Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,339)

Search Parameters:
Keywords = supply and demand management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1851 KiB  
Article
Evaluating Supply Chain Finance Instruments for SMEs: A Stackelberg Approach to Sustainable Supply Chains Under Government Support
by Shilpy and Avadhesh Kumar
Sustainability 2025, 17(15), 7124; https://doi.org/10.3390/su17157124 - 6 Aug 2025
Abstract
This research aims to investigate financing decisions of capital-constrained small and medium-sized enterprise (SME) manufacturers and distributors under a Green Supply Chain (GSC) framework. By evaluating the impact of Supply Chain Finance (SCF) instruments, this study utilizes Stackelberg game model to explore a [...] Read more.
This research aims to investigate financing decisions of capital-constrained small and medium-sized enterprise (SME) manufacturers and distributors under a Green Supply Chain (GSC) framework. By evaluating the impact of Supply Chain Finance (SCF) instruments, this study utilizes Stackelberg game model to explore a decentralized decision-making system. To our knowledge, this investigation represents the first exploration of game models that uniquely compares financing through trade credit, where the manufacturer offers zero-interest credit without discounts with reverse factoring, while also considering distributor’s efforts on sustainable marketing under the impact of supportive government policies. Our study suggests that manufacturers should adopt reverse factoring for optimal profits and actively participate in distributors’ financing decisions to address inefficiencies in decentralized systems. Furthermore, the distributor’s demand quantity, profits and sustainable marketing efforts show significant increase under reverse factoring, aided by favorable policies. Finally, the results are validated through Python 3.8.8 simulations in the Anaconda distribution, offering meaningful insights for policymakers and supply chain managers. Full article
Show Figures

Figure 1

27 pages, 815 KiB  
Article
Material Flow Analysis for Demand Forecasting and Lifetime-Based Inflow in Indonesia’s Plastic Bag Supply Chain
by Erin Octaviani, Ilyas Masudin, Amelia Khoidir and Dian Palupi Restuputri
Logistics 2025, 9(3), 105; https://doi.org/10.3390/logistics9030105 - 5 Aug 2025
Abstract
Background: this research presents an integrated approach to enhancing the sustainability of plastic bag supply chains in Indonesia by addressing critical issues related to ineffective post-consumer waste management and low recycling rates. The objective of this study is to develop a combined [...] Read more.
Background: this research presents an integrated approach to enhancing the sustainability of plastic bag supply chains in Indonesia by addressing critical issues related to ineffective post-consumer waste management and low recycling rates. The objective of this study is to develop a combined framework of material flow analysis (MFA) and sustainable supply chain planning to improve demand forecasting and inflow management across the plastic bag lifecycle. Method: the research adopts a quantitative method using the XGBoost algorithm for forecasting and is supported by a polymer-based MFA framework that maps material flows from production to end-of-life stages. Result: the findings indicate that while production processes achieve high efficiency with a yield of 89%, more than 60% of plastic bag waste remains unmanaged after use. Moreover, scenario analysis demonstrates that single interventions are insufficient to achieve circularity targets, whereas integrated strategies (e.g., reducing export volumes, enhancing waste collection, and improving recycling performance) are more effective in increasing recycling rates beyond 35%. Additionally, the study reveals that increasing domestic recycling capacity and minimizing dependency on exports can significantly reduce environmental leakage and strengthen local waste management systems. Conclusions: the study’s novelty lies in demonstrating how machine learning and material flow data can be synergized to inform circular supply chain decisions and regulatory planning. Full article
(This article belongs to the Section Sustainable Supply Chains and Logistics)
Show Figures

