Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = subway station fire

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2348 KiB  
Article
Study on Smoke Flow and Temperature Distribution Patterns in Fires at Deeply Buried Subway Stations
by Huailin Yan, Heng Liu, Yongchang Zhao and Zirui Bian
Fire 2025, 8(8), 296; https://doi.org/10.3390/fire8080296 - 28 Jul 2025
Viewed by 367
Abstract
To enhance the fire safety protection level of deeply buried metro stations, this study conducted full-scale fire experiments based on Wulichong Station of Guiyang Metro Line 3. It systematically investigated the laws of smoke movement and temperature distribution under the coupled effects of [...] Read more.
To enhance the fire safety protection level of deeply buried metro stations, this study conducted full-scale fire experiments based on Wulichong Station of Guiyang Metro Line 3. It systematically investigated the laws of smoke movement and temperature distribution under the coupled effects of different fire source powers and smoke extraction system states. Through the set up of multiple sets of comparative test conditions, the study focused on analyzing the influence mechanism of the operation (on/off) of the smoke extraction system on smoke spread characteristics and temperature field distribution. The results indicate that under the condition where the smoke extraction system is turned off, the smoke exhibits typical stratified spread characteristics driven by thermal buoyancy, with the temperature rising significantly as the vertical height increases. When the smoke extraction system is activated, the horizontal airflow generated by mechanical smoke extraction significantly alters the flame morphology (with an inclination angle exceeding 45°), effectively extracting and discharging the hot smoke and leading to a more uniform temperature distribution within the space. Full article
(This article belongs to the Special Issue Advances in Fire Science and Fire Protection Engineering)
Show Figures

Figure 1

14 pages, 2449 KiB  
Article
Evacuation Route Determination in Indoor Architectural Environments Based on Dynamic Fire Risk Assessment
by Jiaojiao Bai, Xikui Lv, Liangtao Nie and Mingjing Fang
Buildings 2025, 15(10), 1715; https://doi.org/10.3390/buildings15101715 - 19 May 2025
Viewed by 510
Abstract
The enclosed nature of indoor building spaces during fires creates complex fire environments and restricted evacuation routes, substantially elevating the risk of mass casualties. Traditional static evacuation routes not only overlook the complexity of fire scenarios but also fail to satisfy safety requirements [...] Read more.
The enclosed nature of indoor building spaces during fires creates complex fire environments and restricted evacuation routes, substantially elevating the risk of mass casualties. Traditional static evacuation routes not only overlook the complexity of fire scenarios but also fail to satisfy safety requirements for evacuation. To address this issue, this study proposes an enhanced A* algorithm to determine evacuation paths based on dynamic fire risk assessment. A dynamic fire risk assessment model is established using key fire environment parameters (e.g., temperature, visibility, and toxic gas concentration) and their corresponding personnel harm thresholds. This model quantifies fire risks within a discrete space. The A* algorithm is improved by integrating fire risk values and initial direction constraints into its heuristic function and path update strategy, thereby increasing the algorithm’s accuracy and efficiency. Using a subway station fire as a case study, the simulation results indicate that the improved algorithm can update evacuation paths in line with the dynamic evolution of fire risks. It also identifies evacuation routes by balancing fire risk, distance, and initial direction. This approach maintains the original path direction while substantially reducing path risk, achieving an approximate 70% reduction in individual evacuation path risk. This method can guide building fire safety design and the formulation of emergency evacuation plans. It also serves as a reference for path guidance during emergencies. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

