal anti-α-fetoprotein antibodies (AFP-Ab), facilitating the detection of AFP antigens across 167–38 ng/mL (antibody) and 500–0 ng/mL (antigen) ranges. The limit of detection (LOD) for the antigens was determined to be 16.73 ng/mL. Unlike conventional SERS systems, this aqueous, surfactant-free platform exploits the intrinsic vibrational modes of AFP, enabling sensitive and rapid biomarker detection with strong potential for early cancer diagnostics. Full article
(This article belongs to the Special Issue Surface Plasmon Resonance-Based Biosensors and Their Applications)
Show Figures

Figure 1

14 pages, 15441 KB  
Communication
Numerical Study of Electric Field Enhancement in Inverted-Pyramid Gold Arrays with Tunable Spacing
by Yaumalika Arta, Iman Santoso, Hao Chang, Ying-Pin Tsai, Fu-Li Hsiao, Tsung-Shine Ko and Yang-Wei Lin
Photonics 2025, 12(5), 522; https://doi.org/10.3390/photonics12050522 - 21 May 2025
Cited by 1 | Viewed by 1001
Abstract
This study presents a comprehensive numerical and experimental investigation of electric field enhancement in inverted-pyramidal gold (Au) array substrates, focusing on variable inter-pyramidal spacing for surface-enhanced Raman scattering (SERS) applications. We conducted a series of finite element method (FEM) simulations to model the [...] Read more.
This study presents a comprehensive numerical and experimental investigation of electric field enhancement in inverted-pyramidal gold (Au) array substrates, focusing on variable inter-pyramidal spacing for surface-enhanced Raman scattering (SERS) applications. We conducted a series of finite element method (FEM) simulations to model the spatial distribution of electromagnetic fields within plasmonic metasurfaces under 780 nm laser excitation. The results show that reducing the spacing between inverted pyramidal structures from 10 μm to 3.2 μm significantly increases the electric field intensity at both the tip and edge regions of the inverted-pyramidal Au structure, with maximum fields reaching 6.75 × 107 V/m. Experimental SERS measurements utilizing 4-mercaptobenzoic acid as a Raman reporter support the simulation findings, indicating enhanced signal intensity in closely spaced configurations. These results confirm that geometric field concentration and plasmonic coupling are the dominant mechanisms responsible for SERS enhancement in these systems. This work provides a strategic framework for optimizing the geometry of plasmonic substrates to improve the sensitivity and reliability of SERS-based sensing platforms. Full article
Show Figures

Graphical abstract

14 pages, 6056 KB  
Article
Preparation of Colloidal Silver Triangular Nanoplates and Their Application in SERS Detection of Trace Levels of Antibiotic Enrofloxacin
by Cao Tuan Anh, Dao Tran Cao and Luong Truc-Quynh Ngan
Colloids Interfaces 2025, 9(3), 31; https://doi.org/10.3390/colloids9030031 - 16 May 2025
Viewed by 1249
Abstract
Surface-enhanced Raman scattering (SERS) is a powerful technique for detecting trace amounts of chemicals due to its capacity to significantly amplify the Raman signal of the molecules of these substances. This is particularly relevant in food systems where monitoring antibiotic residues is critical [...] Read more.
Surface-enhanced Raman scattering (SERS) is a powerful technique for detecting trace amounts of chemicals due to its capacity to significantly amplify the Raman signal of the molecules of these substances. This is particularly relevant in food systems where monitoring antibiotic residues is critical for food safety. Traditional SERS substrates typically utilize colloidal silver nanospheres (AgNSs), but anisotropic silver nanoparticles with numerous sharp tips can further enhance SERS sensitivity, enabling lower detection limits suitable for food safety regulations. In this study, we describe a straightforward synthesis of colloidal silver triangular nanoplates (AgTNPls), featuring multiple sharp tips, using only four common reagents: silver nitrate, trisodium citrate, sodium borohydride (NaBH4) and hydrogen peroxide (H2O2), all at room temperature. By carefully controlling the sequence of reagent addition, specifically introducing H2O2 after NaBH4, we achieved a two-step synthesis. In the first step, AgNSs seeds form, and in the second, these seeds convert into AgTNPls, resulting in a colloid of relatively uniform AgTNPls with an edge length of approximately 52 nm. The resulting AgTNPls colloid, combined with an aluminum foil, produced an SERS substrate with high enhancement factor of 3.2 × 109 (using rhodamine 6G as a test molecule). Applied to enrofloxacin (an antibiotic widely used in livestock and aquaculture) detection, this substrate achieved a detection limit as low as 0.39 µg/L (0.39 ppb), with enrofloxacin detectable at concentrations down to 5 µg/L. This highly sensitive SERS substrate holds great promise for rapid, accurate detection of antibiotic residues in food products, aiding regulatory compliance and food safety assurance. Full article
(This article belongs to the Special Issue Food Colloids: 3rd Edition)
Show Figures

