Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (225)

Search Parameters:
Keywords = stripping gas

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2011 KiB  
Article
Circulating of In Situ Recovered Stream from Fermentation Broth as the Liquor for Lignocellulosic Biobutanol Production
by Changsheng Su, Yunxing Gao, Gege Zhang, Xinyue Zhang, Yating Li, Hongjia Zhang, Hao Wen, Wenqiang Ren, Changwei Zhang and Di Cai
Fermentation 2025, 11(8), 453; https://doi.org/10.3390/fermentation11080453 - 3 Aug 2025
Viewed by 155
Abstract
Developing a more efficient, cleaner, and energy-saving pretreatment process is the primary goal for lignocellulosic biofuels production. This study demonstrated the feasibility of circulating high-concentration acetone–butanol–ethanol (ABE) obtained via in situ product recovery (ISPR) as a pretreatment liquor. Taking ABE solvent separated from [...] Read more.
Developing a more efficient, cleaner, and energy-saving pretreatment process is the primary goal for lignocellulosic biofuels production. This study demonstrated the feasibility of circulating high-concentration acetone–butanol–ethanol (ABE) obtained via in situ product recovery (ISPR) as a pretreatment liquor. Taking ABE solvent separated from pervaporation (PV) and gas stripping (GS) as examples, results indicated that under dilute alkaline (1% NaOH) catalysis, the highly recalcitrant lignocellulosic matrices can be efficiently depolymerized, thereby improving fermentable sugars recovery in saccharification stage and ABE yield in subsequent fermentation stage. Results also revealed delignification of 91.5% (stream from PV) and 94.3% (stream from GS), with total monosaccharides recovery rates of 56.5% and 57.1%, respectively, can be realized when using corn stover as feedstock. Coupled with ABE fermentation, mass balance indicated a maximal 106.6 g of ABE (65.8 g butanol) can be produced from 1 kg of dry corn stover by circulating the GS condensate in pretreatment (the optimized pretreatment conditions were 1% w/v alkali and 160 °C for 1 h). Additionally, technical lignin with low molecular weight and narrow distribution was isolated, which enabled further side-stream valorisation. Therefore, integrating ISPR product circulation with lignocellulosic biobutanol shows strong potential for application under the concept of biorefinery. Full article
Show Figures

Figure 1

22 pages, 2108 KiB  
Article
Effects of Conservation Tillage and Nitrogen Inhibitors on Yield and N2O Emissions for Spring Maize in Northeast China
by Fanchao Meng, Guozhong Feng, Lingchun Zhang, Yin Wang, Qiang Gao, Kelin Hu and Shaojie Wang
Agronomy 2025, 15(8), 1818; https://doi.org/10.3390/agronomy15081818 - 27 Jul 2025
Viewed by 382
Abstract
Conservation tillage can improve soil health and carbon sequestration and is helpful for sustainable agricultural development. However, its effect on crop yields and nitrous oxide (N2O) emissions is still controversial. In this study, a two-year field experiment of spring maize was [...] Read more.
Conservation tillage can improve soil health and carbon sequestration and is helpful for sustainable agricultural development. However, its effect on crop yields and nitrous oxide (N2O) emissions is still controversial. In this study, a two-year field experiment of spring maize was conducted from 2019 to 2020 in the Phaeozems region of Northeast China, involving two tillage practices (strip tillage and conventional tillage) and two nitrogen inhibitors (N-butylthiophosphorotriamine, NBPT and 3,4-Dimethylpyrazole phosphate, DMPP). The WHCNS (Soil Water Heat Carbon Nitrogen Simulator) model was calibrated and validated with field observations, and the effects of different tillage practices and nitrification inhibitors on spring maize yield, N2O emissions, water use efficiency (WUE), and nitrogen use efficiency (NUE) were simulated using the WHCNS model. Precipitation scenarios were set up to simulate and analyze the changes in patterns of crop yield and N2O emissions under long-term conservation tillage for 30 years (1991–2020). The results showed that concerning maize yield, under conservation tillage, the type of straw and nitrogen fertilizer inhibitor could explain 72.1% and 7.1%, respectively, of the total variance in maize yield, while precipitation explained only 14.1% of the total variance, with a 28.5% increase in crop yield in a humid year compared to a dry year. N2O emissions were principally influenced by precipitation, which could explain 46.4% of the total variance in N2O emissions. Furthermore, N2O emissions were 385% higher in humid years than in dry years. Straw under conservation tillage and inhibitor type explained 8.1% and 19.4% of the total variance in N2O emissions, respectively. Conservation tillage with nitrification inhibitors is recommended to increase crop yields, improve soil quality and reduce greenhouse gas emissions in the Phaeozems region of Northeast China, thus ensuring sustainable agricultural development in the region. Full article
Show Figures