Figure 1

25 pages, 5349 KiB  
Review
A Comprehensive Survey of Artificial Intelligence and Robotics for Reducing Carbon Emissions in Supply Chain Management
by Mariem Mrad, Mohamed Amine Frikha and Younes Boujelbene
Logistics 2025, 9(3), 104; https://doi.org/10.3390/logistics9030104 - 4 Aug 2025
Abstract
Background: Artificial intelligence (AI) and robotics are increasingly pivotal for reducing carbon emissions in supply chain management (SCM); however, research exploring their combined potential from a sustainability perspective remains fragmented. This study aims to systematically map the research landscape and synthesize evidence [...] Read more.
Background: Artificial intelligence (AI) and robotics are increasingly pivotal for reducing carbon emissions in supply chain management (SCM); however, research exploring their combined potential from a sustainability perspective remains fragmented. This study aims to systematically map the research landscape and synthesize evidence on the applications, benefits, and challenges. Methods: A systematic scoping review was conducted on 23 peer-reviewed studies from the Scopus database, published between 2013 and 2024. Data were systematically extracted and analyzed for publication trends, application domains (e.g., transportation, warehousing), specific AI and robotic technologies, emissions reduction strategies, and implementation challenges. Results: The analysis reveals that AI-driven logistics optimization is the most frequently reported strategy for reducing transportation emissions. At the same time, robotic automation is commonly associated with improved energy efficiency in warehousing. Despite these benefits, the reviewed literature consistently identifies significant barriers, including the high energy demands of AI computation and complexities in data integration. Conclusions: This review confirms the transformative potential of AI and robotics for developing low-carbon supply chains. An evidence-based framework is proposed to guide practical implementation and identify critical gaps, such as the need for standardized validation benchmarks, to direct future research and accelerate the transition to sustainable SCM. Full article
Show Figures

Figure 1

32 pages, 879 KiB  
Article
Barrier Analysis of Flexibilization of Cooling Supply Systems
by Dana Laureen Laband, Martin Stöckl, Annedore Mittreiter and Uwe Holzhammer
Energies 2025, 18(15), 4133; https://doi.org/10.3390/en18154133 - 4 Aug 2025
Abstract
The present study examines the barriers that prevent cooling system flexibility from being optimized. In the context of an increasing reliance on renewable energy sources, the necessity for flexible energy utilization is becoming increasingly apparent. A survey and discussion groups were conducted with [...] Read more.
The present study examines the barriers that prevent cooling system flexibility from being optimized. In the context of an increasing reliance on renewable energy sources, the necessity for flexible energy utilization is becoming increasingly apparent. A survey and discussion groups were conducted with various stakeholders within the cooling value chain to obtain their experiences and insights regarding barriers to flexibilization. The findings point out that economic, technological, and regulatory barriers are the primary factors impeding the implementation of flexible solutions. In particular, high investment costs, complex technical implementation, a lack of information, and a complicated legal framework were identified as significant impediments. To enhance the flexibility of cooling systems, coordinated efforts are necessary to address these barriers. Practical examples, training, and the standardization and digitalization of processes could facilitate the widespread implementation of flexible cooling systems. Full article
Show Figures

Figure 1

19 pages, 2280 KiB  
Article
A Swap-Integrated Procurement Model for Supply Chains: Coordinating with Long-Term Wholesale Contracts
by Min-Yeong Ryu and Pyung-Hoi Koo
Mathematics 2025, 13(15), 2495; https://doi.org/10.3390/math13152495 - 3 Aug 2025
Viewed by 179
Abstract
In today’s volatile supply chain environment, organizations require flexible and collaborative procurement strategies. Swap contracts, originally developed as financial instruments, have recently been adopted to address inventory imbalances—such as the 2021 COVID-19 vaccine swap between South Korea and Israel. Despite its increasing adoption [...] Read more.
In today’s volatile supply chain environment, organizations require flexible and collaborative procurement strategies. Swap contracts, originally developed as financial instruments, have recently been adopted to address inventory imbalances—such as the 2021 COVID-19 vaccine swap between South Korea and Israel. Despite its increasing adoption in the real world, theoretical studies on swap-based procurement remain limited. This study proposes an integrated model that combines buyer-to-buyer swap agreements with long-term wholesale contracts under demand uncertainty. The model quantifies the expected swap quantity between parties and embeds it into the profit function to derive optimal order quantities. Numerical experiments are conducted to compare the performance of the proposed strategy with that of a baseline wholesale contract. Sensitivity analyses are performed on key parameters, including demand asymmetry and swap prices. The numerical analysis indicates that the swap-integrated procurement strategy consistently outperforms procurement based on long-term wholesale contracts. Moreover, the results reveal that under the swap-integrated strategy, the optimal order quantity must be adjusted—either increased or decreased—depending on the demand scale of the counterpart and the specified swap price, deviating from the optimal quantity under traditional long-term contracts. These findings highlight the potential of swap-integrated procurement strategies as practical coordination mechanisms across both private and public sectors, offering strategic value in contexts such as vaccine distribution, fresh produce, and other critical products. Full article
(This article belongs to the Special Issue Theoretical and Applied Mathematics in Supply Chain Management)
Show Figures

