Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (315)

Search Parameters:
Keywords = surface uplifts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 34153 KiB  
Article
Study on Lithospheric Tectonic Features of Tianshan and Adjacent Regions and the Genesis Mechanism of the Wushi Ms7.1 Earthquake
by Kai Han, Daiqin Liu, Ailixiati Yushan, Wen Shi, Jie Li, Xiangkui Kong and Hao He
Remote Sens. 2025, 17(15), 2655; https://doi.org/10.3390/rs17152655 - 31 Jul 2025
Viewed by 179
Abstract
In this study, we analyzed the lithospheric seismic background of the Tianshan and adjacent areas by combining various geophysical methods (effective elastic thickness, time-varying gravity, apparent density, and InSAR), and explored the genesis mechanism of the Wushi Ms7.1 earthquake as an example, which [...] Read more.
In this study, we analyzed the lithospheric seismic background of the Tianshan and adjacent areas by combining various geophysical methods (effective elastic thickness, time-varying gravity, apparent density, and InSAR), and explored the genesis mechanism of the Wushi Ms7.1 earthquake as an example, which led to the following conclusions: (1) The effective elastic thickness (Te) of the Tianshan lithosphere is low (13–28 km) and weak, while the Tarim and Junggar basins have Te > 30 km with high intensity, and the loads are all mainly from the surface (F < 0.5). Earthquakes occur mostly in areas with low values of Te. (2) Medium and strong earthquakes are prone to occur in regions with alternating positive and negative changes in the gravity field during the stage of large-scale reverse adjustment. It is expected that the risk of a moderate-to-strong earthquake occurring again in the vicinity of the survey area between 2025 and 2026 is relatively high. (3) Before the Wushi earthquake, the positive and negative boundaries of the apparent density of the crust at 12 km shifted to be approximately parallel to the seismic fault, and the earthquake was triggered after undergoing a “solidification” process. (4) The Wushi earthquake is a leptokurtic strike-slip backwash type of earthquake; coseismic deformation shows that subsidence occurs in the high-visual-density zone, and vice versa for uplift. The results of this study reveal the lithosphere-conceiving environment of the Tianshan and adjacent areas and provide a basis for regional earthquake monitoring, early warning, and post-disaster disposal. Full article
Show Figures

Graphical abstract

24 pages, 4396 KiB  
Article
Study of the Characteristics of a Co-Seismic Displacement Field Based on High-Resolution Stereo Imagery: A Case Study of the 2024 MS7.1 Wushi Earthquake, Xinjiang
by Chenyu Ma, Zhanyu Wei, Li Qian, Tao Li, Chenglong Li, Xi Xi, Yating Deng and Shuang Geng
Remote Sens. 2025, 17(15), 2625; https://doi.org/10.3390/rs17152625 - 29 Jul 2025
Viewed by 263
Abstract
The precise characterization of surface rupture zones and associated co-seismic displacement fields from large earthquakes provides critical insights into seismic rupture mechanisms, earthquake dynamics, and hazard assessments. Stereo-photogrammetric digital elevation models (DEMs), produced from high-resolution satellite stereo imagery, offer reliable global datasets that [...] Read more.
The precise characterization of surface rupture zones and associated co-seismic displacement fields from large earthquakes provides critical insights into seismic rupture mechanisms, earthquake dynamics, and hazard assessments. Stereo-photogrammetric digital elevation models (DEMs), produced from high-resolution satellite stereo imagery, offer reliable global datasets that are suitable for the detailed extraction and quantification of vertical co-seismic displacements. In this study, we utilized pre- and post-event WorldView-2 stereo images of the 2024 Ms7.1 Wushi earthquake in Xinjiang to generate DEMs with a spatial resolution of 0.5 m and corresponding terrain point clouds with an average density of approximately 4 points/m2. Subsequently, we applied the Iterative Closest Point (ICP) algorithm to perform differencing analysis on these datasets. Special care was taken to reduce influences from terrain changes such as vegetation growth and anthropogenic structures. Ultimately, by maintaining sufficient spatial detail, we obtained a three-dimensional co-seismic displacement field with a resolution of 15 m within grid cells measuring 30 m near the fault trace. The results indicate a clear vertical displacement distribution pattern along the causative sinistral–thrust fault, exhibiting alternating uplift and subsidence zones that follow a characteristic “high-in-center and low-at-ends” profile, along with localized peak displacement clusters. Vertical displacements range from approximately 0.2 to 1.4 m, with a maximum displacement of ~1.46 m located in the piedmont region north of the Qialemati River, near the transition between alluvial fan deposits and bedrock. Horizontal displacement components in the east-west and north-south directions are negligible, consistent with focal mechanism solutions and surface rupture observations from field investigations. The successful extraction of this high-resolution vertical displacement field validates the efficacy of satellite-based high-resolution stereo-imaging methods for overcoming the limitations of GNSS and InSAR techniques in characterizing near-field surface displacements associated with earthquake ruptures. Moreover, this dataset provides robust constraints for investigating fault-slip mechanisms within near-surface geological contexts. Full article
Show Figures