Figure 1

18 pages, 2282 KiB  
Article
Quantifying the Unwinding Due to Ram Pressure Stripping in Simulated Galaxies
by Rubens E. G. Machado, Caroline F. O. Grinberg and Elvis A. Mello-Terencio
Galaxies 2025, 13(4), 76; https://doi.org/10.3390/galaxies13040076 - 7 Jul 2025
Viewed by 456
Abstract
Galaxies moving through the gas of the intracluster medium (ICM) experience ram pressure stripping, which can leave behind a gas tail. When a disk galaxy receives the wind edge-on, however, the characteristic signature is not a typical jellyfish tail, but rather an unwinding [...] Read more.
Galaxies moving through the gas of the intracluster medium (ICM) experience ram pressure stripping, which can leave behind a gas tail. When a disk galaxy receives the wind edge-on, however, the characteristic signature is not a typical jellyfish tail, but rather an unwinding of the spiral arms. We aim to quantify such asymmetries both in the gas and in the stellar component of a simulated galaxy. To this end, we simulate a gas-rich star-forming spiral galaxy moving through a self-consistent ICM gas. The amplitude and location of the asymmetries were measured via Fourier decomposition. We found that the asymmetry is much more evident in the gas component, but it is also measurable in the stars. The amplitude tends to increase with time and the asymmetry radius migrates inwards. We found that, when considering the gas, the spiral arms extend much further and are more unwound than the corresponding stellar arms. Characterizing the unwinding via simulations should help inform the observational criteria used to classify ram pressure stripped galaxies, as opposed to asymmetries induced by other mechanisms. Full article
Show Figures

Figure 1

17 pages, 4654 KiB  
Article
Pore Structure and Fractal Characteristics of the Permian Shales in Northeastern Sichuan Basin, China
by Guanping Wang, Qian Zhang, Baojian Shen, Pengwei Wang, Wei Du, Lu Wang, Min Li and Chengxiang Wan
Minerals 2025, 15(7), 684; https://doi.org/10.3390/min15070684 - 27 Jun 2025
Viewed by 326
Abstract
The complexity of the pore system hindered our understanding of the storage and transport properties of organic-rich shales, which in turn brought challenges to the efficient exploration and development of shale oil and gas. This study, based on elemental, mineralogical, petrographic, and petrophysical [...] Read more.
The complexity of the pore system hindered our understanding of the storage and transport properties of organic-rich shales, which in turn brought challenges to the efficient exploration and development of shale oil and gas. This study, based on elemental, mineralogical, petrographic, and petrophysical approaches, attempts to reveal the pore structure and fractal characteristics of a suite of Permian shales collected from the northeastern Sichuan Basin, China. The results showed that meso-pores make up the main proportion of the total pore volume in the Permian shale in this study; most of the pore size distribution patterns for micro pores and meso-macropores are bimodal. Pores related to clay minerals, organic matter pores, and intragranular dissolution pores are the main storage spaces in these shales. In these samples, ink-bottle pores dominate, with some slit and wedge-shaped ones developed. The morphology of the pores in the studied shales is mainly ink-bottle pores, with some slit-shaped and wedge-shaped pores. The fractal dimension D2 is greater than D1, indicating that the homogeneity of pore space is stronger than that of the specific surface area. Quartz in Permian shales inhibits the development of macro- and mesopore spaces and enhances pore heterogeneity, while clay minerals facilitate the development of macro- and mesopore spaces and attenuate pore heterogeneity. The organic matter content shows a negative impact on the macropore volume due to the stripped occurrence and matrix filling. This study has a vital significance for current exploration and development of shale gas in Permian strata in the Sichuan Basin and offers insights for Permian shales in other basins all over the world. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Graphical abstract

