Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (357)

Search Parameters:
Keywords = stepping stones

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1313 KiB  
Article
Chair-Time During Polishing with Different Burs and Drills After Cement Customized Brackets Bonding: An In Vitro Comparative Study
by Javier Flores-Fraile, Alba Belanche Monterde, Oscar Alonso-Ezpeleta, Cosimo Galletti and Álvaro Zubizarreta-Macho
Dent. J. 2025, 13(8), 347; https://doi.org/10.3390/dj13080347 - 28 Jul 2025
Viewed by 231
Abstract
Introduction: Digital planning and evolution of technology is allowing dentistry to be more efficient in time than before. In orthodontics the main purpose is to obtain fewer patient visits and to reduce the bonding time. For that, indirect bonding planned with CAD-CAM softwares [...] Read more.
Introduction: Digital planning and evolution of technology is allowing dentistry to be more efficient in time than before. In orthodontics the main purpose is to obtain fewer patient visits and to reduce the bonding time. For that, indirect bonding planned with CAD-CAM softwares is used to obtain a shorter treatment period, in general, and less chair-time. This waste of chair-time should also be reduced in other fields of dentistry such as endodontics, surgery, prosthodontics, and aesthetics. Methods: A total of 504 teeth were embedded into epoxy resin models mounted as a dental arch. Customized lingual multibracket appliances were bonded by a current adhesion protocol. After that, they were debonded, the polishing of cement remnants was performed with three different burs and two drills. The polishing time of each group was recorded by an iPhone 14 chronometer. Results: Descriptive and comparative statistical analyses were performed with the different study groups. Statistical differences (p < 0.005) between diamond bur and tungsten carbide and white stone burs and turbine were obtained, with the first being the slowest of them. Discussion: Enamel roughness was widely studied in orthodontics polishing protocol as the main variable for protocols establishment. However, in lingual orthodontics, due the difficulty of the access to the enamel surfaces, the protocol is not clear and efficiency should be considered. It was observed that the tungsten carbide bur is the safest bur. It was also recommended that a two-step protocol of polishing by tungsten carbide bur be followed by polishers. Conclusions: A tungsten carbide bur mounted in a turbine was the most efficient protocol for polishing after lingual bracket debonding. Full article
(This article belongs to the Special Issue Malocclusion: Treatments and Rehabilitation)
Show Figures

Figure 1

15 pages, 2245 KiB  
Article
Whey Protein Isolate and β-Lactoglobulin-Modified Alginate Hydrogel Scaffolds Enhance Cell Proliferation for Cultivated Meat Applications
by Irfan Tahir, Christopher Foley and Rachael Floreani
Foods 2025, 14(14), 2534; https://doi.org/10.3390/foods14142534 - 19 Jul 2025
Viewed by 543
Abstract
Innovative changes to our current food system are needed, and one solution is cultivated meat, which uses modern engineering, materials science, and biotechnology to produce animal protein. This article highlights the advantages of incorporating whey protein isolate (WPI) and β-lactoglobulin (β-LG) into hydrogel [...] Read more.
Innovative changes to our current food system are needed, and one solution is cultivated meat, which uses modern engineering, materials science, and biotechnology to produce animal protein. This article highlights the advantages of incorporating whey protein isolate (WPI) and β-lactoglobulin (β-LG) into hydrogel networks to aid cell growth on cultivated meat scaffolds. The protein and polysaccharide (i.e., alginate) components of the scaffolds are food-grade and generally regarded as safe ingredients, enabling the transition to more food-safe, edible, and nutritious scaffolds. The impact of WPI and varying properties on cell performance was evaluated; alginate concentration and the addition of proteins into the hydrogels significantly altered their stiffness and strength. The results of this study demonstrate the innocuous nature of novel scaffolds and reveal enhanced cell proliferation on WPI and β-LG-modified groups compared to standard biomaterial controls. This work serves as a stepping stone for more comprehensive analyses of WPI, β-LG, and alginate scaffolds for use in cultivated meat research and production. Full article
Show Figures