Figure 1

25 pages, 2661 KiB  
Article
Fuzzy Logic-Based Energy Management Strategy for Hybrid Renewable System with Dual Storage Dedicated to Railway Application
by Ismail Hacini, Sofia Lalouni Belaid, Kassa Idjdarene, Hammoudi Abderazek and Kahina Berabez
Technologies 2025, 13(8), 334; https://doi.org/10.3390/technologies13080334 - 1 Aug 2025
Viewed by 204
Abstract
Railway systems occupy a predominant role in urban transport, providing efficient, high-capacity mobility. Progress in rail transport allows fast traveling, whilst environmental concerns and CO2 emissions are on the rise. The integration of railway systems with renewable energy source (RES)-based stations presents [...] Read more.
Railway systems occupy a predominant role in urban transport, providing efficient, high-capacity mobility. Progress in rail transport allows fast traveling, whilst environmental concerns and CO2 emissions are on the rise. The integration of railway systems with renewable energy source (RES)-based stations presents a promising avenue to improve the sustainability, reliability, and efficiency of urban transport networks. A storage system is needed to both ensure a continuous power supply and meet train demand at the station. Batteries (BTs) offer high energy density, while supercapacitors (SCs) offer both a large number of charge and discharge cycles, and high-power density. This paper proposes a hybrid RES (photovoltaic and wind), combined with batteries and supercapacitors constituting the hybrid energy storage system (HESS). One major drawback of trains is the long charging time required in stations, so they have been fitted with SCs to allow them to charge up quickly. A new fuzzy energy management strategy (F-EMS) is proposed. This supervision strategy optimizes the power flow between renewable energy sources, HESS, and trains. DC bus voltage regulation is involved, maintaining BT and SC charging levels within acceptable ranges. The simulation results, carried out using MATLAB/Simulink, demonstrate the effectiveness of the suggested fuzzy energy management strategy for various production conditions and train demand. Full article
Show Figures

Figure 1

32 pages, 3202 KiB  
Article
An Integrated Framework for Urban Water Infrastructure Planning and Management: A Case Study for Gauteng Province, South Africa
by Khathutshelo Godfrey Maumela, Tebello Ntsiki Don Mathaba and Mahalieo Kao
Water 2025, 17(15), 2290; https://doi.org/10.3390/w17152290 - 1 Aug 2025
Viewed by 237
Abstract
Effective water infrastructure planning and management is key to sustainable water supply globally. This research assesses water infrastructure planning and management in Gauteng, South Africa, amid growing challenges from rapid urbanisation, high water demand, climate change, and resource scarcity. These challenges threaten the [...] Read more.
Effective water infrastructure planning and management is key to sustainable water supply globally. This research assesses water infrastructure planning and management in Gauteng, South Africa, amid growing challenges from rapid urbanisation, high water demand, climate change, and resource scarcity. These challenges threaten the achievement of Sustainable Development Goals 6 and 11; hence, an integrated approach is required for water sustainability. The study responds to a gap in the literature, which often treats planning and management separately, by adopting an integrated, multi-institutional approach across the water value chain. A mixed-methods triangulation strategy was employed for data collection whereby surveys provided quantitative data, while two sets of structured interviews were conducted: the first round to determine causal relationships among the critical success factors and the second round to validate the proposed framework. The findings reveal a misalignment between infrastructure planning and implementation, contributing to infrastructure backlogs and a short- to medium-term focus. Infrastructure management is further constrained by inadequate system redundancy, leading to ineffective maintenance. External factors such as delayed adoption of 4IR technologies, lack of climate resilient strategies, and fragmented institutional coordination exacerbate these issues. Using Decision-Making Trial and Evaluation Laboratory (DEMATEL) analysis, the study identified Strategic Alignment and a Value-Driven Approach as the most influential critical success factors in water asset management. The research concludes by proposing an integrated water infrastructure and planning framework that supports sustainable water supply. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