17 pages, 1694 KiB  
Article
Enhancing Bioconversion of Crude Glycerol into Butanol and 1,3-Propanediol After Pretreatment by Coupling Fermentation and In Situ Recovery: Effect of Initial pH Control
by Alejandro Ortega, Alejo Valles, Miguel Capilla, Carmen Gabaldón, Francisco Javier Álvarez-Hornos and Paula Marzal
Fermentation 2025, 11(6), 339; https://doi.org/10.3390/fermentation11060339 - 11 Jun 2025
Viewed by 685
Abstract
The sharp rise in the worldwide production of biodiesel has created an excess in the crude glycerol market, so it is essential to develop new added-value alternatives for crude glycerol. This paper describes a study on fermenting high concentrations of two types of [...] Read more.
The sharp rise in the worldwide production of biodiesel has created an excess in the crude glycerol market, so it is essential to develop new added-value alternatives for crude glycerol. This paper describes a study on fermenting high concentrations of two types of medium-pure crude glycerol to solvents by Clostridium pasteurianum. The effect of media composition (iron, yeast extract, and vitamins) on solvents production was assessed by a full factorial design with pure glycerol. Granular activated carbon (GAC) adsorption was highly effective in removing impurities from crude glycerol. Following GAC pretreatment, fermentation of glycerol at initial concentration as high as 60 g L−1 was possible, resulting in a butanol production of ~9 g L−1. Based on these results, a batch fermentation with in situ gas stripping and pH controlled at ≥6.5 was shown to be the best alternative to enhance biomass growth, glycerol uptake, and solvent production. The combination of controlling pH in the early stages of fermentation with in situ butanol removal stabilised the metabolism of the strain and showed that the fermentation performance with crude glycerol is very similar to that of pure glycerol. With a notable uptake of glycerol (>83%), solvent production was >11 g L−1 butanol (yield > 0.21 g g−1glycerol consumed) and >6 g L−1 1,3-propanediol (yield > 0.13 g g−1glycerol consumed). Setting the fermentation conditions to achieve a high uptake of high levels of glycerol with a similar product distribution is of great interest for the viability of the industrial processing of crude glycerol into chemicals via biological conversion. Full article
Show Figures