Figure 1

30 pages, 5215 KB  
Review
SERS-Based Local Field Enhancement in Biosensing Applications
by Yangdong Xie, Jiling Xu, Danyang Shao, Yuxin Liu, Xuzhou Qu, Songtao Hu and Biao Dong
Molecules 2025, 30(1), 105; https://doi.org/10.3390/molecules30010105 - 30 Dec 2024
Cited by 10 | Viewed by 3461
Abstract
Surface-enhanced Raman scattering (SERS) stands out as a highly effective molecular identification technique, renowned for its exceptional sensitivity, specificity, and non-destructive nature. It has become a main technology in various sectors, including biological detection and imaging, environmental monitoring, and food safety. With the [...] Read more.
Surface-enhanced Raman scattering (SERS) stands out as a highly effective molecular identification technique, renowned for its exceptional sensitivity, specificity, and non-destructive nature. It has become a main technology in various sectors, including biological detection and imaging, environmental monitoring, and food safety. With the development of material science and the expansion of application fields, SERS substrate materials have also undergone significant changes: from precious metals to semiconductors, from single crystals to composite particles, from rigid to flexible substrates, and from two-dimensional to three-dimensional structures. This report delves into the advancements of the three latest types of SERS substrates: colloidal, chip-based, and tip-enhanced Raman spectroscopy. It explores the design principles, distinctive functionalities, and factors that influence SERS signal enhancement within various SERS-active nanomaterials. Furthermore, it provides an outlook on the future challenges and trends in the field. The insights presented are expected to aid researchers in the development and fabrication of SERS substrates that are not only more efficient but also more cost-effective. This progress is crucial for the multifunctionalization of SERS substrates and for their successful implementation in real-world applications. Full article
Show Figures

Figure 1

12 pages, 4178 KB  
Article
Fabrication of Three-Dimensional Dendritic Ag Nanostructures: A SERS Substrate for Non-Invasive Detection
by Chia-Ling Sung, Tzung-Ta Kao and Yu-Cheng Lin
Nanomaterials 2024, 14(19), 1562; https://doi.org/10.3390/nano14191562 - 27 Sep 2024
Viewed by 1594
Abstract
This paper discusses the fabrication of three-dimensional dendritic Ag nanostructures, showcasing pronounced Localized Surface Plasmon Resonance (LSPR) effects. These nanostructures, employed in surface-enhanced Raman scattering (SERS), function as sensors for lactic acid in artificial sweat. The dendritic structures of the silver nanoparticles (AgNPs) [...] Read more.
This paper discusses the fabrication of three-dimensional dendritic Ag nanostructures, showcasing pronounced Localized Surface Plasmon Resonance (LSPR) effects. These nanostructures, employed in surface-enhanced Raman scattering (SERS), function as sensors for lactic acid in artificial sweat. The dendritic structures of the silver nanoparticles (AgNPs) create an effective SERS substrate, with additional hotspots at branch junctures enhancing LSPR. We achieve differential LSPR effects by varying the distribution and spacing of branches and the overall morphology. Adjustments to electrodeposition parameters, such as current and plating solution protective agents on an anodized aluminum oxide (AAO) base, allow for precise control over LSPR intensities. By pre-depositing AgNPs, the electron transmission paths during electrodeposition are modified, which leads to optimized dendritic morphology and enhanced LSPR effects. Parameter optimization produces elongated rods with main and secondary branches, covered with uniformly sized, densely packed, non-overlapping spherical AgNPs. This configuration enhances the LSPR effect by generating additional hotspots beyond the branch tips. Fine-tuning the electrodeposition parameters improved the AgNPs’ morphology, achieving uniform particle distribution and optimal spacing. Compared to non-SERS substrates, our structure amplified the Raman signal for lactic acid detection by five orders of magnitude. This method can effectively tailor SERS substrates for specific analytes and laser-based detection. Full article
(This article belongs to the Special Issue Nanomaterial-Based SERS Sensing and Detection Technology)
Show Figures