Figure 1

27 pages, 7109 KiB  
Article
The Long-Term Surface Deformation Monitoring and Prediction of Hutubi Gas Storage Reservoir in Xinjiang Based on InSAR and the GWO-VMD-GRU Model
by Wang Huang, Wei Liao, Jie Li, Xuejun Qiao, Sulitan Yusan, Abudutayier Yasen, Xinlu Li and Shijie Zhang
Remote Sens. 2025, 17(14), 2480; https://doi.org/10.3390/rs17142480 - 17 Jul 2025
Viewed by 346
Abstract
Natural gas storage is an effective solution to address the energy supply–demand imbalance, and underground gas storage (UGS) is a primary method for storing natural gas. The overarching goal of this study is to monitor and analyze surface deformation at the Hutubi underground [...] Read more.
Natural gas storage is an effective solution to address the energy supply–demand imbalance, and underground gas storage (UGS) is a primary method for storing natural gas. The overarching goal of this study is to monitor and analyze surface deformation at the Hutubi underground gas storage facility in Xinjiang, China, which is the largest gas storage facility in the country. This research aims to ensure the stable and efficient operation of the facility through long-term monitoring, using remote sensing data and advanced modeling techniques. The study employs the SBAS-InSAR method, leveraging Synthetic Aperture Radar (SAR) data from the TerraSAR and Sentinel-1 sensors to observe displacement time series from 2013 to 2024. The data is processed through wavelet transformation for denoising, followed by the application of a Gray Wolf Optimization (GWO) algorithm combined with Variational Mode Decomposition (VMD) to decompose both surface deformation and gas pressure data. The key focus is the development of a high-precision predictive model using a Gated Recurrent Unit (GRU) network, referred to as GWO-VMD-GRU, to accurately predict surface deformation. The results show periodic surface uplift and subsidence at the facility, with a notable net uplift. During the period from August 2013 to March 2015, the maximum uplift rate was 6 mm/year, while from January 2015 to December 2024, it increased to 12 mm/year. The surface deformation correlates with gas injection and extraction periods, indicating periodic variations. The accuracy of the InSAR-derived displacement data is validated through high-precision GNSS data. The GWO-VMD-GRU model demonstrates strong predictive performance with a coefficient of determination (R2) greater than 0.98 for the gas well test points. This study provides a valuable reference for the future safe operation and management of underground gas storage facilities, demonstrating significant contributions to both scientific understanding and practical applications in underground gas storage management. Full article
(This article belongs to the Special Issue Advances in Remote Sensing for Land Subsidence Monitoring)
Show Figures

Figure 1

17 pages, 5238 KiB  
Article
Study on Reinforcement Technology of Shield Tunnel End and Ground Deformation Law in Shallow Buried Silt Stratum
by Jia Zhang and Xiankai Bao
Appl. Sci. 2025, 15(14), 7657; https://doi.org/10.3390/app15147657 - 8 Jul 2025
Viewed by 323
Abstract
With the rapid advancement of urban underground space development, shield tunnel construction has seen a significant increase. However, at the initial launching stage of shield tunnels in shallow-buried weak strata, engineering risks such as face instability and sudden surface settlement frequently occur. At [...] Read more.
With the rapid advancement of urban underground space development, shield tunnel construction has seen a significant increase. However, at the initial launching stage of shield tunnels in shallow-buried weak strata, engineering risks such as face instability and sudden surface settlement frequently occur. At present, there are relatively few studies on the reinforcement technology of the initial section of shield tunnel in shallow soft ground and the evolution law of ground disturbance. This study takes the launching section of the Guanggang New City depot access tunnel on Guangzhou Metro Line 10 as the engineering background. By applying MIDAS/GTS numerical simulation, settlement monitoring, and theoretical analysis, the reinforcement technology at the tunnel face, the spatiotemporal evolution of ground settlement, and the mechanism of soil disturbance transmission during the launching process in muddy soil layer are revealed. The results show that: (1) the reinforcement scheme combining replacement filling, high-pressure jet grouting piles, and soil overburden counterpressure significantly improves surface settlement control. The primary influence zone is concentrated directly above the shield machine and in the forward excavation area. (2) When the shield machine reaches the junction between the reinforced and unreinforced zones, a large settlement area forms, with the maximum ground settlement reaching −26.94 mm. During excavation in the unreinforced zone, ground deformation mainly occurs beneath the rear reinforced section, with subsidence at the crown and uplift at the invert. (3) The transverse settlement trough exhibits a typical Gaussian distribution and the discrepancy between the measured maximum settlement and the numerical and theoretical values is only 3.33% and 1.76%, respectively. (4) The longitudinal settlement follows a trend of initial increase, subsequent decrease, and gradual stabilization, reaching a maximum when the excavation passes directly beneath the monitoring point. The findings can provide theoretical reference and engineering guidance for similar projects. Full article
Show Figures

