Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = superhydrophobic microporous membrane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 5935 KiB  
Article
Smart Superhydrophobic Filter Paper for Water/Oil Separation and Unidirectional Transportation of Liquid Droplet
by Yu-Ping Zhang, Ning Wang, De-Liang Chen, Yuan Chen, Meng-Jun Chen and Xin-Xin Chen
Membranes 2022, 12(12), 1188; https://doi.org/10.3390/membranes12121188 - 25 Nov 2022
Cited by 6 | Viewed by 2868
Abstract
Water/oil separation from their mixture and emulsion has been a prominent topic in fundamental research and in practical applications. In this work, a smart superhydrophobic membrane (SHP) was obtained by dipping an off-the-shelf laboratory filter paper in an ethanol suspension of trichloro (1H,1H,2H,2H-tridecafluoro-n-octyl) [...] Read more.
Water/oil separation from their mixture and emulsion has been a prominent topic in fundamental research and in practical applications. In this work, a smart superhydrophobic membrane (SHP) was obtained by dipping an off-the-shelf laboratory filter paper in an ethanol suspension of trichloro (1H,1H,2H,2H-tridecafluoro-n-octyl) silane, tetraethyl orthosilicate, and titanium dioxide nanoparticles with different dimensions of 20 and 100 nm. The selection of membrane substrates was optimized including different quantitative and quantitative filter papers with different filtration velocity (slow, intermediate, and fast). The as-prepared SHP was demonstrated to be superhydrophobic and photosensitive, which was used in the separation of carbon tetrachloride and water from their mixture and emulsion. Moreover, orderly aligned micropores were formed for the modified superhydrophobic filter papers by using nanosecond laser. Unidirectional penetration was obtained for the UV-irradiated paper with a bored pore in the range of 50–500 μm in the systems of air/water and water/oil. This study may promote the understanding of unidirectional transportation of liquid droplet and facilitate the design of interfacial materials with Janus-type wettability. Full article
Show Figures

Figure 1

20 pages, 8307 KiB  
Article
Facile Preparation of a Superhydrophobic iPP Microporous Membrane with Micron-Submicron Hierarchical Structures for Membrane Distillation
by Cuicui Hu, Zhensheng Yang, Qichao Sun, Zhihua Ni, Guofei Yan and Zhiying Wang
Polymers 2020, 12(4), 962; https://doi.org/10.3390/polym12040962 - 20 Apr 2020
Cited by 11 | Viewed by 3305
Abstract
A facile method combining micro-molding with thermally-induced phase separation (TIPS) to prepare superhydrophobic isotacticpolypropylene (iPP) microporous membranes with micron-submicron hierarchical structures is proposed in this paper. In this study, the hydrophobicity of the membrane was controlled by changing the size of micro-structures on [...] Read more.
A facile method combining micro-molding with thermally-induced phase separation (TIPS) to prepare superhydrophobic isotacticpolypropylene (iPP) microporous membranes with micron-submicron hierarchical structures is proposed in this paper. In this study, the hydrophobicity of the membrane was controlled by changing the size of micro-structures on the micro-structured mold and the temperature of the cooling bath. The best superhydrophobicity was achieved with a high water contact angle (WCA) of 161° and roll-off angle of 2°, which was similar to the lotus effect. The permeability of the membrane was greatly improved and the mechanical properties were maintained. The membrane prepared by the new method and subjected to 60h vacuum membrane distillation (VMD) was compared with a conventional iPP membrane prepared via the TIPS process. The flux of the former membrane was 31.2 kg/m2·h, and salt rejection was always higher than 99.95%, which was obviously higher than that of the latter membrane. The deposition of surface fouling on the former membrane was less and loose, and that of the latter membrane was greater and steady, which was attributed to the micron-submicron hierarchical structure of the former and the single submicron-structure of the latter. Additionally, the new method is expected to become a feasible and economical method for producing an ideal membrane for membrane distillation (MD) on a large scale. Full article
Show Figures

Graphical abstract

Back to TopTop