Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (192)

Search Parameters:
Keywords = subtropical islands

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7301 KiB  
Article
Environmental Analysis for the Implementation of Underwater Paths on Sepultura Beach, Southern Brazil: The Case of Palythoa caribaeorum Bleaching Events at the Global Southern Limit of Species Distribution
by Rafael Schroeder, Lucas Gavazzoni, Carlos E. N. de Oliveira, Pedro H. M. L. Marques and Ewerton Wegner
Coasts 2025, 5(3), 26; https://doi.org/10.3390/coasts5030026 - 28 Jul 2025
Viewed by 205
Abstract
Recreational diving depends on healthy marine ecosystems, yet it can harm biodiversity through species displacement and habitat damage. Bombinhas, a biodiverse diving hotspot in southern Brazil, faces growing threats from human activity and climate change. This study assessed the ecological structure of Sepultura [...] Read more.
Recreational diving depends on healthy marine ecosystems, yet it can harm biodiversity through species displacement and habitat damage. Bombinhas, a biodiverse diving hotspot in southern Brazil, faces growing threats from human activity and climate change. This study assessed the ecological structure of Sepultura Beach (2018) for potential diving trails, comparing it with historical data from Porto Belo Island. Using visual censuses, transects, and photo-quadrats across six sampling campaigns, researchers documented 2419 organisms from five zoological groups, identifying 14 dominant species, including Haemulon aurolineatum and Diplodus argenteus. Cluster analysis revealed three ecological zones, with higher biodiversity at the site’s edges (Groups 1 and 3), but these areas also hosted endangered species like Epinephelus marginatus, complicating trail planning. A major concern was the widespread bleaching of the zoanthid Palythoa caribaeorum, a key ecosystem engineer, likely due to rising sea temperatures (+1.68 °C from 1961–2018) and declining chlorophyll-a levels post-2015. Comparisons with past data showed a 0.33 °C increase in species’ thermal preferences over 17 years, alongside lower trophic levels and greater ecological vulnerability, indicating tropicalization from the expanding Brazil Current. While Sepultura Beach’s biodiversity supports diving tourism, conservation efforts must address coral bleaching and endangered species protection. Long-term monitoring is crucial to track warming impacts, and adaptive management is needed for sustainable trail development. The study highlights the urgent need to balance ecotourism with climate resilience in subtropical marine ecosystems. Full article
Show Figures

Figure 1

17 pages, 1205 KiB  
Article
Quantifying Long-Term Spatiotemporal Variation in and Drivers of the Surface Daytime Urban Heat Island Effect in Major Chinese Cities: Perspectives from Different Climate Zones
by Minxue Zheng, Dianwei Zheng, Qiu Shen and Feng Jia
ISPRS Int. J. Geo-Inf. 2025, 14(7), 239; https://doi.org/10.3390/ijgi14070239 - 23 Jun 2025
Viewed by 499
Abstract
The urban heat island (UHI) effect and its associated extreme weather events have adverse impacts on human environment-coupled systems. However, the spatiotemporal variations in the UHI effect, as well as potential influencing factors, across climate zones remain poorly understood. This study explored how [...] Read more.
The urban heat island (UHI) effect and its associated extreme weather events have adverse impacts on human environment-coupled systems. However, the spatiotemporal variations in the UHI effect, as well as potential influencing factors, across climate zones remain poorly understood. This study explored how climate zones influenced the spatiotemporal variation in, trends in, and drivers of summer daytime surface UHI intensity (SUHII) in 220 Chinese cities located in five climate zones from 2000 to 2020. SUHII was quantified using MODIS land surface temperature (LST) data and remote sensing-derived urban built-up area masks were used to quantify SUHII. The Mann–Kendall test was applied to detect long-term SUHII trends, while Pearson correlation and stepwise multiple regression analyses were performed to identify key climatic and geographic drivers across different climate zones. The results indicated summer daytime SUHII values of 1.75 °C ± 1.19 °C, 1.74 °C ± 0.81 °C, 2.37 °C ± 0.75 °C, 2.14 °C ± 1.00 °C, and 2.36 °C ± 0.91 °C for the middle temperate zone (MTZ), south temperate zone (STZ), north subtropical zone (NSZ), middle subtropical zone (MSZ), and south subtropical zone (SSZ), respectively. In most cities, the SUHII increased significantly over time (p < 0.05). Pearson’s correlation analysis indicated that the enhanced vegetation index (EVI) and net radiation (NR) were moderately correlated with the SUHII in the MTZ, with correlation coefficients (r) of 0.465 and 0.42 (p < 0.05). Using a multivariate stepwise regression model, the relative contributions of various influencing factors to the UHI effect were quantified, explaining 27.1% to 57.2% of the variation across different climate zones. In particular, the economic vulnerability index and population density were the main factors affecting the SUHII in the MTZ and SSZ. Our findings support the development of policies aimed at mitigating the UHI effect by addressing the specific requirements of different climate zones to reduce. Full article
Show Figures