17 pages, 8379 KiB  
Article
Study on Performance of Coordinated Ventilation Strategies during T-Shaped Subway Station Hall Fire
by Yanan Hou, Wei Ding, Zhengbo Hou, Xingcheng Li, Ling Li, Zhihao Yang and Congling Shi
Fire 2025, 8(2), 56; https://doi.org/10.3390/fire8020056 - 29 Jan 2025
Cited by 1 | Viewed by 902
Abstract
A subway transfer station hall is crowded and complex in structure, which makes evacuation more difficult in case of a fire, but also provides more strategic options for smoke extraction. Full-scale experiments and numerical simulations are conducted to investigate the feasibility and performance [...] Read more.
A subway transfer station hall is crowded and complex in structure, which makes evacuation more difficult in case of a fire, but also provides more strategic options for smoke extraction. Full-scale experiments and numerical simulations are conducted to investigate the feasibility and performance of coordinated ventilation in a T-shaped transfer station hall, accounting for different fire source locations, ventilation modes, and fire shutter operations. It is found that the optimal ventilation strategy varies based on the fire location within the T-shaped configuration. For fires on the ‘T’s horizontal side, lateral airflow from longitudinal fans can effectively disrupt smoke spreading, with coordinated extraction strategies outperforming the traditional methods. However, for fires on the ‘T’s longitudinal side, horizontal fans are ineffective in controlling smoke flow, making the traditional fire shutter closure optimal. The idea of dispersing hot smoke to a reasonable degree can create better evacuation conditions for people near a fire, while creating almost no new danger zones. Full article
(This article belongs to the Special Issue Dynamics of Wind-Fire Interaction: Fundamentals and Applications)
Show Figures

Figure 1

24 pages, 8403 KiB  
Article
Experimental Study on the Seismic Performance of Confined High Walls of Autoclaved Aerated Concrete Panels Used in Subway Stations
by Xiaowei Li, Qidi Zhang, Han Bao, Yong Yao and Zhaoqiang Zhang
Buildings 2025, 15(3), 416; https://doi.org/10.3390/buildings15030416 - 28 Jan 2025
Viewed by 798
Abstract
This study addresses the unique challenge of the partition walls in subway stations, featuring high height, fire prevention, and located outside the main frames, by introducing a confined autoclaved aerated concrete (AAC) panel wall system. Different from studies on a main frame with [...] Read more.
This study addresses the unique challenge of the partition walls in subway stations, featuring high height, fire prevention, and located outside the main frames, by introducing a confined autoclaved aerated concrete (AAC) panel wall system. Different from studies on a main frame with infill walls, this study aimed to explore the seismic performance of partition walls, which were fabricated with confined high AAC panel walls and located outside the main frames. A custom-designed partition wall, measuring 6600 mm in height, 3400 mm in width, and 200 mm in thickness, underwent cyclic testing. A detailed analysis of specimen’s failure modes was conducted, focusing on seismic behavior such as hysteresis curves, envelope curves, ductility, stiffness degradation, and energy-dissipation capacity. Additionally, the study delved into shear deformation, relative slippage between AAC panels, and reinforcement strains within the specimen. Finally, the D-value method for calculating the initial stiffness of the confined high AAC panel walls and the weak sub-structural approach for determining the load-bearing capacity of confined high AAC panel walls were proposed and validated. The results indicate that the strength degradation factor of the confined high AAC panel walls ranges from 0.971 to 0.716. The drift of its upper portion accounts for 76.94–83.63% of the total drift, while the energy dissipation factor of its upper portion is 0.8–4.8% higher than that of the entire specimen. The yield and ultimate drift rotations of the entire confined high AAC panel wall and its upper portions satisfy the elastic and elastic-plastic inter-story drift rotation limits specified in the Chinese code. The calculated initial stiffness of the confining frame, obtained using the D-value method, closely aligns with experimental results, with a deviation of only 2.48%. Additionally, the load-bearing capacity calculated using the weak sub-structural approach deviates from the experimental average by just 4.30%. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