17 pages, 4929 KiB  
Article
Assessment of Grassland Carrying Capacity and Grass–Livestock Balance in the Three River Headwaters Region Under Different Scenarios
by Wenjing Li, Qiong Luo, Zhe Chen, Yanlin Liu, Zhouyuan Li and Wenying Wang
Biology 2025, 14(8), 978; https://doi.org/10.3390/biology14080978 (registering DOI) - 1 Aug 2025
Viewed by 170
Abstract
It is crucial to clarify the grassland carrying capacity (CC) and the balance between grass and livestock under different scenarios for ecological protection and sustainable development in the Three River Headwaters Region (TRHR). This study focused on the TRHR and used livestock data, [...] Read more.
It is crucial to clarify the grassland carrying capacity (CC) and the balance between grass and livestock under different scenarios for ecological protection and sustainable development in the Three River Headwaters Region (TRHR). This study focused on the TRHR and used livestock data, MODIS Net Primary Productivity (NPP) data, and artificial supplementary feeding data to analyze grassland CC and explore changes in the grass–livestock balance across various scenarios. The results showed that the theoretical CC of edible forage under complete grazing conditions was much lower than that of crude protein under nutritional carrying conditions. Furthermore, without increasing the grazing intensity of natural grasslands, artificial supplementary feeding reduced overstocking areas by 21%. These results suggest that supplementary feeding effectively addresses the imbalance between forage supply and demand, serving as a key measure for achieving sustainable grassland livestock husbandry. Despite the effective mitigation of grassland degradation in the TRHR due to strict grass–livestock balance policies and ecological restoration projects, the actual livestock CC exceeded the theoretical capacity, leading to overgrazing in some areas. To achieve desired objectives, more effective grassland management strategies must be implemented in the future to minimize spatiotemporal conflicts between grasses and livestock and ensure the health and stability of grassland ecosystems. Full article
(This article belongs to the Section Conservation Biology and Biodiversity)
Show Figures

Graphical abstract

26 pages, 2081 KiB  
Article
Tariff-Sensitive Global Supply Chains: Semi-Markov Decision Approach with Reinforcement Learning
by Duygu Yilmaz Eroglu
Systems 2025, 13(8), 645; https://doi.org/10.3390/systems13080645 - 1 Aug 2025
Viewed by 193
Abstract
Global supply chains often face uncertainties in production lead times, fluctuating exchange rates, and varying tariff regulations, all of which can significantly impact total profit. To address these challenges, this study formulates a multi-country supply chain problem as a Semi-Markov Decision Process (SMDP), [...] Read more.
Global supply chains often face uncertainties in production lead times, fluctuating exchange rates, and varying tariff regulations, all of which can significantly impact total profit. To address these challenges, this study formulates a multi-country supply chain problem as a Semi-Markov Decision Process (SMDP), integrating both currency variability and tariff levels. Using a Q-learning-based method (SMART), we explore three scenarios: (1) wide currency gaps under a uniform tariff, (2) narrowed currency gaps encouraging more local sourcing, and (3) distinct tariff structures that highlight how varying duties can reshape global fulfillment decisions. Beyond these baselines we analyze uncertainty-extended variants and targeted sensitivities (quantity discounts, tariff escalation, and the joint influence of inventory holding costs and tariff costs). Simulation results, accompanied by policy heatmaps and performance metrics, illustrate how small or large shifts in exchange rates and tariffs can alter sourcing strategies, transportation modes, and inventory management. A Deep Q-Network (DQN) is also applied to validate the Q-learning policy, demonstrating alignment with a more advanced neural model for moderate-scale problems. These findings underscore the adaptability of reinforcement learning in guiding practitioners and policymakers, especially under rapidly changing trade environments where exchange rate volatility and incremental tariff changes demand robust, data-driven decision-making. Full article
(This article belongs to the Special Issue Modelling and Simulation of Transportation Systems)
Show Figures