Figure 1

24 pages, 7475 KiB  
Article
Application of a Dual-Stream Network Collaboratively Based on Wavelet and Spatial-Channel Convolution in the Inpainting of Blank Strips in Marine Electrical Imaging Logging Images: A Case Study in the South China Sea
by Guilan Lin, Sinan Fang, Manxin Li, Hongtao Wu, Chenxi Xue and Zeyu Zhang
J. Mar. Sci. Eng. 2025, 13(5), 997; https://doi.org/10.3390/jmse13050997 - 21 May 2025
Cited by 1 | Viewed by 490
Abstract
Electrical imaging logging technology precisely characterizes the features of the formation on the borehole wall through high-resolution resistivity images. However, the problem of blank strips caused by the mismatch between the instrument pads and the borehole diameter seriously affects the accuracy of fracture [...] Read more.
Electrical imaging logging technology precisely characterizes the features of the formation on the borehole wall through high-resolution resistivity images. However, the problem of blank strips caused by the mismatch between the instrument pads and the borehole diameter seriously affects the accuracy of fracture identification and formation continuity interpretation in marine oil and gas reservoirs. Existing inpainting methods struggle to reconstruct complex geological textures while maintaining structural continuity, particularly in balancing low-frequency formation morphology with high-frequency fracture details. To address this issue, this paper proposes an inpainting method using a dual-stream network based on the collaborative optimization of wavelet and spatial-channel convolution. By designing a texture-aware data prior algorithm, a high-quality training dataset with geological rationality is generated. A dual-stream encoder–decoder network architecture is adopted, and the wavelet transform convolution (WTConv) module is utilized to enhance the multi-scale perception ability of the generator, achieving a collaborative analysis of the low-frequency formation structure and high-frequency fracture details. Combined with the spatial channel convolution (SCConv) to enhance the feature fusion module, the cross-modal interaction between texture and structural features is optimized through a dynamic gating mechanism. Furthermore, a multi-objective loss function is introduced to constrain the semantic coherence and visual authenticity of image reconstruction. Experiments show that, in the inpainting indexes for Block X in the South China Sea, the mean absolute error (MAE), structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR) of this method are 6.893, 0.779, and 19.087, respectively, which are significantly better than the improved filtersim, U-Net, and AOT-GAN methods. The correlation degree of the pixel distribution between the inpainted area and the original image reaches 0.921~0.997, verifying the precise matching of the low-frequency morphology and high-frequency details. In the inpainting of electrical imaging logging images across blocks, the applicability of the method is confirmed, effectively solving the interference of blank strips on the interpretation accuracy of marine oil and gas reservoirs. It provides an intelligent inpainting tool with geological interpretability for the electrical imaging logging interpretation of complex reservoirs, and has important engineering value for improving the efficiency of oil and gas exploration and development. Full article
(This article belongs to the Special Issue Research on Offshore Oil and Gas Numerical Simulation)
Show Figures

Figure 1

26 pages, 1729 KiB  
Review
Research Progress on Energy-Saving Technologies and Methods for Steel Metallurgy Process Systems—A Review
by Jiacheng Cui, Gang Meng, Kaiqiang Zhang, Zongliang Zuo, Xiangyu Song, Yuhan Zhao and Siyi Luo
Energies 2025, 18(10), 2473; https://doi.org/10.3390/en18102473 - 12 May 2025
Cited by 1 | Viewed by 849
Abstract
Against the backdrop of global energy crises and climate change, the iron and steel industry, as a typical high energy consumption and high-emission sector, faces rigid constraints for energy conservation and emission reduction. This paper systematically reviews the research progress and application effects [...] Read more.
Against the backdrop of global energy crises and climate change, the iron and steel industry, as a typical high energy consumption and high-emission sector, faces rigid constraints for energy conservation and emission reduction. This paper systematically reviews the research progress and application effects of energy-saving technologies across the entire steel production chain, including coking, sintering, ironmaking, steelmaking, continuous casting, and rolling processes. Studies reveal that technologies such as coal moisture control (CMC) and coke dry quenching (CDQ) significantly improve energy utilization efficiency in the coking process. In sintering, thick-layer sintering and flue gas recirculation (FGR) technologies reduce fuel consumption while enhancing sintered ore performance. In ironmaking, high-efficiency pulverized coal injection (PCI) and hydrogen-based fuel injection effectively lower coke ratios and carbon emissions. Integrated and intelligent innovations in continuous casting and rolling processes (e.g., endless strip production, ESP) substantially reduce energy consumption. Furthermore, the system energy conservation theory, through energy cascade utilization and full-process optimization, drives dual reductions in comprehensive energy consumption and carbon emission intensity. The study emphasizes that future advancements must integrate hydrogen metallurgy, digitalization, and multi-energy synergy to steer the industry toward green, high-efficiency, and low-carbon transformation, providing technical support for China’s “Dual Carbon” goals. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