13 pages, 3709 KiB  
Article
Simulations on Evacuation Strategy and Evacuation Process of the Subway Train Under the Fire
by Xingji Wang, Bin Liu, Weilian Ma, Yuehai Feng, Qiang Li and Ting Sun
Fire 2024, 7(12), 464; https://doi.org/10.3390/fire7120464 - 6 Dec 2024
Cited by 3 | Viewed by 1787
Abstract
This study focuses on the safe evacuation strategy and evacuation process in the subway train under the fires. The subway station evacuation mode should be adopted if the power system of a subway train is normal on fire. While, the tunnel evacuation mode [...] Read more.
This study focuses on the safe evacuation strategy and evacuation process in the subway train under the fires. The subway station evacuation mode should be adopted if the power system of a subway train is normal on fire. While, the tunnel evacuation mode should be adopted if the power system of the train fails because of the effects of fire. Under the tunnel evacuation mode, the direction of tunnel smoke should be opposite to that of most passengers, and passengers should be evacuated toward the fresh wind. By using the numerical simulation software Pathfinder and PyroSim, the passenger evacuation time under different conditions is calculated, and the safety of the evacuation process is evaluated. The results show that the evacuation time of the station evacuation mode is obviously shorter than that of the tunnel evacuation mode. With the same conditions, the evacuation time of the tunnel evacuation mode is 2193 s, which is about four times as much as the evacuation time of the station evacuation mode (526 s). The total evacuation time increases with the total number of passengers and the proportion of older people and children. Under an oil pool fire, which is an extreme fire condition, the fire environment inside the train may reach a level threatening the passengers’ safety before the evacuation is complete, even before the door opens; therefore, special attention should be paid to the safety issues in stage from the fire begins to the evacuation complete. Full article
(This article belongs to the Special Issue Fire Numerical Simulation, Second Volume)
Show Figures

Figure 1

15 pages, 3373 KiB  
Article
Sensitivity Analysis of Influencing Factors of Fire Smoke Transport on Subway Station Platforms
by Huaitao Song, Qianlong Chen, Zeqi Wu, Haowei Yao, Zhen Lou, Zhenpeng Bai, Jingfen Li and Yueyang Yu
Fire 2023, 6(12), 448; https://doi.org/10.3390/fire6120448 - 23 Nov 2023
Cited by 2 | Viewed by 2603
Abstract
This paper investigates the sensitivity of factors influencing the transport of smoke in subway station fires by developing a three-dimensional physical model of a subway station using Building Information Modeling (BIM) technology and importing it into Fire Dynamics Simulator (FDS) software for numerical [...] Read more.
This paper investigates the sensitivity of factors influencing the transport of smoke in subway station fires by developing a three-dimensional physical model of a subway station using Building Information Modeling (BIM) technology and importing it into Fire Dynamics Simulator (FDS) software for numerical simulation. The orthogonal test method analyzes the effects of four common factors on temperature, CO concentration, and visibility. These factors are the mode of opening the screen door, the number of smoke vents opened, the number of smoke barriers, and the wind speed of the smoke vents. The results show that the smoke control system and the building structure influence smoke transport in subway stations, while the temperature and CO concentration gradually decrease as the distance from the fire source increases. In addition, the mode of opening the screen door is the most significant factor influencing temperature, CO concentration, and visibility using range and variance analysis. Moreover, the sensitivity analysis indicates that the optimal combination of all factors can significantly enhance the smoke exhaust efficiency. Compared with the average, the temperature optimal combination increases the smoke exhaust efficiency by 20.8%, CO concentration by 56.59%, and visibility by about 13.41%. This study provides a foundation for optimizing smoke control systems and formulating personnel evacuation strategies in subway stations. Full article
(This article belongs to the Special Issue Fire Numerical Simulation)
Show Figures