Figure 1

15 pages, 6310 KiB  
Article
Transcriptome and Metabolome Reveal Ferulic Acid as a Critical Phenylpropanoid for Drought Resistance in Dendrobium sinense
by Huiyan You, Ao Yi, Qiongjian Ou, Jia Wang and Jun Niu
Plants 2025, 14(12), 1841; https://doi.org/10.3390/plants14121841 - 15 Jun 2025
Viewed by 501
Abstract
As an endemic epiphytic orchid of Hainan Island, Dendrobium sinense exhibits remarkable ecological and economic value, serving important ornamental and medicinal purposes. The combination of its epiphytic growth habit and the distinct dry season in Hainan (November–May) under the subtropical monsoon climate makes [...] Read more.
As an endemic epiphytic orchid of Hainan Island, Dendrobium sinense exhibits remarkable ecological and economic value, serving important ornamental and medicinal purposes. The combination of its epiphytic growth habit and the distinct dry season in Hainan (November–May) under the subtropical monsoon climate makes D. sinense particularly vulnerable to recurrent drought stress. Therefore, elucidating its drought tolerance mechanisms offers critical insights for both conservation strategies and stress resistance studies in D. sinense. Using polyethylene glycol (PEG)-induced drought stress, chlorophyll content decreased significantly with increasing PEG concentration, while MDA and proline content, SOD, POD CAT, and APX activity showed a significant increase. The analysis of physiological indicators indicated that plants have been subjected to drought stress. We then conducted the joint analysis of the metabolomics and transcriptomics data. Cluster analysis of differentially expressed genes and metabolites showed that drought stress markedly upregulates phenylpropanoid biosynthesis, with ferulic acid (FA) identified as a pivotal metabolite. Exogenous FA application alleviated drought-induced chlorophyll degradation in D. sinense seedlings. Heterologous expression of DsCOMT (a key FA biosynthetic gene) in Arabidopsis thaliana significantly enhanced drought survival. These results demonstrate the crucial role of FA in drought resistance and provide key insights into drought-related metabolic mechanisms. Full article
(This article belongs to the Special Issue Responses of Crops to Abiotic Stress—2nd Edition)
Show Figures