Figure 1

18 pages, 4449 KiB  
Article
Analysis and Application of Critical Pressure Prediction Model for Surface Leakage of Underwater Shallow Buried Jacking-Pipe Grouting
by Ziguang Zhang, Yong He, Xiaopeng Li, Xiang Li, Lin Wei and Feifei Chen
Buildings 2025, 15(13), 2359; https://doi.org/10.3390/buildings15132359 - 5 Jul 2025
Viewed by 258
Abstract
Jacking-pipe construction has the advantages of high mechanization, low environmental impact and fast construction speed. It is widely used in the project of underground pipeline under river. However, jacking-pipe grouting under shallow burial conditions is prone to cause surface bubbling problems. Based on [...] Read more.
Jacking-pipe construction has the advantages of high mechanization, low environmental impact and fast construction speed. It is widely used in the project of underground pipeline under river. However, jacking-pipe grouting under shallow burial conditions is prone to cause surface bubbling problems. Based on the jacking-pipe project of Meichong Lake in Changfeng County, Hefei, this paper discussed the mechanism of grouting surface leakage, and defined the relationship between the critical pressure of jacking-pipe grouting and the ultimate pressure of shear damage of mud jacket. Mechanical model of surface leakage from shallow buried jacking-pipe grouting was established. A general mathematical expression for the grouting critical pressure was derived and a sensitivity analysis was performed. A numerical model was established based on the background engineering, and multiple sets of grouting pressure conditions for simulation and analysis were set up. The results showed that the cohesive force c, the angle of internal friction φ, and the overburden thickness hs were all approximately linearly and positively correlated with the critical pressure of grouting. When the grouting pressure was less than 197.54 kPa the surface settlement increased. When this value was exceeded the surface displacement changed from settlement to uplift and the risk of slurry bubbling increased significantly. The theoretical calculation matched the value of grouting critical pressure from numerical simulation. The actual grouting pressure in the project was lower than the theoretical grouting critical pressure value and no slurry bubbling occurred during construction, which had verified the reliability of the theoretical model. This study can provide theoretical basis and investigation ideas for the setting of reasonable grouting pressure in similar projects. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

14 pages, 1630 KiB  
Article
Research on the Initial Launching Technology of Subway Shield Tunneling in Complex Terrain and Numerical Simulation of Soil Deformation
by Jiangka Wang, Hui Li, Xujie Li, Xingzhong Nong, Chen Liu and Tao Yang
Buildings 2025, 15(13), 2222; https://doi.org/10.3390/buildings15132222 - 25 Jun 2025
Viewed by 407
Abstract
Using the shield project of the Cai Cang Section tunnel of the Guangzhou Metro Line 13 to solve the problem that shield construction is difficult to start in a narrow space and it is easy to disturb the surrounding buildings and pipelines, the [...] Read more.
Using the shield project of the Cai Cang Section tunnel of the Guangzhou Metro Line 13 to solve the problem that shield construction is difficult to start in a narrow space and it is easy to disturb the surrounding buildings and pipelines, the corresponding shield tunneling parameters, construction and transportation plans, residual soil management plans, and grouting reinforcement plans are designed. These are tailored according to different working conditions. Meanwhile, the MIDAS GTS 2022 numerical simulation software is applied to simulate and analyze the impact of shield tunneling construction on soil deformation, and to compare the effects before and after reinforcement of the soil layer during shield tunneling. The results show the amount of disturbance of building pipelines along the tunnel are effectively controlled by designing the corresponding shield tunneling parameters for three working conditions: contact reinforcement zone, entering reinforcement zone, and exiting reinforcement zone. In narrow spaces, three kinds of construction transportation modes (namely, horizontal transportation in the tunnel, translation transportation in the cross passage, and vertical transportation) ensure the smooth transportation of pipe segments and the smooth discharge of shield dregs. After the reinforced area is constructed, secondary grouting with cement mortar effectively reduces the erosion concrete segments by underground water. By comparing the deformation of the tunnel soil layer before and after reinforcement, it is found that the maximum surface deformation of the soil layer is significantly reduced after reinforcement. Specifically, the maximum settlement and maximum uplift are 0.782 mm and 1.87 mm respectively, which represent a reduction of 1.548 mm in the maximum surface settlement, and 0.16 mm in the maximum uplift compared with the unreinforced soil layer. This indicates that setting up a soil reinforcement zone during the initial launching stage can effectively reduce soil deformation. The Cai Cang Section tunnel shield project successfully completed the shield construction in a narrow space, which can be a reference and guide for similar projects. Full article
Show Figures