Figure 1

1 pages, 155 KiB  
Correction
Correction: Yan et al. Numerical Simulation on the Smoke Prevention Performance of Air Curtains in an Island-Type Subway Station. Fire 2023, 6, 177
by Xu Yan, Hongyun Yang, Huiqiang Mo, Ye Xie, Zhongfu Jin and Yang Zhou
Fire 2023, 6(10), 376; https://doi.org/10.3390/fire6100376 - 29 Sep 2023
Viewed by 1035
Abstract
In the original publication [...] Full article
18 pages, 8279 KiB  
Article
Numerical Simulation on the Smoke Prevention Performance of Air Curtains in an Island-Type Subway Station
by Xu Yan, Hongyun Yang, Huiqiang Mo, Ye Xie, Zhongfu Jin and Yang Zhou
Fire 2023, 6(5), 177; https://doi.org/10.3390/fire6050177 - 26 Apr 2023
Cited by 9 | Viewed by 2007 | Correction
Abstract
Subway fires are a major threat to the safe and smooth operation of subway stations. In this paper, an island-type subway station was taken as an example to conduct a series of numerical simulations using Fire Dynamics Simulator (FDS). The temperature, visibility, and [...] Read more.
Subway fires are a major threat to the safe and smooth operation of subway stations. In this paper, an island-type subway station was taken as an example to conduct a series of numerical simulations using Fire Dynamics Simulator (FDS). The temperature, visibility, and CO concentration in the subway station were analysed under different thicknesses and jet velocities of the air curtains. The smoke-prevention performance of the air curtains in the subway station was investigated. As the thickness and jet velocity increase, the flame tilts significantly, which greatly hinders the spread of smoke toward the stairs. The smoke temperature and CO concentration on the left side of the air curtains gradually decrease, while the visibility increases significantly. For a 3 MW fire scenario, to satisfy the evaluation criteria, the results show that the thickness of the air curtains needs to be at least 0.3 m, and the jet velocity needs to be at least 2 m/s. The sealing effectiveness (Esealing) tends to increase and then remains constant with increasing momentum, and the maximum is obtained when the momentum of the air curtains (Ia) is 12.5 kg·m/s2. Meanwhile, it is found that an energy-saving efficiency of 85.2% can be achieved by replacing positive pressure ventilation with air curtains. The results of this work can provide a significant reference for the design of smoke protection in subway stations. Full article
(This article belongs to the Special Issue Fire Numerical Simulation)
Show Figures

Figure 1

22 pages, 1026 KiB  
Article
Transient Nonlinear Heat Conduction in Concrete Structures: A Semi-Analytical Approach
by Hui Wang, Xi Chen, Eduardus Koenders, Ying Dai, Xingchun Huang, Qing Ai and Yong Yuan
Entropy 2023, 25(4), 583; https://doi.org/10.3390/e25040583 - 29 Mar 2023
Cited by 3 | Viewed by 2568
Abstract
Thermal loading, especially in fire scenarios, challenges the safety and long-term durability of concrete structures. The resulting heat propagation within the structure is governed by the heat conduction equation, which can be difficult to solve analytically because of the nonlinearity related to the [...] Read more.
Thermal loading, especially in fire scenarios, challenges the safety and long-term durability of concrete structures. The resulting heat propagation within the structure is governed by the heat conduction equation, which can be difficult to solve analytically because of the nonlinearity related to the thermophysical properties of concrete. A semi-analytical approach for the transient nonlinear heat conduction problem in concrete structures was established in the present work. The nonlinearity related to the temperature-dependent thermal conductivity, mass density, and specific heat capacity of heated concrete was taken into consideration. A Taylor series approximate solution was first established within a small neighborhood, employing the Boltzmann transformation in combination with the mean value theorem. Thereafter, it was extended to the whole domain by utilizing the Bernstein polynomial. The semi-analytical approach was validated by comparing it with the numerical results of two independent Finite Element simulations of nonlinear heat conduction along concrete plates, subjected to either moderate or fierce thermal loading. Absolute values of the relative errors are smaller than 5%. The validated semi-analytical approach was further applied to prediction of the temporal evolution of the temperature field of a scaled model of a subway station, subjected to fire disaster. The nonlinearities, related to the time-dependent surface temperature and the temperature-dependent thermophysical properties of concrete, were taken into consideration. The predictions agree well with the experimental measurements. The established semi-analytical approach exhibits good accuracy and stability, providing insight into the interaction between the thermophysical properties of concrete in the heat conduction process. Full article
(This article belongs to the Special Issue Applied Thermodynamics and Heat Transfer)
Show Figures