Graphical abstract

14 pages, 2193 KiB  
Article
Neighboring Patch Density or Patch Size? Which Determines the Importance of Forest Patches in Maintaining Overall Landscape Connectivity in Kanas, Xinjiang, China
by Zhi Wang, Lei Han, Luyao Wang, Hui Shi and Yan Luo
Biology 2025, 14(7), 881; https://doi.org/10.3390/biology14070881 - 18 Jul 2025
Viewed by 248
Abstract
The precise identification of priority areas for conservation based on connectivity can significantly enhance protection efficacy and mitigate biodiversity loss in fragmented landscapes. Priority area selection efforts are typically conducted in landscapes with a limited number of patches or simplified to focus on [...] Read more.
The precise identification of priority areas for conservation based on connectivity can significantly enhance protection efficacy and mitigate biodiversity loss in fragmented landscapes. Priority area selection efforts are typically conducted in landscapes with a limited number of patches or simplified to focus on large patches, while landscapes with numerous patches are rarely explored. In this paper, we used a forest in Kanas, Xinjiang, China, as a case study to explore priority patches for conservation according to their contribution to maintaining overall landscape connectivity, as well as to assess how structural factors influence patch importance in connectivity, based on graph theory. We found that the rank of patches varied with patch importance indices (which can be used to calculate the contribution of individual patches to maintaining overall landscape). Dispersal distances were selected, as they placed different emphasis on the size and topological location of patches, and different types of links (binary or probabilistic connection) were used. One critical and seven important connected patches were identified as priority patches for conservation after taking multiple connectivity indices and dispersal distances into comprehensive consideration. In addition, neighboring patch density was the dominant factor that influenced patch importance for species with 50 and 100 m dispersal distances, while patch size contributed most for species with 200 m and longer dispersal distances; therefore, we suggested that neighboring patch density and patch size could be used to support efforts to identify priority patches. Overall, our results provide a unique perspective and a more simplified process for the selection of priority protected sites in patch-rich landscapes, allowing us to highlight which action is suitable for optimizing landscape connectivity and biodiversity conservation. Full article
(This article belongs to the Section Conservation Biology and Biodiversity)
Show Figures

Figure 1

28 pages, 2069 KiB  
Article
Stepping Stones: Adopting a Fading Programme Design to Promote Teachers’ Use of Metacognitive Strategies for Mathematical Problem Solving
by Kirstin Mulholland, William Gray, Christopher Counihan and David Nichol
Educ. Sci. 2025, 15(7), 892; https://doi.org/10.3390/educsci15070892 - 12 Jul 2025
Viewed by 457
Abstract
Metacognition and self-regulated learning are widely understood to offer significant benefits for pupils’ mathematical problem solving; however, the existing literature highlights that the under-representation of these concepts in curriculum, policy, and teacher professional development means that their potential for impact remains unfulfilled. This [...] Read more.
Metacognition and self-regulated learning are widely understood to offer significant benefits for pupils’ mathematical problem solving; however, the existing literature highlights that the under-representation of these concepts in curriculum, policy, and teacher professional development means that their potential for impact remains unfulfilled. This article, therefore, examines the potential value of an innovative fading professional development programme—“Stepping Stones”—in enhancing teachers’ understanding and use of metacognitive strategies for mathematical problem solving. Adopting a convergent mixed methods design, this pilot evaluation involved Year 2 teachers across five primary schools. The results from both qualitative and quantitative data demonstrate that, as the scaffolding provided by programme materials faded and teachers assumed greater responsibility for session planning, they incorporated metacognitive strategies into their planning and delivery with increased independence. The results also indicate the acceptability of this professional development model, suggesting that, when combined with peer collaboration, the fading design was associated with improvements in knowledge and confidence regarding both metacognition and mathematical problem solving, alongside increased ownership and buy in. The conclusions advocate further examination and implementation of fading models of professional development to promote the understanding and use of metacognition for mathematical problem solving and recommend exploration into different professional development contexts. Full article
(This article belongs to the Special Issue Different Approaches in Mathematics Teacher Education)
Show Figures