Figure 1

33 pages, 48291 KiB  
Article
The Influence of Seasonal Variations in a Continental Lacustrine Basin in an Arid Climate on the Occurrence Characteristics of Gypsum: A Case Study from the Paleogene Bottom Sandstone Member, Tabei Uplift
by Xiaoyang Gao, Wenxiang He, Luxing Dou, Jingwen Yan, Qi Sun, Zhenli Yi and Bin Li
Minerals 2025, 15(6), 639; https://doi.org/10.3390/min15060639 - 12 Jun 2025
Viewed by 354
Abstract
The occurrence of gypsum in clastic rocks of continental saline lake basins reflects complex depositional and diagenetic processes. However, its genesis remains relatively understudied. Based on core descriptions and thin-section analyses, this study investigates the occurrence types and genetic mechanisms of gypsum in [...] Read more.
The occurrence of gypsum in clastic rocks of continental saline lake basins reflects complex depositional and diagenetic processes. However, its genesis remains relatively understudied. Based on core descriptions and thin-section analyses, this study investigates the occurrence types and genetic mechanisms of gypsum in the Bottom Sandstone Member of the northern Tabei Uplift. Five types of gypsum occurrences are identified: layered gypsum, gypsum clasts, spotted gypsum, gypsum nodules, and a mixed deposition of clastic rocks and gypsum. The mixed deposition of clastic rocks and gypsum includes gypsiferous mudstone, muddy gypsum, gypsiferous mudstone containing muddy clasts, and sandy gypsum. Layered gypsum, spotted gypsum, gypsiferous mudstone, and muddy gypsum mainly result from in situ chemical precipitation during periods of high evaporation and reduced runoff. In contrast, gypsum clasts, gypsiferous mudstone containing muddy clasts, and sandy gypsum reflect processes of transportation and reworking induced by flood events. Seasonal variations in hydrodynamic conditions play a critical role in the formation and distribution of gypsum. During dry periods, surface runoff weakens or ceases, and the salinity of lake water or pore water in clastic deposits increases due to intense evaporation, promoting gypsum precipitation. During flood periods, increased runoff can erode previously formed gypsum, which is subsequently transported and deposited as gypsum clasts. The morphology of gypsum varies with its transport distance. These findings enhance our understanding of clastic–evaporite mixed systems in arid continental lacustrine settings and provide insights into sedimentary processes influenced by seasonal climatic fluctuations. Full article
(This article belongs to the Special Issue Deep-Time Source-to-Sink in Continental Basins)
Show Figures

Figure 1

13 pages, 16247 KiB  
Technical Note
Revealing Long-Term Displacement and Evolution of Open-Pit Coal Mines Using SBAS-InSAR and DS-InSAR
by Zechao Bai, Fuquan Zhao, Jiqing Wang, Jun Li, Yanping Wang, Yang Li, Yun Lin and Wenjie Shen
Remote Sens. 2025, 17(11), 1821; https://doi.org/10.3390/rs17111821 - 23 May 2025
Viewed by 559
Abstract
Coal mines play an important role in the global energy supply. Monitoring the displacement of open-pit mines is crucial to preventing geological disasters, such as landslides and surface displacement, caused by high-intensity mining activities. In recent years, multi-temporal Synthetic Aperture Radar Interferometry (InSAR) [...] Read more.
Coal mines play an important role in the global energy supply. Monitoring the displacement of open-pit mines is crucial to preventing geological disasters, such as landslides and surface displacement, caused by high-intensity mining activities. In recent years, multi-temporal Synthetic Aperture Radar Interferometry (InSAR) technology has advanced and become widely used for monitoring the displacement of open-pit mines. However, the scattering characteristics of surfaces in open-pit mining areas are unstable, resulting in few coherence points with uneven distribution. Small BAseline Subset InSAR (SABS-InSAR) technology struggles to extract high-density points and fails to capture the overall displacement trend of the monitoring area. To address these challenges, this study focused on the Shengli West No. 2 open-pit coal mine in eastern Inner Mongolia, China, using 201 Sentinel-1 images collected from 20 May 2017 to 13 April 2024. We applied both SBAS-InSAR and distributed scatterer InSAR (DS-InSAR) methods to investigate the surface displacement and long-term behavior of the open-pit coal mine over the past seven years. The relationship between this displacement and mining activities was analyzed. The results indicate significant land subsidence was observed in reclaimed areas, with rates exceeding 281.2 mm/y. The compaction process of waste materials was the main contributor to land subsidence. Land uplift or horizontal displacement was observed over the areas near the active working parts of the mines. Compared to SBAS-InSAR, DS-InSAR was shown to more effectively capture the spatiotemporal distribution of surface displacement in open-pit coal mines, offering more intuitive, comprehensive, and high-precision monitoring of open-pit coal mines. Full article
(This article belongs to the Special Issue Advances in Remote Sensing for Land Subsidence Monitoring)
Show Figures