Figure 1

13 pages, 1954 KiB  
Article
Copepod Diversity and Zooplankton Community Structure in a Coastal Special Area of Conservation (La Palma Island, Atlantic Ocean)
by Adrián Torres-Martínez and Inma Herrera
J. Mar. Sci. Eng. 2025, 13(6), 1124; https://doi.org/10.3390/jmse13061124 - 4 Jun 2025
Viewed by 450
Abstract
This study presents the first species-level assessment of zooplankton communities within a designated Special Area of Conservation (SAC, ES7020122) in the coastal waters of an oceanic island in the Atlantic Ocean, conducted in a previously under-sampled protected coastal region. Copepods emerged as the [...] Read more.
This study presents the first species-level assessment of zooplankton communities within a designated Special Area of Conservation (SAC, ES7020122) in the coastal waters of an oceanic island in the Atlantic Ocean, conducted in a previously under-sampled protected coastal region. Copepods emerged as the predominant taxa, offering key insights into early-stage community structure and potential indicators of ecological dynamics in marine ecosystems. Zooplankton biomass and abundance were primarily driven by organisms in the 200–500 µm size fraction, with spatial variation observed across latitudinal transects. A total of 44 copepods species were identified, including dominant genera (Oncaea, Oithona, and Clausocalanus) characteristic of subtropical Atlantic ecosystems. Several indicator species (e.g., Candacia ethiopica and Oncaea scottodicarloi) showed spatial patterns. While no direct impacts from the recent 2021 volcanic eruption were detected, the dominance of opportunistic copepods and the observed diversity suggest a potential adaptive response and resilience of the pelagic community to periodic geological disturbances. These results provide a valuable ecological baseline for future long-term monitoring under the Marine Strategy Framework Directive and underscore the importance of copepods as indicators of coastal ecosystem structure and variability. Full article
(This article belongs to the Special Issue Mesozooplankton Ecology in Marine Environments)
Show Figures

Figure 1

15 pages, 2121 KiB  
Article
The Seasonality and Spatial Landscape of the Historical Climate-Based Suitability of Aedes-Borne Viruses in Four Atlantic Archipelagos
by Martim A. Geraldes, Marta Giovanetti, Mónica V. Cunha and José Lourenço
Viruses 2025, 17(6), 799; https://doi.org/10.3390/v17060799 - 30 May 2025
Viewed by 638
Abstract
While archipelagos have a demonstrated role in the stepping-stone process of the global dissemination of Aedes-borne viruses, they are often neglected in epidemiological and modelling studies. Over the past 20 years, some Atlantic archipelagos have witnessed a series of Aedes-borne viral [...] Read more.
While archipelagos have a demonstrated role in the stepping-stone process of the global dissemination of Aedes-borne viruses, they are often neglected in epidemiological and modelling studies. Over the past 20 years, some Atlantic archipelagos have witnessed a series of Aedes-borne viral outbreaks, prompting inquiries into the local historical suitability for transmission. In this study, the climate-based suitability for transmission of Aedes-borne viruses between 1980 and 2019 across Madeira, the Canaries, Cape Verde, and São Tomé e Príncipe archipelagos was estimated. For each island, we characterized the seasonality of climate-based suitability, mapped the spatial landscape of suitability, and quantified the historical effects of climate change. Results show that both island-level suitability and the historical impact of climate change decrease with distance from the equator, while significant seasonality patterns are observed only in subtropical climates. This study provides a unique historical perspective on the role of climate in shaping Aedes-borne virus transmission potential in Atlantic archipelagos. The findings herein described can inform local public health initiatives, including human-based prevention, targeted viral surveillance, and mosquito control programs. Full article
(This article belongs to the Special Issue Arboviruses and Climate, 2nd Edition)
Show Figures

Figure 1

14 pages, 9838 KiB  
Technical Note
The Identification of Exposed Beachrocks on South China Sea Islands Based on UAV Images
by Chuang Liu, Wei Gao, Junhui Xing and Wei Gong
Remote Sens. 2025, 17(9), 1647; https://doi.org/10.3390/rs17091647 - 7 May 2025
Cited by 1 | Viewed by 409
Abstract
Beachrocks are common coastal sedimentary rocks in tropical and subtropical seas. They are widely spread especially in islands and coastal areas. These rocks are important for island geological evolution research. Research on beachrocks aids in protecting island ecosystems and enhances islands’ ability to [...] Read more.
Beachrocks are common coastal sedimentary rocks in tropical and subtropical seas. They are widely spread especially in islands and coastal areas. These rocks are important for island geological evolution research. Research on beachrocks aids in protecting island ecosystems and enhances islands’ ability to prevent and mitigate damage from natural disasters. This study uses unmanned aerial vehicle (UAV) images and the U-Net model based on deep learning to identify beachrocks. To enhance identification accuracy, the efficient channel attention (ECA) mechanism was integrated, leading to improvements of 0.49% in overall accuracy, 1.41% in precision, 0.97% in recall, 1.10% in F1-score, and 2.09% in intersection over union (IoU) compared to the baseline U-Net model. The final results demonstrate that the model effectively identified beachrocks, achieving 97.47% accuracy, 93.27% precision, 94.73% recall, 93.95% F1-score, and 88.65% IoU. This study offers a valuable tool for island geological evolution research and supports the development of large-scale island conservation efforts. Full article
Show Figures