Figure 1

15 pages, 3626 KB  
Article
Optical Fiber Probe with Integrated Micro-Optical Filter for Raman and Surface-Enhanced Raman Scattering Sensing
by Md Abdullah Al Mamun, Tomas Katkus, Anita Mahadevan-Jansen, Saulius Juodkazis and Paul R. Stoddart
Nanomaterials 2024, 14(16), 1345; https://doi.org/10.3390/nano14161345 - 14 Aug 2024
Cited by 1 | Viewed by 3484
Abstract
Optical fiber Raman and surface-enhanced Raman scattering (SERS) probes hold great promise for in vivo biosensing and in situ monitoring of hostile environments. However, the silica Raman scattering background generated within the optical fiber increases in proportion to the length of the fiber, [...] Read more.
Optical fiber Raman and surface-enhanced Raman scattering (SERS) probes hold great promise for in vivo biosensing and in situ monitoring of hostile environments. However, the silica Raman scattering background generated within the optical fiber increases in proportion to the length of the fiber, and it can swamp the signal from the target analyte. While filtering can be applied at the distal end of the fiber, the use of bulk optical elements has limited probe miniaturization to a diameter of 600 µm, which in turn limits the potential applications. To overcome this limitation, femtosecond laser micromachining was used to fabricate a prototype micro-optical filter, which was directly integrated on the tip of a 125 µm diameter double-clad fiber (DCF) probe. The outer surface of the microfilter was further modified with a nanostructured, SERS-active, plasmonic film that was used to demonstrate proof-of-concept performance with thiophenol as a test analyte. With further optimization of the associated spectroscopic system, this ultra-compact microprobe shows great promise for Raman and SERS optical fiber sensing. Full article
Show Figures

Figure 1

11 pages, 2400 KB  
Article
Application of Gap Mode Ultrasensitive P-GERTs in SERS-Based Rapid Detection
by Mingzhong Zhang, Shanshan Xu, Peng-Cheng Guan, Yue-Jiao Zhang and Jian-Feng Li
Photonics 2024, 11(8), 708; https://doi.org/10.3390/photonics11080708 - 30 Jul 2024
Cited by 1 | Viewed by 1502
Abstract
In surface-enhanced Raman scattering (SERS) detection research, the shape, structure, surface modification, and material selection of nanoparticles can significantly impact the SERS intensity. Petal-like gap-enhanced Raman tags (P-GERTs) possess numerous sharp tips and edges, which generate localized electric field enhancements, further amplifying the [...] Read more.
In surface-enhanced Raman scattering (SERS) detection research, the shape, structure, surface modification, and material selection of nanoparticles can significantly impact the SERS intensity. Petal-like gap-enhanced Raman tags (P-GERTs) possess numerous sharp tips and edges, which generate localized electric field enhancements, further amplifying the electric field enhancement effect on neighboring molecules and enhancing the SERS signal. Additionally, the surface of P-GERTs can be modified with functional molecules, enabling their application in the detection of disease biomarkers. Using COVID-19 as an example, the performance of P-GERTs in disease biomarker detection was validated, demonstrating that the signal intensity of this probe can reach 55 times that of regular gold nanoparticles and 36.7 times that of smooth shell gap-enhanced Raman tags (S-GERTs). Furthermore, in combination with magnetically retrievable magnetic bead substrates, the N-protein antigen was specifically detected in a one-step process. N-protein was detected within 15 min using a portable Raman spectrometer. The limit of detection (LOD) for the standard sample was 4.28 pg/mL, and the LOD for the actual throat swab sample system was 25.4 pg/mL. This workflow can be extended to the detection of other biomarkers, making it widely applicable. Full article
(This article belongs to the Special Issue Research, Development and Application of Raman Scattering Technology)
Show Figures