Figure 1

18 pages, 3892 KiB  
Article
The Impact of Increasing Tree Cover on Landscape Metrics and Connectivity: A Cellular Automata Modelling Approach
by Andrew Speak, Claire Holt, Polyanna Bispo, Ewan McHenry and Matthew Dennis
Forests 2025, 16(7), 1081; https://doi.org/10.3390/f16071081 - 28 Jun 2025
Viewed by 262
Abstract
The United Kingdom has a low percentage cover of woodland, which exists in small, highly fragmented patches. Plans to increase the cover from 14.5% to 17.5% by 2050 will require guidance to help target the planting of new forests to maximise ecological connectivity. [...] Read more.
The United Kingdom has a low percentage cover of woodland, which exists in small, highly fragmented patches. Plans to increase the cover from 14.5% to 17.5% by 2050 will require guidance to help target the planting of new forests to maximise ecological connectivity. This study develops a novel approach to landscape simulation utilising real-world spatial boundary data. The Colne Valley river watershed is chosen as a study site. Three different future woodland creation goals (+10, 30, and 50%) are tested alongside manipulations of the mean new patch size and the mode in which new woodland is created in relation to existing woodland. Scenarios which expanded existing woodland and used riparian planting created larger, more connected patches with more core area. The model outputs are used to assess the impact of the UK woodland increase plans, and past woodland creation efforts are assessed. Increasing the percentage cover generally boosted connectivity, functional connectivity (species dispersals), and increased patch size and core area index. We suggest that proximal growth offers the greatest benefits in terms of biodiversity, but in terms of habitat connectivity smaller isolated woodland patches may also be needed as stepping stones to aid dispersal. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

21 pages, 4961 KiB  
Article
Application of Vis/NIR Spectroscopy in the Rapid and Non-Destructive Prediction of Soluble Solid Content in Milk Jujubes
by Yinhai Yang, Shibang Ma, Feiyang Qi, Feiyue Wang and Hubo Xu
Agriculture 2025, 15(13), 1382; https://doi.org/10.3390/agriculture15131382 - 27 Jun 2025
Viewed by 255
Abstract
Milk jujube has become an increasingly popular tropical fruit. The sugar content, which is commonly represented by the soluble solid content (SSC), is a key indicator of the flavor, internal quality, and market value of milk jujubes. Traditional methods for assessing SSC are [...] Read more.
Milk jujube has become an increasingly popular tropical fruit. The sugar content, which is commonly represented by the soluble solid content (SSC), is a key indicator of the flavor, internal quality, and market value of milk jujubes. Traditional methods for assessing SSC are time-consuming, labor-intensive, and destructive. These methods fail to meet the practical demands of the fruit market. A rapid, stable, and effective non-destructive detection method based on visible/near-infrared (Vis/NIR) spectroscopy is proposed here. A Vis/NIR reflectance spectroscopy system covering 340–1031 nm was constructed to detect SSC in milk jujubes. A structured spectral modeling framework was adopted, consisting of outlier elimination, dataset partitioning, spectral preprocessing, feature selection, and model construction. Comparative experiments were conducted at each step of the framework. Special emphasis was placed on the impact of outlier detection and dataset partitioning strategies on modeling accuracy. A data-augmentation-based unsupervised anomaly sample elimination (DAUASE) strategy was proposed to enhance the data validity. Multiple data partitioning strategies were evaluated, including random selection (RS), Kennard–Stone (KS), and SPXY methods. The KS method achieved the best preservation of the original data distribution, improving the model generalization. Several spectral preprocessing and feature selection methods were used to enhance the modeling performance. Regression models, including support vector regression (SVR), partial least squares regression (PLSR), multiple linear regression (MLR), and backpropagation neural network (BP), were compared. Based on a comprehensive analysis of the above results, the DAUASE + KS + SG + SNV + CARS + SVR model exhibited the highest prediction performance. Specifically, it achieved an average precision (APp) of 99.042% on the prediction set, a high coefficient of determination (RP2) of 0.976, and a low root-mean-square error of prediction (RMSEP) of 0.153. These results indicate that Vis/NIR spectroscopy is highly effective and reliable for the rapid and non-destructive detection of SSC in milk jujubes, and it may also provide a theoretical basis for the practical application of rapid and non-destructive detection in milk jujubes and other jujube varieties. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