Figure 1

22 pages, 4708 KiB  
Review
A Scientometric Research on Applications and Advances of Fire Safety Evacuation in Buildings
by Yang Yang, Hongbo Du and Gang Yao
Fire 2023, 6(3), 83; https://doi.org/10.3390/fire6030083 - 22 Feb 2023
Cited by 8 | Viewed by 4839
Abstract
Fire safety evacuation has been used in numerous different kinds of buildings. This research conducts a scientometric review of fire safety evacuation applications and advances in the buildings to clarify the research trends of fire evacuation in the future and provide guidance for [...] Read more.
Fire safety evacuation has been used in numerous different kinds of buildings. This research conducts a scientometric review of fire safety evacuation applications and advances in the buildings to clarify the research trends of fire evacuation in the future and provide guidance for relevant research. A total of 3312 journals and conference proceedings were analyzed through different dimensions. The result proves that evacuation environments concentrate mainly on residential building, commercial building, school, and railway station. The characteristics of the evacuee have been gradually refined in recent years, including children, the elderly, patients, and vulnerable groups. The main experimental approaches of fire safety evacuation are evacuation drills, site records, and VR/AR experiments. The crowd behavior models mainly consist of six types: a cellular automata model, a social force model, a lattice gas model, a game-theoretic model, an animal agent-based model, and a computer agent-based model. The analysis results in the theoretical method are becoming gradually closer to the behavioral characteristics and movement data of the crowd during the actual evacuation with improvements of practical considerations. The study of evacuation drills, disaster rescue, emergencies, and other external environmental factors will become the forefront of future research, and subway stations, airports, high-rise building, and other personnel places will be the focus of the study of crowd evacuation. Full article
Show Figures

Figure 1

19 pages, 7054 KiB  
Article
Study on Fire Smoke Distribution and Safety Evacuation of Subway Station Based on BIM
by Nian Zhang, Yan Liang, Caifeng Zhou, Mengmeng Niu and Fei Wan
Appl. Sci. 2022, 12(24), 12808; https://doi.org/10.3390/app122412808 - 13 Dec 2022
Cited by 16 | Viewed by 3277
Abstract
A subway station is a confined space, so it is very important to evacuate people safely in case of a fire. It is necessary to study and analyze the smoke distribution and evacuation ability of different station layout schemes when fire occurs. Taking [...] Read more.
A subway station is a confined space, so it is very important to evacuate people safely in case of a fire. It is necessary to study and analyze the smoke distribution and evacuation ability of different station layout schemes when fire occurs. Taking a subway station as an example, this paper combines BIM (Building Information Model) technology with the fire safety evacuation of the subway station. First, we optimize the layout of the public area of the subway station and use BIM technology to establish a subway station model. Then, we use the PyroSim software to establish a subway station fire model to analyze fire development in different locations of the station in the optimization scheme, and determine the time it takes for CO concentration, smoke temperature and visibility to reach the critical value of danger. Finally, a subway station fire evacuation model is established using the Pathfinder software to study the safety evacuation of people in the subway station fire. The results show that it takes the shortest time for the visibility in the station to reach the critical value under fire conditions, and the threat to safety evacuation is the greatest. The available safe evacuation time of the optimized subway station is greater than the required safe evacuation time under different fire conditions, that is, the optimized subway station arrangement can ensure the safety evacuation of the personnel in the subway station under fire conditions. The research results can serve as reference for the optimization of safety evacuation designs of similar subway stations. Full article
(This article belongs to the Special Issue Advances in Tunnel and Underground Construction)
Show Figures