16 pages, 775 KiB  
Article
Integrated Process Combining High-Temperature Fermentation and Extractive Ethanol Removal via CO2 Stripping
by Jorge Luíz Silveira Sonego, Jaqueline Machado de Moraes, Nayana Simon de Vargas, Anderson Ferreira da Cunha, Rosineide Gomes da Silva Cruz, Antonio José Gonçalves Cruz and Alberto Colli Badino
Fermentation 2025, 11(5), 270; https://doi.org/10.3390/fermentation11050270 - 9 May 2025
Viewed by 638
Abstract
Fermentation at high temperatures may be a viable alternative for ethanol production, especially in tropical climate regions. This work describes the evaluation of ethanol production through extractive fermentation at high temperatures using thermotolerant Kluyveromyces marxianus. An experimental design was applied to assess [...] Read more.
Fermentation at high temperatures may be a viable alternative for ethanol production, especially in tropical climate regions. This work describes the evaluation of ethanol production through extractive fermentation at high temperatures using thermotolerant Kluyveromyces marxianus. An experimental design was applied to assess the effect of temperature on the ethanol removal process by CO2 stripping. Subsequently, kinetic modeling of conventional batch ethanol fermentation at high temperatures was performed, and the hybrid Andrews−Levenspiel model was found to be suitable for describing the kinetics of this process. Experiments were conducted to evaluate ethanol production at high temperatures using thermotolerant yeast, specifically evaluating the effects of different specific CO2 flow rates (ϕ = 1.0, 1.5, and 2.0 vvm) on ethanol stripping. The results indicated that in all the extractive fermentations conducted with K. marxianus, there was faster substrate uptake and earlier substrate exhaustion compared to conventional fermentation. Significant ethanol removal by stripping was achieved using a CO2 flow rate of 1.0 vvm (EFHT1), and complete substrate consumption was observed by the end of 12 h of fermentation. This result highlights the positive effect of temperature on ethanol entrainment. In addition, integrating the CO2 stripping technique with high-temperature fermentation (T = 40 °C) improves process efficiency with a lower gas flow rate. This is advantageous, especially for industrial-scale applications, as it can reduce equipment costs associated with the CO2 feed. Full article
(This article belongs to the Special Issue YBC2025: Yeast in Bioeconomy)
Show Figures

Figure 1

18 pages, 22450 KiB  
Article
A Mechanism of Argon Arc Remelting of LPBF 18Ni300 Steel Surfaces
by Xiaoping Zeng, Yehui Sun, Hong Zhang, Zhi Jia and Quan Kang
Coatings 2025, 15(4), 481; https://doi.org/10.3390/coatings15040481 - 18 Apr 2025
Cited by 1 | Viewed by 459
Abstract
This study aims to reduce pores, cracks, and other defects on the surface of laser powder bed fusion (LPBF)-fabricated 18Ni300 steel and improve its surface quality. Remelting was carried out on the surface with an argon arc as the heat source. Then, the [...] Read more.
This study aims to reduce pores, cracks, and other defects on the surface of laser powder bed fusion (LPBF)-fabricated 18Ni300 steel and improve its surface quality. Remelting was carried out on the surface with an argon arc as the heat source. Then, the surface layer was characterized using SEM, EDS, XRD, EBSD, and hardness testing. The results showed the following: When the pulse current I increased from 16 A to 20 A, the surface hardness of LPBF 18Ni300 increased due to a decrease in defects and an increase in the martensite phase. The driving forces of convection in the molten pool (such as buoyancy, Lorentz magnetic force, surface tension, and plasma flow force) rose with an increase in current. When the current I exceeded 20 A, the convection became more intense, making it easier for gas to be entrained into the melt pool, forming pores and introducing new defects, resulting in a decrease in surface hardness. The primary factors affecting the hardness of LPBF 18Ni300 after surface argon arc remelting were pore (defect) weakening and phase transformation strengthening, while the secondary factors included grain refinement strengthening and texture strengthening. The solidification mode of the remelted layer was: L → A → M + A′. The phase transition mode of the heat-affected zone was: M + A′ → Areverse → Mtemper. Compared with the base material and heat-affected zone, the grains in the remelted layer formed a stronger <001> texture with a larger average size (2.51 μm) and a lower misorientation angle. The content of the residual austenite A′ was relatively high in the remelted layer. It was distributed in the form of strips along grain boundaries, and it always maintained a shear–coherent relationship with martensite. Full article
Show Figures