Figure 1

18 pages, 12782 KiB  
Article
Seasonal Spatiotemporal Dynamics and Gradients of the Urban Heat Island Effect in Subtropical Furnace Megacity
by Chen Fu, Cong Chen and Zhitao Fu
Sustainability 2025, 17(7), 3238; https://doi.org/10.3390/su17073238 - 5 Apr 2025
Cited by 1 | Viewed by 710
Abstract
Urban heat island (UHI) effect significantly influences the urban sustainability and health of cities and varies seasonally. However, spring and autumn have received less attention. Furthermore, research on long-term seasonal UHI changes and impacts is insufficient. This study examines the seasonal spatiotemporal dynamics [...] Read more.
Urban heat island (UHI) effect significantly influences the urban sustainability and health of cities and varies seasonally. However, spring and autumn have received less attention. Furthermore, research on long-term seasonal UHI changes and impacts is insufficient. This study examines the seasonal spatiotemporal dynamics and gradient characteristics of UHI in spring, summer, autumn, and winter in Changsha, a typical subtropical “furnace city” from 2006 to 2022. (1) Spatiotemporal dynamics: The high-temperature UHI (relatively high-temperature zone and high-temperature zone) range expands most significantly in spring and least in autumn. Additionally, the UHI migrates northward within the study area, and proximity to the urban core results in multiple high-temperature UHI effects. (2) Gradient characteristics: The proportion of the high-temperature UHI in spring, summer, autumn, and winter decreases to varying degrees within the 5 km gradient from the central point, but increases within the 6–8 km and 11–13 km gradients, especially in spring and autumn. Additionally, within the 8 km gradient in spring, the aggregation index (AI), contagion index (CONTAG), and largest patch index (LPI) decreased, with UHI patches more affected by these metrics in autumn. Overall, this study offers new insights into the seasonal effects and development of UHI, which are crucial for addressing climate change, promoting sustainability, and improving human well-being. Full article
Show Figures

Figure 1

20 pages, 3859 KiB  
Article
Thermal Mitigation in Coastal Cities: Marine and Urban Morphology Effects on Land Surface Temperature in Xiamen
by Tingting Hong, Xiaohui Huang, Qinfei Lv, Suting Zhao, Zeyang Wang and Yuanchuan Yang
Buildings 2025, 15(7), 1170; https://doi.org/10.3390/buildings15071170 - 2 Apr 2025
Cited by 1 | Viewed by 545
Abstract
Amidst the rapid global urbanization and economic integration, coastal cities have undergone significant changes in urban spatial patterns. These changes have further worsened the complex urban thermal environment, making it crucial to study the interaction between human-driven development and natural climate systems. To [...] Read more.
Amidst the rapid global urbanization and economic integration, coastal cities have undergone significant changes in urban spatial patterns. These changes have further worsened the complex urban thermal environment, making it crucial to study the interaction between human-driven development and natural climate systems. To address the insufficient quantification of marine elements in the urban planning of subtropical coastal zones, this study takes Xiamen, a typical deep-water port city, as an example to construct a spatial analysis framework integrating marine boundary layer parameters. This research employs interpolation simulation, atmospheric correction, and other techniques to simulate the inversion of land use and Landsat 8 data, deriving urban morphological elements and Land Surface Temperature (LST) data. These data were then assigned to 500 m grids for analysis. A bivariate spatial auto-correlation model was applied to examine the relationship between urban carbon emission and LST. The study area was categorized based on the influence of marine factors, and the spatial relationships between urban morphological elements and LST were analyzed using a multiscale geographically weighted regression model. Three Xiamen-specific discoveries emerged: (1) the marine exerts a significant thermal mitigation effect on the city, with an average influence range of 7.94 km; (2) the relationship between urban morphology and the thermal environment exhibits notable spatial heterogeneity across different regions; and (3) to mitigate urban thermal environments, connected green corridors should be established in the southern coastal areas of outer districts in regions significantly influenced by the ocean. In areas with less marine influence, spatial complexity should be introduced by disrupting relatively intact blue–green spaces, while regions unaffected by the ocean should focus on increasing green spaces and reducing impervious surfaces and water bodies. These findings directly inform Xiamen’s 2035 Master Plan for combating heat island effects in coastal special economic zones, providing transferable metrics for similar maritime cities. Full article
(This article belongs to the Special Issue Advanced Research on the Urban Heat Island Effect and Climate)
Show Figures