Figure 1

17 pages, 35407 KiB  
Article
Crustal Structure of Hainan Island and Surrounding Seabed Based on High-Resolution Airborne Gravity
by Xiao Li, Xuanjie Zhang, Wan Zhang, Ruohan Wu, Yanyun Sun, Guotao Yao and Huaichun Wu
Appl. Sci. 2025, 15(10), 5564; https://doi.org/10.3390/app15105564 - 15 May 2025
Viewed by 559
Abstract
Hainan Island and its surrounding seabed are located at the intersection of the Eurasian, Indochina, and South China Sea tectonic plates with active Quaternary volcanism and intensive seismicity, such as the 7.6-magnitude earthquake that occurred in northern Hainan in 1605. Based on the [...] Read more.
Hainan Island and its surrounding seabed are located at the intersection of the Eurasian, Indochina, and South China Sea tectonic plates with active Quaternary volcanism and intensive seismicity, such as the 7.6-magnitude earthquake that occurred in northern Hainan in 1605. Based on the newest airborne gravity data of Hainan Island and its adjacent areas, this paper uses wavelet multiscale decomposition followed by power spectral analysis to estimate the average depth of each layer of the source field. We use the Parker–Oldenburg method to invert the Moho structure, incorporating constraints from seismic data to investigate the fine crustal structure and deformation characteristics to elucidate the deep seismogenic mechanism. The regional Moho depth decreases from 30 km in the northwest to 16 km in the southeast. The map of the Moho surface shows three Moho uplift zones, located in the northern Hainan Island, the southern Qiongdongnan Basin, and the southwestern tip of Hainan Island. The following findings are revealed: Firstly, a series of northeastward high-gravity anomaly strips are discovered for the first time in the middle and lower crust of Hainan Island, which may be the remnants within the continental crust of the ancient Pacific northwestward subduction during the Mesozoic era. Secondly, under the Leiqiong volcanic rocks, there is a pronounced northeastward high-value anomaly and shallower Moho depth, which may indicate the deep-seated mantle material that rose and intruded during the activity of the Hainan mantle plume. Thirdly, the seismogenic structure is discussed by combining the wavelet multiscale decomposition results with natural seismic data. The results show that earthquakes occur in the place where the NE-trending gravity anomaly is cut by the NW-trending fault in the upper crust. That place also lies in the gravity anomaly gradient or high-value anomaly in the middle and lower crust. These features reveal that the earthquakes on Hainan Island are controlled by the left strike-slip activity of the Red River Fault and deep mantle upwelling caused by Hainan Plume. Full article
Show Figures