44 pages, 34279 KiB  
Article
Identification and Optimization of Urban Avian Ecological Corridors in Kunming: Framework Construction Based on Multi-Model Coupling and Multi-Scenario Simulation
by Xiaoli Zhang and Zhe Zhang
Diversity 2025, 17(6), 427; https://doi.org/10.3390/d17060427 - 17 Jun 2025
Viewed by 733
Abstract
This study employs a multi-model coupling and multi-scenario simulation approach to construct a framework for identifying and optimizing avian ecological corridors in the urban core of Kunming. The framework focuses on the ecological needs of resident birds (64.72%), woodland-dependent birds (39.87%), and low-mobility [...] Read more.
This study employs a multi-model coupling and multi-scenario simulation approach to construct a framework for identifying and optimizing avian ecological corridors in the urban core of Kunming. The framework focuses on the ecological needs of resident birds (64.72%), woodland-dependent birds (39.87%), and low-mobility birds (47.29%) to address habitat fragmentation and enhance urban biodiversity conservation. This study identifies 54 core ecological corridors, totaling 183.58 km, primarily located in forest–urban transition zones. These corridors meet the continuous habitat requirements of resident and woodland-dependent birds, providing a stable environment for species. Additionally, 55 general corridors, spanning 537.30 km, focus on facilitating short-distance movements of low-mobility birds, enhancing habitat connectivity in urban fringe areas through ecological stepping stones. Eighteen ecological pinch points (total area 5.63 km2) play a crucial role in the network. The northern pinch points, dominated by forest land, serve as vital breeding and refuge habitats for woodland-dependent and resident birds. The southern pinch points, located in wetland-forest ecotones, function as critical stopover sites for low-mobility waterbirds. Degradation of these pinch points would significantly reduce available habitat for birds. The 27 ecological barrier points (total area 89.79 km2), characterized by urban land use, severely impede the movement of woodland-dependent birds and increase the migratory energy expenditure of low-mobility birds in agricultural areas. Following optimization, resistance to resident birds in core corridors is significantly reduced, and habitat utilization by generalist species in general corridors is markedly improved. Moreover, multi-scenario optimization measures, including the addition of ecological stepping stones, barrier improvement, and pinch-point protection, have effectively increased ecological sources, met avian habitat requirements, and secured migratory pathways for waterbirds. These measures validate the scientific rationale of a multidimensional management strategy. The comprehensive framework developed in this study, integrating species needs, corridor design, and spatial optimization, provides a replicable model for avian ecological corridor construction in subtropical montane cities. Future research may incorporate bird-tracking technologies to further validate corridor efficacy and explore planning pathways for climate-adaptive corridors. Full article
Show Figures