Figure 1

12 pages, 4073 KiB  
Article
Characteristics of Observed Electromagnetic Wave Ducts in Tropical, Subtropical, and Middle Latitude Locations
by Sandra E. Yuter, McKenzie M. Sevier, Kevin D. Burris and Matthew A. Miller
Atmosphere 2025, 16(3), 336; https://doi.org/10.3390/atmos16030336 - 17 Mar 2025
Cited by 1 | Viewed by 386
Abstract
Where and at what altitudes electromagnetic wave ducts within the atmosphere are likely to occur is important for a variety of communication and military applications. We examined the modified refractivity profiles and wave duct characteristics derived from nearly 50,000 observed upper air soundings [...] Read more.
Where and at what altitudes electromagnetic wave ducts within the atmosphere are likely to occur is important for a variety of communication and military applications. We examined the modified refractivity profiles and wave duct characteristics derived from nearly 50,000 observed upper air soundings obtained over four years from seven tropical and subtropical islands, as well as middle latitude sites at four US coastal locations, three sites near the Great Lakes, and four US inland sites. Across all location types, elevated ducts were found to be more common than surface-based ducts, and the median duct thicknesses were ~100 m. There was a weak correlation between duct thickness and strength and, essentially, no correlation between the duct strength and duct base height. EM ducts more frequently occurred at the tropical and subtropical island locations (~60%) and middle latitude coastal locations (70%) as compared to the less than 30% of the time that occurred at the Great Lake and US inland sites. The tropical and subtropical island sites were more likely than the other location types to have ducts at altitudes higher than 2 km, which is above the boundary layer height. Full article
(This article belongs to the Special Issue Feature Papers in Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