Figure 1

16 pages, 5610 KiB  
Article
Influence of Digital Elevation Model Resolution on the Normalized Stream Length–Gradient Index in Intraplate Regions: A Case Study of the Yangsan Fault, Korea
by Hyunjee Lim, Sangmin Ha, Sohee Kim, Hee-Cheol Kang and Moon Son
Remote Sens. 2025, 17(9), 1638; https://doi.org/10.3390/rs17091638 - 6 May 2025
Viewed by 740
Abstract
The spatial variability of input parameters plays a crucial role in the interpretation of geomorphic indices, with digital elevation models (DEMs) being the primary data source. However, the influence of DEM resolution on these indices has rarely been investigated. This study investigated the [...] Read more.
The spatial variability of input parameters plays a crucial role in the interpretation of geomorphic indices, with digital elevation models (DEMs) being the primary data source. However, the influence of DEM resolution on these indices has rarely been investigated. This study investigated the influence of DEM resolution on the assessment of tectonic activity using the normalized stream length–gradient (SLk) index, which reflects variations along river profiles. The SLk index is sensitive to changes in river gradients that may result from active faulting or differential uplift, making it a valuable tool for identifying zones of active tectonic deformation. Therefore, understanding the impact of DEM resolution on SLk analysis is critical for accurately detecting and interpreting subtle tectonic signals, particularly in intraplate regions where deformation is slow and geomorphic expressions are faint and discontinuous. By comparing high-resolution LiDAR-derived DEMs (L-DEMs) and low-resolution topographic map-derived DEMs (T-DEMs), we analyzed the SLk index distributions along the Yangsan Fault, Korean Peninsula, an intraplate setting with Quaternary activity. According to the results, SLk anomalies derived from L-DEMs had a continuous distribution along the fault, closely aligning with known surface ruptures and indicating active tectonic deformation. In contrast, SLk anomalies derived from T-DEMs were sporadic and less continuous, especially in low-relief landscapes such as alluvial fans and floodplains, highlighting the limitations of T-DEMs in detecting fault-related features. High-resolution DEMs were better able to capture finer-scale geomorphic features, such as fault scarps, deflected streams, and lineaments associated with active tectonics, providing a more comprehensive view of fault-related deformation. This discrepancy highlights the importance of resolution choice in tectonic assessments, as low-resolution DEMs may underestimate the tectonic activities of intraplate faults by missing subtle topographic variations. While the choice of DEM resolution may depend on study area, scope, and data availability, high-resolution DEMs are critical for identifying tectonic activity in intraplate regions where geomorphic features of faulting due to slow deformation are subtle and dispersed. Full article
Show Figures

Figure 1

21 pages, 7771 KiB  
Article
Experimental Study on the Uplift Correction of Raft Foundations in Saturated Silty Clay
by Tengyue Cui, Yingguang Shi and Feng Huang
Buildings 2025, 15(9), 1415; https://doi.org/10.3390/buildings15091415 - 23 Apr 2025
Viewed by 428
Abstract
Although grouting technology has been widely applied for lifting and rectifying tilted structures, theoretical research remains underdeveloped and lags behind the practical demands of engineering applications. In this study, a self-developed experimental setup was utilized to conduct model tests on the lifting and [...] Read more.
Although grouting technology has been widely applied for lifting and rectifying tilted structures, theoretical research remains underdeveloped and lags behind the practical demands of engineering applications. In this study, a self-developed experimental setup was utilized to conduct model tests on the lifting and rectification of a raft foundation in saturated silty clay. The evolution patterns of ground surface displacement, excess pore water pressure, and foundation-additional pressure induced by grouting were systematically analyzed. Furthermore, the influence of grouting depth and injection rate on surface displacement, excess pore water pressure, foundation-additional pressure, and grouting parameters (grout volume and pressure) was investigated. The key findings are summarized as follows: The grouting efficiency (η) ranged between 0.72 and 0.81. A power-exponential dual-function model was proposed to quantify the spatiotemporal evolution of excess pore water pressure, achieving a distance–decay power function with R2 > 0.89 and a time-dependent dissipation exponential function with R2 > 0.94. The maximum surface uplift displacement decreased by 20.6% and 8.9% with increasing grouting rates, respectively. The dissipation time of excess pore water pressure exhibited a negative correlation with the grouting rate, and grouting efficiency declined as excess pore water pressure dissipated. The maximum foundation-additional pressure occurred directly above the grouting center and gradually diminished as the horizontal distance from the grouting location increased. Variations in surface displacement, excess pore water pressure, and additional base pressure induced by grouting were systematically analyzed. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