Figure 1

24 pages, 1732 KiB  
Article
Model-Based Design of Contrast-Limited Histogram Equalization for Low-Complexity, High-Speed, and Low-Power Tone-Mapping Operation
by Wei Dong, Maikon Nascimento and Dileepan Joseph
Electronics 2025, 14(12), 2416; https://doi.org/10.3390/electronics14122416 - 13 Jun 2025
Viewed by 380
Abstract
Imaging applications involving outdoor scenes and fast motion require sensing and processing of high-dynamic-range images at video rates. In turn, image signal processing pipelines that serve low-dynamic-range displays require tone mapping operators (TMOs). For high-speed and low-power applications with low-cost field-programmable gate arrays [...] Read more.
Imaging applications involving outdoor scenes and fast motion require sensing and processing of high-dynamic-range images at video rates. In turn, image signal processing pipelines that serve low-dynamic-range displays require tone mapping operators (TMOs). For high-speed and low-power applications with low-cost field-programmable gate arrays (FPGAs), global TMOs that employ contrast-limited histogram equalization prove ideal. To develop such TMOs, this work proposes a MATLAB–Simulink–Vivado design flow. A realized design capable of megapixel video rates using milliwatts of power requires only a fraction of the resources available in the lowest-cost Artix-7 device from Xilinx (now Advanced Micro Devices). Unlike histogram-based TMO approaches for nonlinear sensors in the literature, this work exploits Simulink modeling to reduce the total required FPGA memory by orders of magnitude with minimal impact on video output. After refactoring an approach from the literature that incorporates two subsystems (Base Histograms and Tone Mapping) to one incorporating four subsystems (Scene Histogram, Perceived Histogram, Tone Function, and Global Mapping), memory is exponentially reduced by introducing a fifth subsystem (Interpolation). As a crucial stepping stone between MATLAB algorithm abstraction and Vivado circuit realization, the Simulink modeling facilitated a bit-true design flow. Full article
(This article belongs to the Special Issue Design of Low-Voltage and Low-Power Integrated Circuits)
Show Figures

Figure 1

14 pages, 2150 KiB  
Article
Dual Biocide Behaviour of Quaternary Ammonium Functionalized Mesoporous Silica Nanoparticles Loaded with Thymus Essential Oil for Stone Conservation
by Federico Olivieri, Elena Orlo, Elodia Spinelli, Rachele Castaldo, Gennaro Gentile, Silvia Licoccia, Margherita Lavorgna and Marino Lavorgna
Nanomaterials 2025, 15(11), 866; https://doi.org/10.3390/nano15110866 - 4 Jun 2025
Cited by 1 | Viewed by 504
Abstract
Mesoporous silica nanoparticles (MSNs) functionalized with silane quaternary ammonium compounds (SiQACs) were synthesized and utilized as carriers for thymus essential oil (TO), a green bio-antifouling agent. The synthesis of MSNs functionalized with SiQACs was carried out in a single step, with clear advantages [...] Read more.
Mesoporous silica nanoparticles (MSNs) functionalized with silane quaternary ammonium compounds (SiQACs) were synthesized and utilized as carriers for thymus essential oil (TO), a green bio-antifouling agent. The synthesis of MSNs functionalized with SiQACs was carried out in a single step, with clear advantages in terms of simplicity of the process, high yield (94%) and saving of reagents and solvents for the MSN purification. After loading with TO, this innovative dual-action antifouling system was able to integrate the intrinsic biocidal properties of SiQACs with the release of TO from MSN pores, resulting in an engineered material with prolonged efficacy. The antifouling compounds incorporated into the nanoparticles accounted for 42% of the total weight. The biocidal performance was evaluated by monitoring the growth inhibition of Chlorella sorokiniana, a microalga commonly associated with stone biodeterioration. Additionally, these nanoparticles were embedded in a commercial silane-based protective coating and applied to tuff stone samples to assess their ability to mitigate biofilm formation over extended periods. Results demonstrated the system’s high potential for durable protection against microbial colonization and biofilm growth on stone surfaces. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