26 pages, 3878 KiB  
Article
Turbulence Theory for the Characterization of the Surface Urban Heat Island Signature
by Gabriel I. Cotlier, Juan Carlos Jimenez and José Antonio Sobrino
Land 2025, 14(3), 620; https://doi.org/10.3390/land14030620 - 14 Mar 2025
Cited by 1 | Viewed by 904
Abstract
Urban heat islands (UHIs) constitute one of the most conspicuous anthropogenic impacts on local climates, characterized by elevated land surface temperatures in urban areas compared to surrounding rural regions. This study represents a novel and comprehensive effort to characterize the spectral signature of [...] Read more.
Urban heat islands (UHIs) constitute one of the most conspicuous anthropogenic impacts on local climates, characterized by elevated land surface temperatures in urban areas compared to surrounding rural regions. This study represents a novel and comprehensive effort to characterize the spectral signature of SUHI through the lens of the two-dimensional (2D) turbulence theory, with a particular focus on identifying energy cascade regimes and their climatic modulation. The theory of two-dimensional (2D) turbulence, first described by Kraichnan and Batchelor, predicts two distinct energy cascade regimes: an inverse energy cascade at larger scales (low wavenumbers) and a direct enstrophy cascade at smaller scales (high wavenumbers). These cascades can be detected and characterized through spatial power spectra analysis, offering a scale-dependent understanding of the SUHI phenomenon. Despite the theoretical appeal, empirical validation of the 2D turbulence hypothesis in urban thermal landscapes remains scarce. This study aims to fill this gap by analyzing the spatial power spectra of land surface temperatures across 14 cities representing diverse climatic zones, capturing varied urban morphologies, structures, and materials. We analyzed multi-decadal LST datasets to compute spatial power spectra across summer and winter seasons, identifying spectral breakpoints that separate large-scale energy retention from small-scale dissipative processes. The findings reveal systematic deviations from classical turbulence scaling laws, with spectral slopes before the breakpoint ranging from ~K−1.6 to ~K−2.7 in winter and ~K−1.5 to ~K−2.4 in summer, while post-breakpoint slopes steepened significantly to ~K−3.5 to ~K−4.6 in winter and ~K−3.3 to ~K−4.3 in summer. These deviations suggest that urban heat turbulence is modulated by anisotropic surface heterogeneities, mesoscale instabilities, and seasonally dependent energy dissipation mechanisms. Notably, desert and Mediterranean climates exhibited the most pronounced small-scale dissipation, whereas oceanic and humid subtropical cities showed more gradual spectral transitions, likely due to differences in moisture availability and convective mixing. These results underscore the necessity of incorporating turbulence theory into urban climate models to better capture the scale-dependent nature of urban heat exchange. The observed spectral breakpoints offer a diagnostic tool for identifying critical scales at which urban heat mitigation strategies—such as green infrastructure, optimized urban ventilation, and reflective materials—can be most effective. Furthermore, our findings highlight the importance of regional climatic context in shaping urban spectral energy distributions, necessitating climate-specific urban design interventions. By advancing our understanding of urban thermal turbulence, this research contributes to the broader discourse on sustainable urban development and resilience in a warming world. Full article
Show Figures

Figure 1

21 pages, 3267 KiB  
Article
Transposable Element Landscape in the Monotypic Species Barthea barthei (Hance) Krass (Melastomataceae) and Its Role in Ecological Adaptation
by Wei Wu, Yuan Zeng, Zecheng Huang, Huiting Peng, Zhanghai Sun and Bin Xu
Biomolecules 2025, 15(3), 346; https://doi.org/10.3390/biom15030346 - 27 Feb 2025
Viewed by 722
Abstract
Transposable elements (TEs) are crucial for genome evolution and ecological adaptation, but their dynamics in non-model plants are poorly understood. Using genomic, transcriptomic, and population genomic approaches, we analyzed the TE landscape of Barthea barthei (Melastomataceae), a species distributed across tropical and subtropical [...] Read more.
Transposable elements (TEs) are crucial for genome evolution and ecological adaptation, but their dynamics in non-model plants are poorly understood. Using genomic, transcriptomic, and population genomic approaches, we analyzed the TE landscape of Barthea barthei (Melastomataceae), a species distributed across tropical and subtropical southern China. We identified 64,866 TE copies (16.76% of a 235 Mb genome), dominated by Ty3/Gypsy retrotransposons (8.82%) and DNA/Mutator elements (2.7%). A genome-wide analysis revealed 13 TE islands enriched in genes related to photosynthesis, tryptophan metabolism, and stress response. We identified 3859 high-confidence TE insertion polymorphisms (TIPs), including 29 fixed insertions between red and white flower ecotypes, affecting genes involved in cell wall modification, stress response, and secondary metabolism. A transcriptome analysis of the flower buds identified 343 differentially expressed TEs between the ecotypes, 30 of which were near or within differentially expressed genes. The non-random distribution (primarily within 5 kb of genes) and association with adaptive traits suggest a significant role in B. barthei’s successful colonization of diverse habitats. Our findings provide insights into how TEs contribute to plant genome evolution and ecological adaptation in tropical forests, particularly through their influence on regulatory networks governing stress response and development. Full article
(This article belongs to the Section Biological Factors)
Show Figures