Figure 1

12 pages, 1118 KB  
Review
Advancements in Neurosurgical Intraoperative Histology
by Ali A. Mohamed, Emma Sargent, Cooper Williams, Zev Karve, Karthik Nair and Brandon Lucke-Wold
Tomography 2024, 10(5), 693-704; https://doi.org/10.3390/tomography10050054 - 9 May 2024
Cited by 3 | Viewed by 4391
Abstract
Despite their relatively low incidence globally, central nervous system (CNS) tumors remain amongst the most lethal cancers, with only a few other malignancies surpassing them in 5-year mortality rates. Treatment decisions for brain tumors heavily rely on histopathological analysis, particularly intraoperatively, to guide [...] Read more.
Despite their relatively low incidence globally, central nervous system (CNS) tumors remain amongst the most lethal cancers, with only a few other malignancies surpassing them in 5-year mortality rates. Treatment decisions for brain tumors heavily rely on histopathological analysis, particularly intraoperatively, to guide surgical interventions and optimize patient outcomes. Frozen sectioning has emerged as a vital intraoperative technique, allowing for highly accurate, rapid analysis of tissue samples, although it poses challenges regarding interpretive errors and tissue distortion. Raman histology, based on Raman spectroscopy, has shown great promise in providing label-free, molecular information for accurate intraoperative diagnosis, aiding in tumor resection and the identification of neurodegenerative disease. Techniques including Stimulated Raman Scattering (SRS), Coherent Anti-Stokes Raman Scattering (CARS), Surface-Enhanced Raman Scattering (SERS), and Tip-Enhanced Raman Scattering (TERS) have profoundly enhanced the speed and resolution of Raman imaging. Similarly, Confocal Laser Endomicroscopy (CLE) allows for real-time imaging and the rapid intraoperative histologic evaluation of specimens. While CLE is primarily utilized in gastrointestinal procedures, its application in neurosurgery is promising, particularly in the context of gliomas and meningiomas. This review focuses on discussing the immense progress in intraoperative histology within neurosurgery and provides insight into the impact of these advancements on enhancing patient outcomes. Full article
(This article belongs to the Section Neuroimaging)
Show Figures

Figure 1

13 pages, 14454 KB  
Article
Writing Tiny Nanoclusters Using a Nanofountain Pen Operated by Spontaneous Evaporation
by Sung-Jo Kim, Dongwon Yi, Il Hyun Lee, Won-Geun Kim, Ye-Ji Kim, Jong-Sik Moon and Jin-Woo Oh
Crystals 2024, 14(1), 9; https://doi.org/10.3390/cryst14010009 - 21 Dec 2023
Cited by 3 | Viewed by 1716
Abstract
Tow-dimensional and 3-dimensional colloidal structures have been used to study surface-enhanced Raman scattering and localized surface plasmon resonance because of their regular stacking structures. However, freely controlling the number and size of the colloidal assemblies remains a challenge. In this study, we demonstrated [...] Read more.
Tow-dimensional and 3-dimensional colloidal structures have been used to study surface-enhanced Raman scattering and localized surface plasmon resonance because of their regular stacking structures. However, freely controlling the number and size of the colloidal assemblies remains a challenge. In this study, we demonstrated the fabrication and mechanism of tiny nanoclusters using spontaneous evaporation-based nanofountain pens (NFPs). A micrometer-scale NFP nozzle was fabricated using a glass capillary. The gold nanoparticles (AuNPs) dispersed ink formed the pendant droplet at the NFP nozzle tip, where the AuNPs accumulated within the pendant droplet because of evaporation. The accumulated AuNPs were transferred onto the substrate via a stamp-like process to create nanoclusters. Using water evaporation analyzed by diffusion equations, we showed that reducing the AuNP accumulation to one hundred is possible. This precise adjustment enables fabrication until submicrometer-level nanoclusters. The fabrication method using NFPs can create 3D structures, and this operation is not significantly affected by the size or composition of the AuNPs. This could be expanded to metabolite-included nanocluster where metabolite can be located at the hot spot among AuNPs. Therefore, we expect that this will be utilized to create SERS signals and conduct disease diagnosis research using extremely small amounts of metabolites. Full article
Show Figures