Figure 1

29 pages, 12324 KiB  
Article
Numerical and Experimental Investigation on the Effect of Mechanical Smoke Extraction Caused by External Wind in Subway Station Halls
by Jiali Liu, Xianwang Fan, Bei Wang, Tianzhen Ye, Zhangxiang Wu and Enzhong Xing
Appl. Sci. 2022, 12(23), 12014; https://doi.org/10.3390/app122312014 - 24 Nov 2022
Cited by 2 | Viewed by 1966
Abstract
When fires break out in subway station halls, traditional smoke extraction (TSE) systems are employed with the aim of preventing smoke from spreading to the platform and passageways. The functionality of TSE systems under the influence of external winds needs to be further [...] Read more.
When fires break out in subway station halls, traditional smoke extraction (TSE) systems are employed with the aim of preventing smoke from spreading to the platform and passageways. The functionality of TSE systems under the influence of external winds needs to be further explored. Based on a numerical method, this study investigated the effect on TSE systems under the influence of external wind. A numerical model was established and validated by means of full-scale field tests to ensure accuracy. Subsequently, the validated model was applied to study the effect of the external wind directions and speeds on the smoke diffusion distance. The results showed that when all entrances and exits were on the windward side, the external wind direction led to serious longitudinal diffusion of the smoke toward the side with fewer entrances and exits of the station hall, and the diffusion distance increased with increasing wind speed. The diffusion distance reached a maximum value of 61.32 m when the outdoor wind was 5 m/s, which was 67.9% higher than that under no wind. When all the entrances and exits were on the leeward side, the external wind had little influence on the degree of smoke spread, with the greatest smoke diffusion distance being only 4.76% longer than that under no wind. When two entrances and exits were on the windward side and the other on the leeward side, the external wind caused smoke to spread to a passageway, and the degree of smoke spread was more unfavorable at higher wind speeds, with the longest diffusion distance being 7.28 m. To prevent smoke from spreading to passageways and to effectively shorten the longitudinal diffusion distance of smoke, an optimized smoke control (OSC) system was proposed, employing center and passageway smoke barriers, which were able to shorten the diffusion distances by 35.45%, 13.64%, and 2.35%. In particular, smoke diffusion did not occur in passageways. This study provides a reference for the fire safety engineering design of subway stations. Full article
(This article belongs to the Topic Computational Fluid Dynamics (CFD) and Its Applications)
Show Figures

Figure 1

29 pages, 13301 KiB  
Article
Numerical Study on the Impact of Platform Screen Doors in a Subway Station with a Train on Fire
by Catalin Ioan Teodosiu and Vladimir Francisc Kubinyecz
Appl. Sci. 2022, 12(16), 8296; https://doi.org/10.3390/app12168296 - 19 Aug 2022
Cited by 8 | Viewed by 4574
Abstract
Almost all recently built subway stations are equipped with Platform Screen Doors (PSDs) due to the numerous proven benefits of these systems. In addition, PSDs are now being introduced in existing subway stations, but their operation in conjunction with previously designed ventilation systems [...] Read more.
Almost all recently built subway stations are equipped with Platform Screen Doors (PSDs) due to the numerous proven benefits of these systems. In addition, PSDs are now being introduced in existing subway stations, but their operation in conjunction with previously designed ventilation systems in case of emergency should be deeply studied. In this context, the objective of this study is to assess the efficiency of the planned emergency strategy (coupled operation, ventilation systems–PSDs system) in the case of trains on fire stopped at the platform of a subway station retrofitted with PSDs. The approach is based on Computational Fluid Dynamics (CFD) full-scale simulations to predict the airflow, temperature, and pollutant (carbon monoxide—CO and carbon dioxide—CO2) concentrations caused by the fire. The results show the evident contribution of PSDs in stopping the dispersion of hot and polluted air in the subway station during the entire simulation time (20 min from the arrival of the train on fire). Consequently, the investigated emergency strategy (exhausting air both through the “over track system” and the “under platform system”, simultaneously with the opening of the PSDs on the side with the train on fire) assures the safe evacuation of passengers as soon as they have left the subway train. The results indicate that access to the platform is not perturbed by high temperatures or dangerous concentrations of CO and CO2. Full article
(This article belongs to the Special Issue Urban Sustainability and Resilience of the Built Environments)
Show Figures