Figure 1

17 pages, 3898 KiB  
Article
First Coprological Survey of Semiferal Goat (Capra hircus) Parasites in Relation to Environmental Factors on the Island of Socotra, Yemen
by Lucie Maděrová, Jan Šipoš, Petr Maděra, David Modrý, Barbora Červená and Josef Suchomel
Agriculture 2025, 15(5), 475; https://doi.org/10.3390/agriculture15050475 - 22 Feb 2025
Viewed by 605
Abstract
Parasites play a significant role in biodiversity, yet research on these organisms remains limited, particularly in tropical and subtropical regions. Parasites are also an essential aspect of domestic animal husbandry, and their prevalence depends on various factors, such as husbandry conditions and the [...] Read more.
Parasites play a significant role in biodiversity, yet research on these organisms remains limited, particularly in tropical and subtropical regions. Parasites are also an essential aspect of domestic animal husbandry, and their prevalence depends on various factors, such as husbandry conditions and the environment. However, no studies have been conducted on parasites affecting domestic animals on Socotra Island. This study aimed to investigate parasites in selected goat populations on the island using intravital fecal diagnosis. A total of 406 samples from adult goats across different locations (lowlands and highlands) and seasons (dry and rainy) were collected, fixed in 10% formalin, and transported to the Czech Republic for coprological examination using flotation and ether sedimentation methods. Statistical analyses, including partial canonical correspondence analysis (pCCA), the Monte Carlo permutation test, and the chi-squared test, revealed a high prevalence of gastrointestinal parasite infections, with 89% of goats infected. Eimeria spp. had the highest prevalence (76%). Co-infection was common, with 55.9% of goats infected with multiple parasites. Seasonality influenced parasitism, with other Protostrongylidae, Muellerius spp., and Trichuris spp. predominating during the rainy season, and Eimeria spp. and gastrointestinal strongylids predominating during the dry season. This first study on Socotra Island, Yemen, provides crucial insights into effective intervention strategies for controlling goat parasite infections. Full article
(This article belongs to the Section Farm Animal Production)
Show Figures

Figure 1

19 pages, 2939 KiB  
Article
Improving Groundwater Quality Through Biosphere Reserve Management: Insights from the Anaga Reserve, Tenerife
by Joselin S. Rodríguez-Alcántara, Noelia Cruz-Pérez, Jesica Rodríguez-Martín, Alejandro García-Gil, Jelena Koritnik and Juan C. Santamarta
Environments 2025, 12(2), 53; https://doi.org/10.3390/environments12020053 - 5 Feb 2025
Viewed by 1197
Abstract
The Canary Islands, an outermost Spanish territory in the Atlantic Ocean, are renowned for their subtropical climate and significant tourism. However, substantial areas are designated for environmental protection, notably the Anaga Rural Park in Tenerife, a UNESCO Biosphere Reserve, which is the focus [...] Read more.
The Canary Islands, an outermost Spanish territory in the Atlantic Ocean, are renowned for their subtropical climate and significant tourism. However, substantial areas are designated for environmental protection, notably the Anaga Rural Park in Tenerife, a UNESCO Biosphere Reserve, which is the focus of this study. This research investigates the influence of Biosphere Reserve designation on groundwater quality, a crucial resource for Tenerife’s population. We analysed the physicochemical properties of groundwater within the Anaga region over a decade (2007–2016). Our findings demonstrate that groundwater quality consistently meets regulatory standards, exhibiting no evidence of pollution. This high quality is attributed to several factors, including the low population density, limited tourism impact within the reserve, and crucially, the effective soil protection measures implemented within the Biosphere Reserve. The compact geology of the region further limits infiltration and potential pollution. The sustained high quality of groundwater, even in the absence of detectable pollution, highlights the importance of ongoing monitoring to maintain this valuable resource and support local biodiversity. This case study provides a valuable model for sustainable groundwater management and soil protection strategies in other areas of Tenerife and beyond. Full article
(This article belongs to the Special Issue Research Progress in Groundwater Contamination and Treatment)
Show Figures