Figure 1

24 pages, 5220 KB  
Review
Exploring Reliable and Efficient Plasmonic Nanopatterning for Surface- and Tip-Enhanced Raman Spectroscopies
by Antonio Sasso, Angela Capaccio and Giulia Rusciano
Int. J. Mol. Sci. 2023, 24(22), 16164; https://doi.org/10.3390/ijms242216164 - 10 Nov 2023
Cited by 3 | Viewed by 2236
Abstract
Surface-enhanced Raman scattering (SERS) is of growing interest for a wide range of applications, especially for biomedical analysis, thanks to its sensitivity, specificity, and multiplexing capabilities. A crucial role for successful applications of SERS is played by the development of reproducible, efficient, and [...] Read more.
Surface-enhanced Raman scattering (SERS) is of growing interest for a wide range of applications, especially for biomedical analysis, thanks to its sensitivity, specificity, and multiplexing capabilities. A crucial role for successful applications of SERS is played by the development of reproducible, efficient, and facile procedures for the fabrication of metal nanostructures (SERS substrates). Even more challenging is to extend the fabrication techniques of plasmonic nano-textures to atomic force microscope (AFM) probes to carry out tip-enhanced Raman spectroscopy (TERS) experiments, in which spatial resolution below the diffraction limit is added to the peculiarities of SERS. In this short review, we describe recent studies performed by our group during the last ten years in which novel nanofabrication techniques have been successfully applied to SERS and TERS experiments for studying bio-systems and molecular species of environmental interest. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular Biophysics in Italy)
Show Figures

Figure 1

14 pages, 9170 KB  
Article
Engineering Branched Au@Ag Nanostar Plasmonic Array for Coupling Electromagnetic Enhancement and SERS Trace Detection of Polystyrene in Aquatic Environments
by Mingzhu Wu, Jianhang Lin, Da Zheng, Yirui Yang, Zhihao Li, Zhengdong Zhu, Yonghui Shen, Gang Ni and Maofeng Zhang
Chemosensors 2023, 11(10), 531; https://doi.org/10.3390/chemosensors11100531 - 9 Oct 2023
Cited by 5 | Viewed by 3070
Abstract
Micro/nanoplastics are widespread in the environment and may cause severe damage to creatures and human beings. Micro/nanoplastic pollution has become a global focus issue; hence, the rapid and accurate detection of micro/nanoplastics is an essential step to ensure health. Herein, we report a [...] Read more.
Micro/nanoplastics are widespread in the environment and may cause severe damage to creatures and human beings. Micro/nanoplastic pollution has become a global focus issue; hence, the rapid and accurate detection of micro/nanoplastics is an essential step to ensure health. Herein, we report a surface-enhanced Raman scattering (SERS) technique to sensitively and quantitatively identify micro/nanoplastics in environmental water samples. A three-dimensional hierarchical Au@Ag nanostar (NSs) was synthesized and employed as an efficient SERS substrate. The “lightning rod effect” generated by tip branches of the nanostars and the coupling effect of the neighboring branches of the nanostar array enabled the ultra-trace detection of crystal violet (CV) down to 10−9 M, even with a portable Raman device. Moreover, the hydrophobic property of the SERS substrate endowed it with a desirable enrichment effect, which meant an increase in the concentration or quantity of the micro/nanoplastic particles. And thereafter, the SERS sensor achieved a highly sensitive detection of polystyrene (PS) particle standard solution at a low concentration of 25 μg/mL or 2.5 μg/mL. Importantly, the detected concentration and the SERS intensity followed a nearly linear relationship, indicating the capability of quantitative analysis of micro/nanoplastics. In addition, the SERS sensor was successfully extended to detect PS particles in environmental water samples, including tap water, sea water, and soil water, and the detection concentration was determined to be 25 μg/mL, 2.5 μg/mL, and 25 μg/mL, respectively. The present Au@AgNSs array substrate with a two-order magnitude signal amplification further exhibited significant advantages in the label-free analysis of micro/nanoplastics in real water samples. Full article
(This article belongs to the Special Issue Portable Fast Detection Platforms Based on SERS Technology)
Show Figures