15 pages, 2121 KiB  
Article
The Seasonality and Spatial Landscape of the Historical Climate-Based Suitability of Aedes-Borne Viruses in Four Atlantic Archipelagos
by Martim A. Geraldes, Marta Giovanetti, Mónica V. Cunha and José Lourenço
Viruses 2025, 17(6), 799; https://doi.org/10.3390/v17060799 - 30 May 2025
Viewed by 638
Abstract
While archipelagos have a demonstrated role in the stepping-stone process of the global dissemination of Aedes-borne viruses, they are often neglected in epidemiological and modelling studies. Over the past 20 years, some Atlantic archipelagos have witnessed a series of Aedes-borne viral [...] Read more.
While archipelagos have a demonstrated role in the stepping-stone process of the global dissemination of Aedes-borne viruses, they are often neglected in epidemiological and modelling studies. Over the past 20 years, some Atlantic archipelagos have witnessed a series of Aedes-borne viral outbreaks, prompting inquiries into the local historical suitability for transmission. In this study, the climate-based suitability for transmission of Aedes-borne viruses between 1980 and 2019 across Madeira, the Canaries, Cape Verde, and São Tomé e Príncipe archipelagos was estimated. For each island, we characterized the seasonality of climate-based suitability, mapped the spatial landscape of suitability, and quantified the historical effects of climate change. Results show that both island-level suitability and the historical impact of climate change decrease with distance from the equator, while significant seasonality patterns are observed only in subtropical climates. This study provides a unique historical perspective on the role of climate in shaping Aedes-borne virus transmission potential in Atlantic archipelagos. The findings herein described can inform local public health initiatives, including human-based prevention, targeted viral surveillance, and mosquito control programs. Full article
(This article belongs to the Special Issue Arboviruses and Climate, 2nd Edition)
Show Figures

Figure 1

34 pages, 792 KiB  
Article
Data-Driven Approaches for Efficient Vehicle Driving Analysis: A Survey
by Iryna I. Husyeva, Ismael Navas-Delgado and José García-Nieto
J. Sens. Actuator Netw. 2025, 14(3), 52; https://doi.org/10.3390/jsan14030052 - 19 May 2025
Cited by 1 | Viewed by 2704
Abstract
Efficient vehicle driving generally intends to reduce fuel consumption, emissions of harmful substances, and accident rates based on energy-efficient driving patterns as a set of parameters defining optimal vehicle and route characteristics, together with specific ways of driving a vehicle that the particular [...] Read more.
Efficient vehicle driving generally intends to reduce fuel consumption, emissions of harmful substances, and accident rates based on energy-efficient driving patterns as a set of parameters defining optimal vehicle and route characteristics, together with specific ways of driving a vehicle that the particular driver applies. To gain environmental friendliness in driving, two main approaches can be outlined: optimal route planning and driver training based on the principles of ecological driving. The latter can be supported by using software for real-time, efficient vehicle driving recommendations. In order to develop the principles of ecological driving as well as generate relevant real-time recommendations, it is necessary to identify the specific parameters required to analyze driver behavior and vehicle performance, determine the corresponding energy consumption, and understand the influence of route and environmental conditions on overall efficient vehicle driving. These tasks require a large amount of data, often obtained from heterogeneous sources, which, when publicly available, are complex for consolidation, transmission, and processing, not to mention the complexity of the data model itself. This study provides a thorough review of the current data sources and techniques for efficient vehicle driving analysis, focusing on the availability and relevance of dataset sources and repositories. The categorization of parameters and data processing techniques enabling efficient vehicle driving analysis is carried out according to efficiency types such as driver’s efficiency, resource consumption efficiency, and route planning efficiency. For each type of efficiency, we provide a list of contextual groups and features, identifying the dataset containing the necessary feature, making it possible not only to determine the parameters defining, for example, driver efficiency, but also locate the corresponding dataset serving as a stepping stone for researchers and practitioners to join the community investigating efficient vehicle driving analysis. We also discuss future trends and perspectives, identifying alternative data sources for efficient vehicle driving analysis, and focus on data collection issues revealed by the practical use case of collecting data from mobile phone sensors. Full article
(This article belongs to the Special Issue Advances in Intelligent Transportation Systems (ITS))
Show Figures