Figure 1

18 pages, 1976 KiB  
Review
Progress in Wax Deposition Characteristics and Prediction Methods for High Pour Point and Viscous Crude Oil Water System
by Jiangbo Wen, Yuzhang Jia, Yongrui Lu, Haijun Luo, Zhenwei Huang, Chuanlin You, Zizhe He and Xu Xiao
Processes 2025, 13(4), 1115; https://doi.org/10.3390/pr13041115 - 8 Apr 2025
Viewed by 837
Abstract
With the continuous growth of global energy demand, the exploitation of deepwater oil and gas resources has become an important part of national energy strategies. The high-viscosity crude oil in deepwater areas such as the South China Sea poses severe challenges to oil [...] Read more.
With the continuous growth of global energy demand, the exploitation of deepwater oil and gas resources has become an important part of national energy strategies. The high-viscosity crude oil in deepwater areas such as the South China Sea poses severe challenges to oil and gas pipeline transportation due to its high pour point and high viscosity characteristics. Wax deposition, particularly significant under low temperature and high viscosity conditions, can lead to reduced pipeline flow rates, decreased transportation efficiency, and even potential safety hazards. Therefore, in-depth research on the wax deposition characteristics and mechanisms in high-viscosity systems holds significant theoretical and engineering application value. Current research primarily focuses on the influencing factors of wax deposition, deposition mechanisms, and the establishment of prediction models. Studies have shown that external factors such as temperature, shear intensity, operating time, and water content have significant effects on the wax deposition process. Specifically, increased temperature differences accelerate the deposition of wax molecules, while the presence of the aqueous phase inhibits wax crystallization and deposition. Furthermore, the formation mechanisms of wax deposition mainly include molecular diffusion, shear stripping, and aging effects. Researchers have explored the dynamic changes and influencing laws of wax deposition by establishing mathematical models combined with experimental data. In summary, although some progress has been made in studying the wax deposition characteristics in high-viscosity systems, research on wax deposition characteristics in mixtures, especially under the combined action of pour point depressants and flow improvers, is still inadequate. Future research should strengthen the systematic exploration of wax deposition mechanisms, quantify the effects of different external factors, and develop wax deposition prediction models suitable for practical engineering to ensure the safe and stable operation of deepwater oil and gas pipelines. Through in depth theoretical and experimental research, robust technical support can be provided for the efficient development of deepwater oil and gas resources. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

44 pages, 1413 KiB  
Review
Advanced Technologies for Nitrogen Removal and Recovery from Municipal and Industrial Wastewater
by Sławomir Kasiński, Przemysław Kowal and Krzysztof Czerwionka
Materials 2025, 18(7), 1422; https://doi.org/10.3390/ma18071422 - 23 Mar 2025
Cited by 3 | Viewed by 1616
Abstract
Nitrogen pollution poses significant environmental challenges, contributing to eutrophication, soil acidification, and greenhouse gas emissions. This study explores advanced methods for nitrogen removal and recovery from municipal and industrial wastewater, with a focus on biological, chemical, and physical processes. Key processes, such as [...] Read more.
Nitrogen pollution poses significant environmental challenges, contributing to eutrophication, soil acidification, and greenhouse gas emissions. This study explores advanced methods for nitrogen removal and recovery from municipal and industrial wastewater, with a focus on biological, chemical, and physical processes. Key processes, such as nitrification–denitrification and emerging technologies like shortcut nitrogen pathways, were analyzed for their efficiency, cost-effectiveness, and environmental benefits. This review highlights the integration of innovative techniques, including membrane systems and ammonia stripping, with traditional approaches to enhance nitrogen management. Emphasis is placed on optimizing operational conditions, such as pH, temperature, and carbon-to-nitrogen ratios, to achieve high removal rates while minimizing energy consumption and environmental impact. These findings underline the critical role of interdisciplinary strategies in addressing the challenges of nitrogen pollution and promoting sustainable wastewater management. Full article
Show Figures