Figure 1

11 pages, 12377 KB  
Article
Fountain Pen-Inspired 3D Colloidal Assembly, Consisting of Metallic Nanoparticles on a Femtoliter Scale
by Sung-Jo Kim, Il-Hyun Lee, Won-Geun Kim, Yoon-Hwae Hwang and Jin-Woo Oh
Nanomaterials 2023, 13(17), 2403; https://doi.org/10.3390/nano13172403 - 24 Aug 2023
Cited by 4 | Viewed by 1833
Abstract
The 3D colloidal assemblies composed of nanoparticles (NPs) are closely associated with optical properties such as photonic crystals, localized surface plasmon resonance, and surface-enhanced Raman scattering. However, research on their fabrication remains insufficient. Here, the femtoliter volume of a 3D colloidal assembly is [...] Read more.
The 3D colloidal assemblies composed of nanoparticles (NPs) are closely associated with optical properties such as photonic crystals, localized surface plasmon resonance, and surface-enhanced Raman scattering. However, research on their fabrication remains insufficient. Here, the femtoliter volume of a 3D colloidal assembly is shown, using the evaporation of a fine fountain pen. A nano-fountain pen (NPF) with a micrometer-level tip inner diameter was adopted for the fine evaporation control of the ink solvent. The picoliters of the evaporation occurring at the NFP tip and femtoliter volume of the 3D colloidal assembly were analyzed using a diffusion equation. The shape of the 3D colloidal assembly was dependent on the evaporation regarding the accumulation time and tip size, and they exhibited random close packing. Using gold-, silver-, and platinum-NPs and mixing ratios of them, diverse 3D colloidal assemblies were formed. The spectra regarding a localized surface plasmon resonance of them were changed according to composition and mixing ratio. We expect that this could be widely applied as a simple fabrication tool in order to explore complex metamaterials constructed of nanoparticles, as this method is highly flexible in varying the shape as well as composition ratio of self-assembled structures. Full article
Show Figures

Figure 1

14 pages, 33486 KB  
Article
Multifunctional Plasmon-Tunable Au Nanostars and Their Applications in Highly Efficient Photothermal Inactivation and Ultra-Sensitive SERS Detection
by Tianxiang Zhou, Jie Huang, Wenshi Zhao, Rui Guo, Sicheng Cui, Yuqing Li, Xiaolong Zhang, Yang Liu and Qi Zhang
Nanomaterials 2022, 12(23), 4232; https://doi.org/10.3390/nano12234232 - 28 Nov 2022
Cited by 12 | Viewed by 2827
Abstract
The development and application in different fields of multifunctional plasmonic nanoparticles (NPs) have always been research hotspots. Herein, multi-tip Au nanostars (NSs) with an anisotropic structure were fabricated for the photothermal therapy (PTT) of bacteria and surface-enhanced Raman scattering (SERS) detection of pollutants. [...] Read more.
The development and application in different fields of multifunctional plasmonic nanoparticles (NPs) have always been research hotspots. Herein, multi-tip Au nanostars (NSs) with an anisotropic structure were fabricated for the photothermal therapy (PTT) of bacteria and surface-enhanced Raman scattering (SERS) detection of pollutants. The size and localized surface plasmon resonance (LSPR) characteristics of Au NSs were adjusted by varying Au seed additions. In addition, photothermal conversion performance of Au NSs with various Au seed additions was evaluated. Photothermal conversion efficiency of Au NSs with optimal Au seed additions (50 μL) was as high as 28.75% under 808 nm laser irradiation, and the heat generated was sufficient to kill Staphylococcus aureus (S. aureus). Importantly, Au NSs also exhibited excellent SERS activity for the 4-mercaptobenzoic acid (4-MBA) probe molecule, and the local electromagnetic field distribution of Au NSs was explored through finite-difference time-domain (FDTD) simulation. As verified by experiments, Au NSs’ SERS substrate could achieve a highly sensitive detection of a low concentration of potentially toxic pollutants such as methylene blue (MB) and bilirubin (BR). This work demonstrates a promising multifunctional nanoplatform with great potential for efficient photothermal inactivation and ultra-sensitive SERS detection. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for LSPR and SERS Applications)
Show Figures