Figure 1

17 pages, 3043 KiB  
Communication
Invasion of the Atlantic Ocean and Caribbean Sea by a Large Benthic Foraminifer in the Little Ice Age
by Edward Robinson and Thera Edwards
Diversity 2025, 17(2), 110; https://doi.org/10.3390/d17020110 - 2 Feb 2025
Viewed by 1227
Abstract
The larger benthic foraminifera is a group of marine protists harbouring symbiotic algae, that are geographically confined to shallow tropical and subtropical waters, often associated with coral reefs. The resulting controls on availability of habitat and rates of dispersion make these foraminifers, particularly [...] Read more.
The larger benthic foraminifera is a group of marine protists harbouring symbiotic algae, that are geographically confined to shallow tropical and subtropical waters, often associated with coral reefs. The resulting controls on availability of habitat and rates of dispersion make these foraminifers, particularly the genus Amphistegina, useful proxies in the study of invasive marine biota, transported through hull fouling and ballast water contamination in modern commercial shipping. However, there is limited information on the importance of these dispersal mechanisms for foraminifers in the Pre-Industrial Era (pre-1850) for the Atlantic and Caribbean region. This paper examines possible constraints and vectors controlling the invasion of warm-water taxa from the Indo-Pacific region to the Atlantic and Caribbean region. Heterostegina depressa, first described from St. Helena, a remote island in the South Atlantic, provides a test case. The paper postulates that invasions through natural range expansion or ocean currents were unlikely along the possible available routes and hypothesises that anthropogenic vectors, particularly sailing ships, were the most likely means of transport. It concludes that the invasion of the Atlantic by H. depressa was accomplished within the Little Ice Age (1350–1850 C.E.), during the period between the start of Portuguese marine trade with east Africa in 1497 and the first description of H. depressa in 1826. This hypothesis is likely applicable to other foraminifers and other biota currently resident in the Atlantic and Caribbean region. The model presented provides well-defined parameters that can be tested using methods such as isotopic dating of foraminiferal assemblages in cores and genetic indices of similarity of geographic populations. Full article
(This article belongs to the Special Issue Ecology and Paleoecology of Atlantic and Caribbean Coral Reefs)
Show Figures

Figure 1

28 pages, 13210 KiB  
Article
Evaluating the Impact of Vertical Green Systems on Building Temperature Regulation: Effects of Shading Density and Proximity
by Ting-Yu Chen, Wen-Pei Sung and Che-Lun Lee
Buildings 2025, 15(3), 445; https://doi.org/10.3390/buildings15030445 - 31 Jan 2025
Cited by 2 | Viewed by 822
Abstract
Urban heat islands and increasing energy consumption in subtropical regions such as Taiwan present substantial challenges, particularly in densely populated areas where traditional green spaces are limited. To address these issues, vertical green systems (VGSs) have emerged as a sustainable solution to improve [...] Read more.
Urban heat islands and increasing energy consumption in subtropical regions such as Taiwan present substantial challenges, particularly in densely populated areas where traditional green spaces are limited. To address these issues, vertical green systems (VGSs) have emerged as a sustainable solution to improve building energy efficiency and mitigate urban heat. This study investigates the impact of VGSs on building temperature regulation, specifically focusing on the effects of shading density and the distance from the building facade. Two experimental setups were assessed, with VGSs positioned at distances of 50 cm and 100 cm, and shading densities of 70% and 95%. Experiments conducted between May and September 2022, under full sunlight (average temperature of 33 °C), revealed that a VGS with a 95% shading density significantly reduced solar radiation to below 50 W/m2. Additionally, it lowered interior temperatures by 0.5–2.1 °C and decreased surface temperatures by 5–12 °C when positioned 100 cm from the building. The VGS also enhanced temperature stability, maintaining interior temperature fluctuations within 1 °C compared to 4 °C in the control group. These results demonstrate that higher shading densities and increased distances from the building facade optimize temperature control and energy efficiency. The findings offer valuable insights for sustainable urban building design, suggesting that VGSs with greater shading densities and appropriate distances provide significant benefits in reducing solar radiation, surface temperatures, and interior temperature fluctuations. Full article
(This article belongs to the Collection Sustainable Buildings in the Built Environment)
Show Figures

Figure 1

Back to TopTop