Figure 1

11 pages, 3126 KiB  
Article
Increased Expression of AbcA Efflux Pump Accelerated Resistance Development from Tolerance to Resistance Against Oxacillin in Staphylococcus aureus
by Xiaohui Yu, Miaomiao Liu, Pilong Liu, Zehua Hao, Lili Zhao and Xin Zhao
Microorganisms 2025, 13(5), 1140; https://doi.org/10.3390/microorganisms13051140 - 16 May 2025
Viewed by 452
Abstract
Bacterial tolerance, especially in Staphylococcus aureus (S. aureus), may arise under intermittent antibiotic regimens and act as a stepping stone toward resistance development. However, the transition from tolerance to resistance and its contributing factors remain poorly understood. This study explores the [...] Read more.
Bacterial tolerance, especially in Staphylococcus aureus (S. aureus), may arise under intermittent antibiotic regimens and act as a stepping stone toward resistance development. However, the transition from tolerance to resistance and its contributing factors remain poorly understood. This study explores the role of the efflux pump gene abcA in this process. abcA mutants (overexpression, knockout, and complementation) were constructed via homologous recombination. These strains were subjected to 21 cycles of intermittent exposure to oxacillin at 20× MIC, and the resistance evolution was monitored. Spontaneous mutation frequencies and survival abilities in these mutants were also measured to determine their involvement in resistance development. The abcA overexpression mutant exhibited a faster development of resistance compared to the wildtype strain. Conversely, the abcA knockout mutant maintained susceptibility to oxacillin, with no significant changes in the relative MIC. Increased mutation frequency and enhanced survival were observed in the overexpression strain, whereas both were reduced in the knockout. abcA overexpression significantly accelerated the development of oxacillin resistance in S. aureus by promoting spontaneous mutations and bacterial survival. Disrupting abcA may offer a novel strategy to prevent the evolution of antibiotic resistance. Full article
(This article belongs to the Collection Feature Papers in Antimicrobial Agents and Resistance)
Show Figures

Graphical abstract

22 pages, 17735 KiB  
Article
Ecological Security Pattern Construction for Carbon Sink Capacity Enhancement: The Case of Chengdu Metropolitan Area
by Langong Hou, Huanhuan Hu, Tao Liu and Che Ma
Sustainability 2025, 17(10), 4483; https://doi.org/10.3390/su17104483 - 14 May 2025
Cited by 2 | Viewed by 516
Abstract
Constructing regional ecological security patterns (ESP) and enhancing carbon sequestration are essential for achieving China’s dual-carbon goals. However, rapid urbanization has intensified landscape fragmentation, disrupted ecosystem flows, and significantly altered urban ecological networks, weakening their carbon sink functions. Using the Chengdu metropolitan area [...] Read more.
Constructing regional ecological security patterns (ESP) and enhancing carbon sequestration are essential for achieving China’s dual-carbon goals. However, rapid urbanization has intensified landscape fragmentation, disrupted ecosystem flows, and significantly altered urban ecological networks, weakening their carbon sink functions. Using the Chengdu metropolitan area (CMA) as a case study, a time-series ESP from 2000 to 2020 was constructed. Morphological Spatial Pattern Analysis (MSPA), the Minimum Cumulative Resistance (MCR) model, the gravity model, and complex network theory were employed to assess the spatiotemporal evolution and carbon sequestration capacity of the ecological network. Results revealed continuous declines in ecological sources and corridors, an initial rise then stabilization in resistance, and weakening connectivity, particularly in central and western subregions. Reductions in modularity and topological indices reflected lower ecological stability and greater vulnerability. Forest land served as the primary carbon sink, closely associated with multiple topological metrics; grassland sequestration correlated with clustering, while water bodies were positively linked to centrality measures. Adding 10 stepping-stone nodes and 45 corridors could enhance carbon sequestration by approximately 4156 Mg C yr−1, with forests contributing 94.8% by 2020. This study provides scientific support for resilient regional ESP construction and dual-carbon strategy advancement. Full article
Show Figures