26 pages, 15613 KiB  
Article
Post-Little Ice Age Equilibrium-Line Altitude and Temperature Changes in the Greater Caucasus Based on Small Glaciers
by Levan G. Tielidze, Andrew N. Mackintosh, Alexander Gavashelishvili, Lela Gadrani, Akaki Nadaraia and Mikheil Elashvili
Remote Sens. 2025, 17(9), 1486; https://doi.org/10.3390/rs17091486 - 22 Apr 2025
Viewed by 1510
Abstract
Understanding glacier and climate variations since pre-Industrial times is crucial for evaluating the present-day glacier response to climate change. Here, we focus on twelve small glaciers (≤2.0 km2) on both the northern and southern slopes of the Greater Caucasus to assess [...] Read more.
Understanding glacier and climate variations since pre-Industrial times is crucial for evaluating the present-day glacier response to climate change. Here, we focus on twelve small glaciers (≤2.0 km2) on both the northern and southern slopes of the Greater Caucasus to assess post-Little Ice Age glacier–climate fluctuations in this region. We reconstructed the Little Ice Age glacier extent using a manual detection method based on moraines. More recent glacier fluctuations were reconstructed using historical topographical maps and satellite imagery. Digital elevation models were used to estimate the topographic characteristics of glaciers. We also used the accumulation area ratio (AAR) method and a regional temperature lapse rate to reconstruct glacier snowlines and corresponding temperatures since the 1820s. The results show that all selected glaciers have experienced area loss, terminus retreat, and equilibrium line altitude (ELA) uplift over the last 200 years. The total area of the glaciers has decreased from 19.1 ± 0.9 km2 in the 1820s to 9.7 ± 0.2 km2 in 2020, representing a −49.2% loss, with an average annual reduction of −0.25%. The most dramatic reduction occurred between the 1960s and 2020, when the glacier area shrank by −35.5% or −0.59% yr−1. The average terminus retreat for all selected glaciers was −1278 m (−6.4 m/yr−1) during the last 200 years, while the average retreat over the past 60 years was −576 m (−9.6 m/yr−1). AAR-based (0.6 ± 0.05) ELA reconstructions from all twelve glaciers suggest that the average ELA in the 1820s was about 180 m lower (3245 ± 50 m a.s.l.) than today (3425 ± 50 m a.s.l.), corresponding to surface air temperatures <1.1 ± 0.3 °C than today (2001–2020). The largest warming occurred between the 1960s and today, when snowlines rose by 105 m and air temperatures increased by <0.6 ± 0.3 °C. This study represents a first attempt at using glacier evidence to estimate climate changes in the Caucasus region since the Little Ice Age, and it can be used as a baseline for future studies. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

17 pages, 28886 KiB  
Article
Tectonic Geomorphology and Quaternary Activity Characteristics of the Jining River Northern Margin Fault, Inner Mongolia, North China
by Haowen Ma and Shaopeng Dong
Appl. Sci. 2025, 15(9), 4610; https://doi.org/10.3390/app15094610 - 22 Apr 2025
Viewed by 440
Abstract
The Jining River northern margin fault is a newly discovered Quaternary active fault, located at the junction of the northeastern corner of the Ordos Block and the Yinshan-Yanshan Uplift (Jining District, Ulanqab, Inner Mongolia). The northeastern margin of the Ordos Block, where the [...] Read more.
The Jining River northern margin fault is a newly discovered Quaternary active fault, located at the junction of the northeastern corner of the Ordos Block and the Yinshan-Yanshan Uplift (Jining District, Ulanqab, Inner Mongolia). The northeastern margin of the Ordos Block, where the fault is located, is a juxtaposition zone between several active tectonic plates, with widespread active fault distribution and complex tectonic relationships in the region. This study primarily uses seismogeological investigation methods, aiming to reveal the Quaternary activity and seismic hazard of this fault, providing a new analytical perspective on regional seismic activity. Through various methods, geomorphological measurements along the linear scarp of the fault were conducted to determine the distribution of the fault, the surface displacement, and the rupture length caused by its activity. Trenches were excavated at two study sites (Hanqingba and Erjiayan), revealing evidence of paleoearthquake activity. The activity age of the fault was determined through OSL (Optically Stimulated Luminescence) dating of the trench samples. The main conclusions include the following: (1) The fault is a normal fault, spreading along the northern boundary of the Jining Basin, an independent small-scale graben basin in the region, with fault activity controlling basin evolution. (2) The fault was active from the late Middle Pleistocene to the Late Pleistocene, causing scarps in the geomorphology. Since the late Middle Pleistocene, its activity has gradually weakened, with no surface rupture in the Late Pleistocene, and the fault has been inactive in the Holocene. Full article
(This article belongs to the Special Issue Paleoseismology and Disaster Prevention)
Show Figures