Figure 1

26 pages, 1490 KiB  
Article
Impacts of Optimistic Green R&D in a Sustainable Supply Chain with Information Asymmetry
by Shengzhong Huang, Yifeng Lei and Hongyong Fu
Sustainability 2025, 17(15), 6970; https://doi.org/10.3390/su17156970 - 31 Jul 2025
Viewed by 143
Abstract
With consumers increasing in environmental awareness, manufacturers have integrated green R&D into their strategies, aiming to grasp the green market. However, manufacturers may be too bullish on the market potential of green products and maintain an optimistic attitude toward green R&D. Despite having [...] Read more.
With consumers increasing in environmental awareness, manufacturers have integrated green R&D into their strategies, aiming to grasp the green market. However, manufacturers may be too bullish on the market potential of green products and maintain an optimistic attitude toward green R&D. Despite having an optimistic attitude, manufacturers often have no demand information advantage over downstream retailers due to their position in the supply chain, away from the market. It is worth exploring what impact optimistic green R&D in a sustainable supply chain with demand information asymmetry will have. Previous studies have not managed to reveal this. In this study, a stylized model is introduced to explore this question. The main findings are as follows: (1) optimistic green R&D increases the feasibility of the retailer sharing demand information, which facilitates information communication in the sustainable supply chain; (2) in most cases, optimistic green R&D does not bring higher profits for the manufacturer, yet is likely to allow the retailer to earn more, thereby resulting in a loss–win outcome; and (3) depending on the green R&D efficiency of the manufacturer and the consumer’s environmental awareness, optimistic green R&D may not generate higher environmental benefits. Full article
Show Figures

Figure 1

29 pages, 4159 KiB  
Review
Nanomaterials for Smart and Sustainable Food Packaging: Nano-Sensing Mechanisms, and Regulatory Perspectives
by Arjun Muthu, Duyen H. H. Nguyen, Chaima Neji, Gréta Törős, Aya Ferroudj, Reina Atieh, József Prokisch, Hassan El-Ramady and Áron Béni
Foods 2025, 14(15), 2657; https://doi.org/10.3390/foods14152657 - 29 Jul 2025
Viewed by 469
Abstract
The global food industry is facing growing pressure to enhance food safety, extend shelf life, minimize waste, and adopt environmentally sustainable packaging solution. Nanotechnology offers innovative ways to meet these demands by enabling the creation of smart and sustainable food packaging systems. Due [...] Read more.
The global food industry is facing growing pressure to enhance food safety, extend shelf life, minimize waste, and adopt environmentally sustainable packaging solution. Nanotechnology offers innovative ways to meet these demands by enabling the creation of smart and sustainable food packaging systems. Due to their unique properties, nanomaterials can significantly enhance the functional performance of packaging by boosting mechanical strength, barrier efficiency, antimicrobial activity, and responsiveness to environmental stimuli. This review provides a comprehensive overview of nanomaterials used as smart and sustainable food packaging, focusing on their role in active and intelligent packaging systems. By integrating nanomaterials like metal and metal oxide nanoparticles, carbon-based nanostructures, and nano-biopolymers, packaging can now perform real-time sensing, spoilage detection, and traceability. These systems improve food quality management and supply chain transparency while supporting global sustainability goals. The review also discusses potential risks related to nanomaterials’ migration, environmental impact, and consumer safety, as well as the current regulatory landscape and limitations in industrial scalability. Emphasis is placed on the importance of standardized safety assessments and eco-friendly design to support responsible innovation. Overall, nano-enabled smart packaging represents a promising strategy for advancing food safety and sustainability. Future developments will require collaboration across disciplines and robust regulatory frameworks to ensure the safe and practical application of nanotechnology in food systems. Full article
Show Figures