Graphical abstract

10 pages, 2305 KB  
Article
Tip-Enhanced Raman Spectroscopy Based on Spiral Plasmonic Lens Excitation
by Kai Gu, Ming Sun and Yang Zhang
Sensors 2022, 22(15), 5636; https://doi.org/10.3390/s22155636 - 28 Jul 2022
Cited by 7 | Viewed by 2273
Abstract
In this study, we proposed the idea of replacing the traditional objective lens in bottom-illumination mode with a plasmonic lens (PL) to achieve tip-enhanced Raman spectroscopy (TERS). The electric field energy of surface plasmon polaritons (SPPs) of the spiral PL was found to [...] Read more.
In this study, we proposed the idea of replacing the traditional objective lens in bottom-illumination mode with a plasmonic lens (PL) to achieve tip-enhanced Raman spectroscopy (TERS). The electric field energy of surface plasmon polaritons (SPPs) of the spiral PL was found to be more concentrated at the focal point without any sidelobe using the finite-difference time domain (FDTD) method compared with that of a symmetry-breaking PL. This property reduces far-field background noise and increases the excitation efficiency of the near-field Raman signal. The disadvantage of only the near-field Raman scattering of samples at the center of the structure being detected when using an ordinary PL in TERS is overcome by using our proposed method of changing only the polarization of the incident light. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

16 pages, 65520 KB  
Review
Surface- and Tip-Enhanced Raman Scattering by CdSe Nanocrystals on Plasmonic Substrates
by Ilya A. Milekhin, Alexander G. Milekhin and Dietrich R. T. Zahn
Nanomaterials 2022, 12(13), 2197; https://doi.org/10.3390/nano12132197 - 26 Jun 2022
Cited by 8 | Viewed by 3104
Abstract
This work presents an overview of the latest results and new data on the optical response from spherical CdSe nanocrystals (NCs) obtained using surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering (TERS). SERS is based on the enhancement of the phonon response from [...] Read more.
This work presents an overview of the latest results and new data on the optical response from spherical CdSe nanocrystals (NCs) obtained using surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering (TERS). SERS is based on the enhancement of the phonon response from nanoobjects such as molecules or inorganic nanostructures placed on metal nanostructured substrates with a localized surface plasmon resonance (LSPR). A drastic SERS enhancement for optical phonons in semiconductor nanostructures can be achieved by a proper choice of the plasmonic substrate, for which the LSPR energy coincides with the laser excitation energy. The resonant enhancement of the optical response makes it possible to detect mono- and submonolayer coatings of CdSe NCs. The combination of Raman scattering with atomic force microscopy (AFM) using a metallized probe represents the basis of TERS from semiconductor nanostructures and makes it possible to investigate their phonon properties with nanoscale spatial resolution. Gap-mode TERS provides further enhancement of Raman scattering by optical phonon modes of CdSe NCs with nanometer spatial resolution due to the highly localized electric field in the gap between the metal AFM tip and a plasmonic substrate and opens new pathways for the optical characterization of single semiconductor nanostructures and for revealing details of their phonon spectrum at the nanometer scale. Full article
Show Figures

Figure 1

Back to TopTop