Figure 1

31 pages, 1059 KiB  
Article
Large Language Model-Powered Protected Interface Evasion: Automated Discovery of Broken Access Control Vulnerabilities in Internet of Things Devices
by Enze Wang, Wei Xie, Shuhuan Li, Runhao Liu, Yuan Zhou, Zhenhua Wang, Shuoyoucheng Ma, Wantong Yang and Baosheng Wang
Sensors 2025, 25(9), 2913; https://doi.org/10.3390/s25092913 - 5 May 2025
Viewed by 827
Abstract
Broken access control vulnerabilities pose significant security risks to the protected web interfaces of IoT devices, enabling adversaries to gain unauthorized access to sensitive configurations and even use them as stepping stones for attacking the intranet. Despite its ranking as the first in [...] Read more.
Broken access control vulnerabilities pose significant security risks to the protected web interfaces of IoT devices, enabling adversaries to gain unauthorized access to sensitive configurations and even use them as stepping stones for attacking the intranet. Despite its ranking as the first in the latest OWASP Top 10, there remains a lack of effective methodologies to detect these vulnerabilities systematically. We present ACBreaker, a novel methodology powered by a large language model (LLM), to effectively identify broken access control vulnerabilities in the protected web interfaces of IoT devices. Our methodology consists of three stages. The initial stage transforms firmware code that exceeds the LLM context window into semantically intact code snippets. The second stage involves using an LLM to extract device-specific information from firmware code. The final stage integrates this information into the mutation-based fuzzer to improve fuzzing effectiveness and employ differential analysis to identify vulnerabilities. We evaluated ACBreaker across 11 IoT devices, analyzing 1,274,646 lines of code and discovering 39 previously unknown vulnerabilities. We further analyzed these vulnerabilities, categorizing them into three types that contribute to protected interface evasion, and provided mitigation suggestions. These vulnerabilities were responsibly disclosed to vendors, with CVE IDs assigned to those in six IoT devices. Full article
(This article belongs to the Special Issue IoT Network Security (Second Edition))
Show Figures

Figure 1

31 pages, 5123 KiB  
Review
How Can Plants Used for Ornamental Purposes Contribute to Urban Biodiversity?
by Stefania Toscano, Daniela Romano, Valerio Lazzeri, Luca Leotta and Francesca Bretzel
Sustainability 2025, 17(9), 4061; https://doi.org/10.3390/su17094061 - 30 Apr 2025
Cited by 1 | Viewed by 1359
Abstract
Sustainability urgently needs to be achieved in urban green infrastructure. Maintaining and restoring biodiversity are critical for developing an urban ecosystem more resilient to abiotic and biotic stresses. The biodiversity of urban green spaces is vital as it reduces the risks associated with [...] Read more.
Sustainability urgently needs to be achieved in urban green infrastructure. Maintaining and restoring biodiversity are critical for developing an urban ecosystem more resilient to abiotic and biotic stresses. The biodiversity of urban green spaces is vital as it reduces the risks associated with climate change (diseases and pests), improves the resilience of the urban ecosystem, and enhances citizens’ well-being. Urban green areas can provide important ecosystem services necessary for achieving prosperity, urban well-being, and the One Health paradigm at various scales. Urban green areas can serve as corridors and stepping stones between the rural environments surrounding cities, increasing their connections and reducing the risk of ecological traps. The conservation and restoration of biodiversity are strategies to increase ecosystem services. In this context, this review aims to analyze the possible contribution of ornamental plants to urban biodiversity, investigating the available knowledge and the gaps that need to be filled. Plants chosen for their esthetic functions are often allogamous species, characterized by showy flowers that attract fauna for pollination, thus helping insects and other fauna survive. If not invasive, these plants can actively contribute to biodiversity in the urban environment and to human well-being. Choosing suitable species and methods that favor plant communities and sustainable maintenance practices improves biodiversity and the ecosystem services that ornamental plants provide. Full article
Show Figures

Figure 1

Back to TopTop