Graphical abstract

27 pages, 3602 KiB  
Article
Optimal Dispatch of a Virtual Power Plant Considering Distributed Energy Resources Under Uncertainty
by Obed N. Onsomu, Erman Terciyanlı and Bülent Yeşilata
Energies 2025, 18(15), 4012; https://doi.org/10.3390/en18154012 - 28 Jul 2025
Viewed by 315
Abstract
The varying characteristics of grid-connected energy resources necessitate a clear and effective approach for managing and scheduling generation units. Without proper control, high levels of renewable integration can pose challenges to optimal dispatch, especially as more generation sources, like wind and solar PV, [...] Read more.
The varying characteristics of grid-connected energy resources necessitate a clear and effective approach for managing and scheduling generation units. Without proper control, high levels of renewable integration can pose challenges to optimal dispatch, especially as more generation sources, like wind and solar PV, are introduced. As a result, conventional power sources require an advanced management system, for instance, a virtual power plant (VPP), capable of accurately monitoring power supply and demand. This study thoroughly explores the dispatch of battery energy storage systems (BESSs) and diesel generators (DGs) through a distributionally robust joint chance-constrained optimization (DR-JCCO) framework utilizing the conditional value at risk (CVaR) and heuristic-X (H-X) algorithm, structured as a bilevel optimization problem. Furthermore, Binomial expansion (BE) is employed to linearize the model, enabling the assessment of BESS dispatch through a mathematical program with equilibrium constraints (MPECs). The findings confirm the effectiveness of the DRO-CVaR and H-X methods in dispatching grid network resources and BE under the MPEC framework. Full article
(This article belongs to the Special Issue Review Papers in Energy Storage and Related Applications)
Show Figures

Figure 1

25 pages, 4048 KiB  
Article
Grid Stability and Wind Energy Integration Analysis on the Transmission Grid Expansion Planned in La Palma (Canary Islands)
by Raúl Peña, Antonio Colmenar-Santos and Enrique Rosales-Asensio
Processes 2025, 13(8), 2374; https://doi.org/10.3390/pr13082374 - 26 Jul 2025
Viewed by 443
Abstract
Island electrical networks often face stability and resilience issues due to their weakly meshed structure, which lowers system inertia and compromises supply continuity. This challenge is further intensified by the increasing integration of renewable energy sources, promoted by decarbonization goals, whose intermittent and [...] Read more.
Island electrical networks often face stability and resilience issues due to their weakly meshed structure, which lowers system inertia and compromises supply continuity. This challenge is further intensified by the increasing integration of renewable energy sources, promoted by decarbonization goals, whose intermittent and variable nature complicates grid stability management. To address this, Red Eléctrica de España—the transmission system operator of Spain—has planned several improvements in the Canary Islands, including the installation of new wind farms and a second transmission circuit on the island of La Palma. This new infrastructure will complement the existing one and ensure system stability in the event of N-1 contingencies. This article evaluates the stability of the island’s electrical network through dynamic simulations conducted in PSS®E, analyzing four distinct fault scenarios across three different grid configurations (current, short-term upgrade and long-term upgrade with wind integration). Generator models are based on standard dynamic parameters (WECC) and calibrated load factors using real data from the day of peak demand in 2021. Results confirm that the planned developments ensure stable system operation under severe contingencies, while the integration of wind power leads to a 33% reduction in diesel generation, contributing to improved environmental and operational performance. Full article
Show Figures