Figure 1

15 pages, 3033 KiB  
Article
Particle Image Velocimetry Flow Characterisation of High-Convection Slot Nozzle Systems for Impingement Heat Transfer
by Eileen Trampe, Ida Daube, Dominik Büschgens, Herbert Pfeifer and Christian Wuppermann
Energies 2025, 18(6), 1363; https://doi.org/10.3390/en18061363 - 10 Mar 2025
Viewed by 738
Abstract
Impingement jets are used in many applications for high convective heat transfer. In order to optimise specialised nozzle systems, a comprehensive understanding of the gas flow is essential. The aim of this work is to investigate high-convective flows at Re = 10,000 to [...] Read more.
Impingement jets are used in many applications for high convective heat transfer. In order to optimise specialised nozzle systems, a comprehensive understanding of the gas flow is essential. The aim of this work is to investigate high-convective flows at Re = 10,000 to Re = 50,000 for a single slot nozzle (slot width W = 5 mm) and a slot nozzle array (distance between nozzle slots s = 70 mm) consisting of five nozzles. Particle image velocimetry measurements are taken for a distance between strip and nozzle exit of H = 50 mm and are compared to verify if the results from a single slot nozzle are transferable to a nozzle array. The presence of an array of nozzles not only creates a distinct zone where the individual jets interact but also changes the flow characteristics of the respective free jets. The potential core length in the nozzle field is significantly reduced compared to the single nozzle. It is therefore not possible to make a direct transfer of the results. Direct transferability of the results is therefore not possible. This means that further studies on whole arrays are needed to optimise nozzle arrays. Full article
(This article belongs to the Special Issue Heat Transfer Analysis: Recent Challenges and Applications)
Show Figures

Figure 1

9 pages, 2321 KiB  
Article
Gallium Nitride High Electron Mobility Transistor Device with Integrated On-Chip Array Junction Temperature Monitoring Unit
by Yukuan Chang, Yue Su, Mingke Xiao, Jiatao Wu, Xu Zhang and Hongda Chen
Micromachines 2025, 16(3), 304; https://doi.org/10.3390/mi16030304 - 4 Mar 2025
Cited by 1 | Viewed by 816
Abstract
Herein, we present a novel method for junction temperature monitoring of GaN HEMT devices to achieve real-time temperature perception at different locations on the device surface. Through sputtering patterned Ti/Pt thermistor strips on the surface of a GaN HEMT device to construct an [...] Read more.
Herein, we present a novel method for junction temperature monitoring of GaN HEMT devices to achieve real-time temperature perception at different locations on the device surface. Through sputtering patterned Ti/Pt thermistor strips on the surface of a GaN HEMT device to construct an on-chip array junction temperature monitoring unit, the thermal distribution of the device during operation is fully reflected. The developed temperature monitoring unit exhibited a desirable temperature coefficient of resistance of 0.183%/°C in the range of 25 °C to 205 °C. Comparison with the thermal imager shows that the integrated temperature monitoring unit can accurately reflect the real-time temperature with a monitoring accuracy of more than 95%, which helps to improve the long-term reliability of GaN power devices under actual application conditions of high frequency and high power density. Full article
Show Figures