Figure 1

33 pages, 44898 KiB  
Article
The Supra-Salt Sedimentary Sequence of the North Caspian Depression: Stratigraphy and Sedimentary History
by Aitbek Akhmetzhanov, Saule Uvakova, Kenzhebek Ibrashev, Gauhar Akhmetzhanova and Vyacheslav Zhemchuzhnikov
Geosciences 2025, 15(4), 143; https://doi.org/10.3390/geosciences15040143 - 9 Apr 2025
Viewed by 602
Abstract
The North Caspian Basin, known for its oil and gas potential, was formed because of the evolution of the ancient Tethys Ocean and is also a result of the collision of the East European, Kazakhstania, and Siberian paleocontinents. At the beginning of the [...] Read more.
The North Caspian Basin, known for its oil and gas potential, was formed because of the evolution of the ancient Tethys Ocean and is also a result of the collision of the East European, Kazakhstania, and Siberian paleocontinents. At the beginning of the Mesozoic Era, it was a part of the northern continental margin of the Neo-Tethys, which formed Eurasia. In the Late Triassic and Early Jurassic, a major restructuring of the North Caspian sedimentary basin occurred, characterized by angular unconformity and the erosion of underlying sediments in the coastal zones of the basin. The sedimentary succession of the depression accumulating in the Mesozoic Era consisted of alternating siliciclastic and carbonate rocks. It began to form due to the destruction of the uplifts formed north and west of the East European craton and Urals, which resulted in coastal clastic material in the Triassic and Jurassic, but by the end of the Jurassic and Cretaceous, when all uplifts existing in the north of Tethys were leveled, it was mostly marine environments that contributed to the accumulation of siliciclastic and carbonate strata. The appearance of a large amount of sedimentary material towards the center of the depression, causing stress, as well as the deflection of the basement, contributed to fault tectonics and the resumption and manifestation of salt tectonics. As a result of the continuous diapirism of salt bodies during the Late Mesozoic, mini basins were formed, in which different sedimentogenesis was manifested. These processes contributed to the redistribution of hydrocarbons from the underlying pre-salt formations to the intermediate depth interval post-salt succession with Permian–Triassic and also near-surface Jurassic–Cretaceous formations. Full article
(This article belongs to the Section Sedimentology, Stratigraphy and Palaeontology)
Show Figures

Figure 1

23 pages, 56521 KiB  
Article
Multi-Source SAR-Based Surface Deformation Analysis of Edgecumbe Volcano, Alaska, and Its Relationship with Earthquakes
by Shuangcheng Zhang, Ziheng Ju, Yufen Niu, Zhong Lu, Qianyou Fan, Jinqi Zhao, Zhengpei Zhou, Jinzhao Si, Xuhao Li and Yiyao Li
Remote Sens. 2025, 17(7), 1307; https://doi.org/10.3390/rs17071307 - 5 Apr 2025
Viewed by 611
Abstract
Edgecumbe, a dormant volcano located on Kruzof Island in the southeastern part of Alaska, USA, west of the Sitka Strait, has exhibited increased volcanic activity since 2018. To assess the historical and current intensity of this activity and explore its relationship with seismic [...] Read more.
Edgecumbe, a dormant volcano located on Kruzof Island in the southeastern part of Alaska, USA, west of the Sitka Strait, has exhibited increased volcanic activity since 2018. To assess the historical and current intensity of this activity and explore its relationship with seismic events in the surrounding region, this study utilized data from the ERS-1/2, ALOS-1, and Sentinel-1 satellites. The Permanent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) and Small Baseline Subset InSAR (SBAS-InSAR) techniques were employed to obtain surface deformation data spanning nearly 30 years. Based on the acquired deformation field, the point-source Mogi model was applied to invert the position and temporal volume changes in the volcanic source. Then, by integrating seismic activity data from the surrounding area, the correlation between volcanic activity and earthquake occurrences was analyzed. The results indicate the following: (1) the coherence of interferograms is influenced by seasonal variations, with snow accumulation during the winter months negatively impacting interferometric coherence. (2) Between 1992 and 2000, the surface of the volcano remained relatively stable. From 2007 to 2010, the frequency of seismic events increased, leading to significant surface deformation, with the maximum Line-of-Sight (LOS) deformation rate during this period reaching −26 mm/yr. Between 2015 and 2023, the volcano entered a phase of accelerated uplift, with surface deformation rates increasing to 68 mm/yr after August 2018. (3) The inversion results for the period from 2015 to 2023 show that the volcanic source, located at a depth of 5.4 km, experienced expansion in its magma chamber, with a volumetric increase of 57.8 × 106 m3. These inversion results are consistent with surface deformation fields obtained from both ascending and descending orbits, with cumulative LOS displacement reaching approximately 210 mm and 250 mm in the ascending and descending tracks, respectively. (4) Long-term volcanic surface deformation, changes in magma source volume, and seismic activity suggest that the earthquakes occurring after 2018 have facilitated the expansion of the volcanic magma source and intensified surface deformation. The uplift rate around the volcano has significantly increased. Full article
Show Figures

Figure 1

Back to TopTop