Figure 1

17 pages, 2548 KiB  
Article
Enhancing Multi-Step Reservoir Inflow Forecasting: A Time-Variant Encoder–Decoder Approach
by Ming Fan, Dan Lu and Sudershan Gangrade
Geosciences 2025, 15(8), 279; https://doi.org/10.3390/geosciences15080279 - 24 Jul 2025
Viewed by 266
Abstract
Accurate reservoir inflow forecasting is vital for effective water resource management. Reliable forecasts enable operators to optimize storage and release strategies to meet competing sectoral demands—such as water supply, irrigation, and hydropower scheduling—while also mitigating flood and drought risks. To address this need, [...] Read more.
Accurate reservoir inflow forecasting is vital for effective water resource management. Reliable forecasts enable operators to optimize storage and release strategies to meet competing sectoral demands—such as water supply, irrigation, and hydropower scheduling—while also mitigating flood and drought risks. To address this need, in this study, we propose a novel time-variant encoder–decoder (ED) model designed specifically to improve multi-step reservoir inflow forecasting, enabling accurate predictions of reservoir inflows up to seven days ahead. Unlike conventional ED-LSTM and recursive ED-LSTM models, which use fixed encoder parameters or recursively propagate predictions, our model incorporates an adaptive encoder structure that dynamically adjusts to evolving conditions at each forecast horizon. Additionally, we introduce the Expected Baseline Integrated Gradients (EB-IGs) method for variable importance analysis, enhancing interpretability of inflow by incorporating multiple baselines to capture a broader range of hydrometeorological conditions. The proposed methods are demonstrated at several diverse reservoirs across the United States. Our results show that they outperform traditional methods, particularly at longer lead times, while also offering insights into the key drivers of inflow forecasting. These advancements contribute to enhanced reservoir management through improved forecasting accuracy and practical decision-making insights under complex hydroclimatic conditions. Full article
(This article belongs to the Special Issue AI and Machine Learning in Hydrogeology)
Show Figures

Figure 1

27 pages, 3280 KiB  
Article
Design and Implementation of a Robust Hierarchical Control for Sustainable Operation of Hybrid Shipboard Microgrid
by Arsalan Rehmat, Farooq Alam, Mohammad Taufiqul Arif and Syed Sajjad Haider Zaidi
Sustainability 2025, 17(15), 6724; https://doi.org/10.3390/su17156724 - 24 Jul 2025
Viewed by 418
Abstract
The growing demand for low-emission maritime transport and efficient onboard energy management has intensified research into advanced control strategies for hybrid shipboard microgrids. These systems integrate both AC and DC power domains, incorporating renewable energy sources and battery storage to enhance fuel efficiency, [...] Read more.
The growing demand for low-emission maritime transport and efficient onboard energy management has intensified research into advanced control strategies for hybrid shipboard microgrids. These systems integrate both AC and DC power domains, incorporating renewable energy sources and battery storage to enhance fuel efficiency, reduce greenhouse gas emissions, and support operational flexibility. However, integrating renewable energy into shipboard microgrids introduces challenges, such as power fluctuations, varying line impedances, and disturbances caused by AC/DC load transitions, harmonics, and mismatches in demand and supply. These issues impact system stability and the seamless coordination of multiple distributed generators. To address these challenges, we proposed a hierarchical control strategy that supports sustainable operation by improving the voltage and frequency regulation under dynamic conditions, as demonstrated through both MATLAB/Simulink simulations and real-time hardware validation. Simulation results show that the proposed controller reduces the frequency deviation by up to 25.5% and power variation improved by 20.1% compared with conventional PI-based secondary control during load transition scenarios. Hardware implementation on the NVIDIA Jetson Nano confirms real-time feasibility, maintaining power and frequency tracking errors below 5% under dynamic loading. A comparative analysis of the classical PI and sliding mode control-based designs is conducted under various grid conditions, such as cold ironing mode of the shipboard microgrid, and load variations, considering both the AC and DC loads. The system stability and control law formulation are verified through simulations in MATLAB/SIMULINK and practical implementation. The experimental results demonstrate that the proposed secondary control architecture enhances the system robustness and ensures sustainable operation, making it a viable solution for modern shipboard microgrids transitioning towards green energy. Full article
(This article belongs to the Special Issue Smart Grid Technologies and Energy Sustainability)
Show Figures

Figure 1

Back to TopTop