Figure 1

22 pages, 5616 KiB  
Article
Establishing a Low-Temperature Maize Kernel Moisture Content Prediction Model Based on Dielectric Constant Measurement
by Shuhao Wang, Songling Du, Yuanyuan Yin, Chao Song, Chuang Liu, Rui Qian and Liqing Zhao
Agriculture 2025, 15(5), 507; https://doi.org/10.3390/agriculture15050507 - 26 Feb 2025
Viewed by 511
Abstract
Detecting the moisture content of stored maize kernels is critical for minimizing post-harvest losses. To measure the moisture content of maize kernels under low-temperature conditions, a small-strip transmission line device was employed to construct a non-destructive measurement platform. The dielectric constant of maize [...] Read more.
Detecting the moisture content of stored maize kernels is critical for minimizing post-harvest losses. To measure the moisture content of maize kernels under low-temperature conditions, a small-strip transmission line device was employed to construct a non-destructive measurement platform. The dielectric constant of maize kernels with varying moisture content was measured at temperatures ranging from −15 °C to 20 °C and frequencies between 1 and 200 MHz. By using the dielectric constant, frequency, and temperature as input variables, along with volume density and scattering parameter characteristics, three moisture content prediction models—SPO-SVM, XGBoost, and GA-BP—were established. The results show that temperature significantly affects the dielectric constant of maize kernels, especially when the moisture levels exceed 22.4%. The prediction model significantly improves the prediction accuracy under low-temperature conditions after introducing the volume density feature. Furthermore, incorporating the multi-phase and amplitude characteristics of scattering parameters further improves the model’s performance. This study verifies the mechanism and behavior of dielectric constant variations in maize kernels under low-temperature conditions. The proposed model effectively mitigates measurement errors caused by the icing of free water and is well suited for measuring maize moisture content under low-temperature conditions. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

18 pages, 2892 KiB  
Article
Effects of Roasting Process on Sensory Qualities, Color, Physicochemical Components, and Identification of Key Aroma Compounds in Hubei Strip-Shaped Green Tea
by Fei Ye, Anhui Gui, Xiaoyan Qiao, Panpan Liu, Xueping Wang, Shengpeng Wang, Lin Feng, Jin Teng, Jinjin Xue, Xun Chen, Yuanhong Mei, Binghua Zhang, Hanshan Han, Anhua Liao, Pengcheng Zheng and Shiwei Gao
Metabolites 2025, 15(3), 155; https://doi.org/10.3390/metabo15030155 - 25 Feb 2025
Viewed by 708
Abstract
Background: Roasting conditions significantly influence the sensory profile of Hubei strip-shaped green tea (HSSGT). Methods: This study examined the effects of roast processing on the sensory attributes, color qualities, physicochemical properties, and key aroma compounds of HSSGT. Sensory evaluation, color qualities determination, principal [...] Read more.
Background: Roasting conditions significantly influence the sensory profile of Hubei strip-shaped green tea (HSSGT). Methods: This study examined the effects of roast processing on the sensory attributes, color qualities, physicochemical properties, and key aroma compounds of HSSGT. Sensory evaluation, color qualities determination, principal component analysis of physicochemical components (PCA), HS-SPME (headspace solid-phase microextraction) coupled with GC-MS (gas chromatography–mass spectrometry), relative odor activity value (ROAV), gas chromatography–olfactometry (GC-O), and absolute quantification analysis were employed to identify the critical difference in compounds that influence HSSGT desirability. Results: The results indicated that HSSGT roasted at 110 °C for 14 min achieved the highest sensory scores, superior physicochemical qualities, and an enhanced aroma index, which was attributed to shifting the proportion of chestnut to floral volatile compounds. Additionally, sensory-guided ROAV, GC-O, and absolute quantification revealed that linalool, octanal, nonanal, and hexanal were the most significant volatile compounds. The variations in these four critical compounds throughout the roasting process were further elucidated, showing that the ideal roasting conditions heightened floral aromas while diminishing the presence of less desirable green odors. These findings offer technical guidance and theoretical support for producing HSSGT with a more desirable balance of chestnut and floral aroma characteristics. Full article
Show Figures

Figure 1

Back to TopTop