Figure 1

17 pages, 1713 KiB  
Article
Study on Fire Ventilation Control of Subway Tunnel: A Case Study for Dalian Subway
by Sihui Dong, Xinyu Zhang and Kang Wang
Sustainability 2022, 14(14), 8695; https://doi.org/10.3390/su14148695 - 15 Jul 2022
Cited by 7 | Viewed by 2639
Abstract
During the actual operation of a subway company, only one ventilation-control scheme is considered in the emergency plan, without considering the specific location difference of the fire source. However, in the case of an actual tunnel fire, the best ventilation-control scheme and personnel-evacuation [...] Read more.
During the actual operation of a subway company, only one ventilation-control scheme is considered in the emergency plan, without considering the specific location difference of the fire source. However, in the case of an actual tunnel fire, the best ventilation-control scheme and personnel-evacuation scheme are very different given the potential different locations of the fire source. We consider the use of a connecting channel for smoke exhaust or personnel evacuation and study the best ventilation-control scheme and personnel-evacuation scheme, when the fire source is at different positions relative to the train, and the train is at different positions relative to the connecting channel. Taking the tunnel between Yaojia Station and Nanguanling Station of Metro Line 1 in Dalian, China, as an example, a 1:1 full-scale numerical model is established to study dangerous fire-related conditions, such as carbon monoxide concentration, smoke visibility, and temperature. Nine typical working conditions of a tunnel-section fire are studied. The traditional and commonly used longitudinal-ventilation mode can ensure smoke control and personnel evacuation. For the working conditions of fire in the end of the train the ventilation-control scheme designed in this paper can ensure the safety of personnel. However, the working conditions of fire in the middle of a train are the most dangerous, and about 50% of personnel are affected by smoke during the escape. This paper analyzes the impact of the longitudinal-ventilation mode, transverse-ventilation mode, and semi-transverse-ventilation mode on personnel evacuation under such working conditions. It is found that with the semi-transverse-ventilation mode, personnel are least affected. Furthermore, semi-transverse ventilation requires a higher engineering investment, which is more than RMB 2000 per meter of tunnel. If the economic conditions are available, it is recommended to consider the semi-transverse-ventilation mode instead of the longitudinal-ventilation mode. The research results can provide guidance for the emergency-control scheme for subway-tunnel fire operation. Full article
Show Figures

Figure 1

24 pages, 5311 KiB  
Article
Fire Risk Assessment of Subway Stations Based on Combination Weighting of Game Theory and TOPSIS Method
by Weiyi Ju, Jie Wu, Qingchun Kang, Juncheng Jiang and Zhixiang Xing
Sustainability 2022, 14(12), 7275; https://doi.org/10.3390/su14127275 - 14 Jun 2022
Cited by 41 | Viewed by 4679
Abstract
With the rapid development of urban modernization, traffic congestion, travel delays, and other related inconveniences have become central features in people’s daily lives. The development of subway transit systems has alleviated some of these problems. However, numerous underground subway stations lack adequate fire [...] Read more.
With the rapid development of urban modernization, traffic congestion, travel delays, and other related inconveniences have become central features in people’s daily lives. The development of subway transit systems has alleviated some of these problems. However, numerous underground subway stations lack adequate fire safety protections, and this can cause rescue difficulties in the event of fire. Once the fire occurs, there will be huge property losses and casualties. In addition, this can have a vicious impact on sustainable development. Therefore, in order to make prevention in advance and implement targeted measures, we should quantify the risk and calculate the fire risk value. In this study, through consulting experts and analysis of data obtained from Changzhou Railway Company and the Emergency Management Bureau, the fire risk index system of subway stations was determined. We calculated the index weight by selecting the combination weighting method of game theory to eliminate the limitations and dependence of subjective and objective evaluation methods. The idea of relative closeness degree in TOPSIS method iwas introduced to calculate the risk value of each subway station. Finally, the subway station risk value model was established, and the risk values for each subway station were calculated and sorted. According to expert advice and the literature review, we divided the risk level into five levels, very high; high; moderate; low and very low. The results shown that 2 subway stations on Line 1 have very high fire risk, 2 subway stations on Line 1 have high fire risk, 2 subway stations on Line 1 have moderate fire risk, 8 subway stations on Line 1 have low fire risk, and 13 subway stations on Line 1 have very low fire risk. We hope that through this evaluation model method and the results to bring some references for local rail companies. Meanwhile, this evaluation model method also promotes resilience and sustainability in social development. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

Back to TopTop